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A version of the speed-gradient evolution models for systems obeying the
maximum information entropy principle developed by H. Haken in his book of
1988 is proposed in this article. An explicit relation specifying system dynamics for
general linear constraints is established. Two versions of the human brain entropy
detailed balance-breaking model are proposed. In addition, the contours of a
new scientific field called cybernetical neuroscience dedicated to the control of
neural systems have been outlined.
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1 Introduction

In Haken (1988), the eminent scientist Hermann Haken explored the interplay between
the concepts of information and self-organization. He took a significant step toward
broadening the applicability of the Gibbs–Jaynes principle of maximum entropy
(Jaynes, 1957). Specifically, Haken incorporated functions that act as order parameters
in nonequilibrium phase transitions into the set of additional constraints. In Chapter 3 of
the book, he presents a modified version of the maximum entropy principle. Haken’s
adaptation of this principle involves seeking a new future state of the system that maximizes
information while adhering to physical conditions describing the system’s physical
properties.

Let the elements of some system, for example, molecules of an ideal gas, stay in n cells. If
we are looking for the distribution of molecules by possible states (cells), that is, we need to
find the probabilities p1, p2, . . . , pn where pi is the probability of finding a molecule in a cell
i. Then, the information entropy S of the system is defined as

S � −K∑n
i�1

pi lnpi, (1)

where K is the Boltzmann constant.
The physical conditions act as constraints; for example, the position of the center of

masses may be given:

∑n
i�1

piqi � M, (2)

where qi is the position of the ith cell, the value M is the coordinate of the center of
masses, and N is the total number of the particles. Alternatively, let fi be the kinetic
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energy of the ith particle. Then, the average value of the kinetic
energy of the system may be specified by

∑n
i�1

pifi � E,

and so on. In many important cases, all the constraints specify the
values Lk of some linear combinations of some characteristics
fk
i , k � 1, . . . , L of the system:

∑n
i�1

pif
k
i � Lk,

Additionally, the normalization constraint for the distribution
should be added:

∑n
i�1

pi � 1, pi ≥ 0. (3)

Several examples in Haken (1988) illustrate the form of the
system’s state distribution that achieves maximum information, as
well as the state corresponding to the self-organization of the
system. However, neither in Haken’s book nor in any other known
works does the question arise regarding how a system evolves to
attain the state of maximum information entropy (or self-
organized state).

The question “How does a system evolve when striving for a
state of maximum entropy?” was first addressed in the works by
Fradkov (2007) and Fradkov (2008) and further investigated in a
series of subsequent publications. It was hypothesized that this
evolution aligns with the speed-gradient principle, originally
developed within control systems theory, as seen in Fradkov
(1979), Fradkov (1991), and Fradkov et al. (1999). According to
this hypothesis, the evolution process can be understood if the
system aims to maximize a certain functional. If the system seeks to
achieve the optimal state, it should logically strive to do so in the
most efficient manner.

Indeed, if the objective is to increase the value of a given target
functional, the quickest path to achieving this goal would be to
follow the direction of the speed gradient: the gradient of the rate
at which this functional changes. Subsequent studies have
examined the application of the speed-gradient principle to
different types of entropies, including Shannon, Rényi, Tsallis,
relative entropy, and Kullback–Leibler divergence (Fradkov,
2008; Fradkov and Shalymov, 2014; Fradkov and Shalymov,
2015; Shalymov et al., 2017). The evolution of distributed
systems governed by the law of maximum differential entropy
was also analyzed by Fradkov and Shalymov (2015a). In each
instance, it was demonstrated and mathematically verified that
the trajectories of systems evolving according to the speed-
gradient principle converge to a state of maximum entropy
that is asymptotically stable.

Herein, we show that analogous principles and laws govern the
transition to the state of maximum information entropy described in
Hermann Haken’s works. We propose an explicit form for the
speed-gradient evolution of systems characterizing the dynamics of
information entropy in the presence of multiple linear constraints,
as discussed in Section 3.2 of Haken (1988). This case generalizes
previous considerations involving constraints related to the
conservation of mass and energy.

2 Principle of maximum entropy and
speed-gradient formalism

Consider the problem of finding the system dynamics equations
in the form

dx/dt � F x, u, t( ), t≥ 0, (4)
where x is the system state vector, and u is input vector. The above-
mentioned speed-gradient principle is formulated as follows
(Fradkov, 1991; Fradkov, 2007). Among all possible motion of
(Equation 4), only those are realized for which the input vector
u(t) changes proportionally to the gradient in u of the speed of
changing in t of an appropriate goal functional Qt. If constraints are
imposed on the system motion, then the speed-gradient vector
should be projected onto the set of admissible (compatible with
constraints) directions.

Consider the formalism developed in Chapter 3 of Haken’s book
as an interpretation of Jaynes’ maximum entropy principle for the
discrete systems possessing information entropy

S p( ) � −K∑n
i�1

pi ln pi, (5)

where pi, i � 1, 2, . . . , n are the probabilities or relative
frequencies for staying of the particle in the ith state, n is the
total number of particles, K is the Boltzmann constant, and S(p) is
the information or information entropy of the state.

Haken writes that the main task to which the book is devoted is
to find ways to determine the frequencies pi, taking into account the
constraints and available additional information. For example, when
considering an ideal one-dimensional gas, one can measure, for
example, the position of the center of mass having the form
(Equation 2), where qi is the i-th cell position. In addition, the
normalization condition (Equation 3) should be valid.

According to the principle of maximum entropy, the
distribution that carries the greatest information is realized with
the greatest probability. This also happens in other cases when the
maximum entropy principle is applicable.

Let us pose the question: how and in what way does the system
move to a state with maximum information? In order to find an
affirmative answer, it is necessary to formulate the problem more
formally, as finding the system dynamics in the form

dp/dt � u, (6)
where p � col(p1, p2, . . . , pn) is the column1 vector of the system
state distribution, and u is the external input vector-function to be
determined.

Assume that the following constraints hold during
system evolution:

Ap � b, (7)
whereA is them × n−matrix, b is them-vector, andm is the number
of constraints. Assume that matrix A has full rank; that is, different
constraints are linearly independent. Let the constraints (Equation 7)

1 Notation col stands for column vector hereafter.
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be valid in the initial time instant: Ap(0) � b. Choose entropy S(p)
defined in Equation 5 as the goal function. According to the speed-
gradient principle, among the whole set of the directions (ways) of
evolution satisfying constraints (Equation 7), the one that is
realized is the movement along the trajectory of the fastest
growth of the entropy S(p(t)). In other words, according to the
speed-gradient principle, the system takes the path of maximum
energy production.

Such a statement allows one to determine the input vector-
function u(p) explicitly. To this end, evaluate the projection onto
the set of the points satisfying constraints (Equation 7) of the
gradient in u of the speed of change of goal function - entropy
(Equation 5) along trajectories of Equation 6. Apparently, the speed
of change of the goal function along Equation 6 is as follows:
_S(p, u) � ∇pS(p)Tu, and the gradient of this speed in u is ∇S(p),
where ∇ denotes the gradient (vector of partial derivatives of a
function, and upper index T means transposition. However, one
needs to take into account the constraints (Equation 7), that is, to
make a projection onto the set Pp � {p: Ap � b}. Introducing and
evaluating the m-vector of Lagrange multipliers λ1, . . . , λm and
taking into account initial conditions Ap(0) � b, the following
expression is obtained after some algebra:

u � γ In − AT AAT( )−1A[ ]∇pS p( ), (8)

where γ> 0 is the gain parameter, and In is the unity n × nmatrix. It
is seen that the matrix in the square brackets in (Equation 8) is
nothing but the matrix PA of the projection onto the subspace
determined by the condition Ap � 0.

Recall that in our case, the goal function is entropy S in Equation
1. Its partial derivatives are defined as follows: ∂S/∂pi � ln(pi) + 1.
Therefore, the system will evolve according to the rule

dp/dt � γPA ln p( ) + 1( ), (9)
where 1 is them-vector with all components equal to 1. Note that the
conditions pi > 0, which are necessary for keeping the system well
posed, will be valid automatically for solutions of (Equation 9),
because they are valid in the initial time instant, and the goal
function S(p) grows to ∞ when any pi tends to 0.

The above results can be extended to take into account the
topology of the network describing interactions of the nodes
(Fradkov et al., 2016).

3 Application to network
physiology problems

Recently, a new multi-disciplinary research field on the border
between system science and biology entitled network physiology has
emerged. It is devoted to the study of biological and physiological
systems possessing network structures (Ivanov and Bartsch, 2014;
Ivanov, 2021). It is well known that both animal and human
organisms are integrated networks, where multi-component
physiological systems, each with its own regulatory mechanism,
continuously interact to coordinate their functions. However, we
still do not know the principles and mechanisms through which
diverse systems and sub-systems in the human body dynamically
interact as a network and integrate their functions to generate

physiological states in health and disease. Network physiology
aims to address these fundamental questions.

Among the tasks of network physiology are those that are similar
to the tasks of information dynamics and self-organization considered
in the works of Hermann Haken, for example, Haken (1988). For
example, as is known, the entropy of a working brain can be measured
using fMRI equipment (Lynn et al., 2021). Therefore, it is technically
possible to use the concept of entropy in the analysis of the work of the
human brain. Indeed, the neurons and the neuron ensembles of the
human brain can stay in different states and change their states in
time. Such an uncertainty can be described by some probabilities, and
then the entropy of the state of the brain at each time instant can be
evaluated. Therefore, the entropy production can also be evaluated.
Hence, the results of the previous section that propose the principle to
estimate dynamics of the information entropy changes can be used to
analyze the state and dynamics of the real brain.

Indeed, the analysis of the whole-brain imaging data has
demonstrated that the human brain breaks detailed balance at
large scales and that the brain’s entropy production (that is, its
distance from detailed balance) varies critically with the specific
function being performed, increasing with both physical and
cognitive demands (Lynn et al., 2021). To analyze the mutual
dynamics of the regions of the spatially distributed system, a
network-adopted version of the speed-gradient principle
(Fradkov et al., 2016) can be employed.

Among other examples related to network physiology problems,
one can mention analysis of the interactions among brain and cardiac
networks (González et al., 2022), spike-timing-dependent plasticity
and its role in Parkinson’s disease pathophysiology (Madadi Asl et al.,
2022), and criticality in the healthy brain (Shi et al., 2022).

4 Dynamics of human brain entropy

As an example, let us consider the process of breaking and
restoring detailed balance between regions in the human brain
(Lynn et al., 2021). This process is interesting because, as was
noted in the celebrated work by Schrödinger (1944), see also
Gnesotto et al. (2018), the brain, as well as a living being as a
whole, tends to increase its entropy. At first glance, the number of
neurons in the brain is overwhelmingly large, and the structure of
connections between them is overwhelmingly complex, making
comprehensive analysis impractical. However, recent
achievements of the international “Connectome” project have
demonstrated that for many purposes, describing the brain as a
network with a finite and relatively small number of nodes
(approximately 100) suffices; see Van Essen et al. (2013). Hence,
coarse-grained models of the human brain can be constructed that
maintain manageable complexity. While at rest, the brain sustains a
detailed balance of transitions between states. When engaged in
physical or cognitive tasks, however, this detailed balance breaks
down. Given that information entropy serves as a measure of
uncertainty, modeling brain dynamics seems natural on its basis.

Based on the hypothesis that the brain, and perhaps the entire
living organism, strives to break the detailed balance and increase
information entropy, it is interesting to find the law or model
according to which the brain increases its entropy. It seems
plausible that the brain (or organism) endeavors to maximize its
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entropy in an optimal way. How might this be achieved? Drawing
upon prior discussions in Section 2, we propose addressing this issue
through the speed-gradient principle.

Consider a systemwith the state vector xt at time t, which can take
N possible values, denoted as {1, 2, . . . ,N}. Suppose that the dynamics
of the system are stochastic and let Pij(t) be the probability of an
event {xt−1 � i, xt � j}. In other words, Pij(t) are forward transition
probabilities, and Pji(t) are backward transition probabilities. If the
system has Markovian dynamics [e.g., Ising model, see Lynn et al.
(2021)], then the rate of changing entropy (entropy production) is
given by Lynn et al. (2021):

_S t( ) � ∑N
i,j�1

Pij t( )logPij t( )
Pji t( ), (10)

Evidently, the right-hand side of Equation 10 corresponds to
Kullback–Leibler divergence measuring the distance between two
distributions (forward and backward movements). If the system is in
the state of the detailed balance, then Pij � Pji; that is, the entropy
production vanishes and vice versa, that is, _S(t) is a measure of
broken detailed balance. Therefore, the problem is to find the law of
changing Pij, Pji, such that the entropy growth as fast as possible
under normalization constraints

∑N
j�1

Pij � 1, i � 1, . . . , N. (11)

Pij ≥ 0, i, j � 1, . . . , N. (12)

Assume for simplicity that the reverse probabilities Pji are not
changed: Pji � const and evaluate the gradients of the entropy
production according to the approach of Section 2.

The gradients of the entropy production should be taken over the
controlling (input) variables. As such, it is natural to take those
probabilities that determine the next coarse-grained state of the
brain numbered j, and the direction of the fastest growth of _S(t),
that is, the gradient of _S(t)with respect to those probabilities.We have
a fixed current state, and i is the index corresponding to the current
state. This means that we need to take the gradient with respect to the
next state vector, which plays the role of a control action because the
brain goes into a new state, and we want to know how this choice is
made. Therefore, let us evaluate the gradient of _S with respect to Pij,
assuming that Pji are fixed. To avoid notational confusion, replace
summation indices (i, j) with (k, l). Then, the expression for _S reads

∂

∂Pij

_S t( )( ) � ∂

∂Pij
∑N
k,l�1

Pkl log
Pkl

Plk
. (13)

Note that k, l in (Equation 13) are running indices, and for any
fixed pair (i, j), only one term in the sum (Equation 13) depends on
Pij. Hence

∂

∂Pij

_S t( )( ) � 1 · logPij

Pji
+ Pij

∂

∂Pij
log Pij( ) − log Pji( )( )

� log
Pij

Pji
+ 1. (14)

To take into account constraints (Equation 11), introduce
Lagrange multipliers λi, i � 1, . . . , N and choose them in such
a way that the equations

_Pij � log
Pij

Pji
+ 1 − λi. (15)

satisfy constraints ∑N
l�1 _Pil � 0, i � 1, . . . , N. Then, the

constraints (Equation 11) will be valid for all t≥ 0, provided that
they are valid for t � 0. As for constraints (Equation 12), they will be
fulfilled automatically for all t≥ 0 if they are strictly fulfilled for t � 0
(Pij(0) > 0) because Pij appears in Equation 15 under the log
operation and cannot approach zero. It is easy to see that such λi
may be chosen as follows:

λi � 1 + 1
N

∑N
l�1

log
Pil

Pli

Finally, the law of the fastest transition probabilities evolution is
as follows

_Pij t( ) � γ log
Pij t( )
Pji

− 1
N

∑N
l�1

log
Pil t( )
Pli

⎛⎝ ⎞⎠, i, j � 1, . . .N, (16)

where γ> 0 is the gain (activity) coefficient. Because in reality, only
measurements in the discrete (sampled) time instants are possible,
we arrive at the following final relation:

Pij t( ) − Pij t − 1( ) � γ log
Pij t − 1( )

Pji
− 1
N

∑N
l�1

log
Pil t − 1( )

Pli

⎛⎝ ⎞⎠, i,

j � 1, . . . , N.

(17)
Let us consider a modified version of the breaking detailed balance

model based on the same speed-gradient principle. Once again, we start
with the assumption that entropy production grows in the optimal
manner. However, let us now measure the entropy production by its
deviation from the uniform distribution corresponding to the
maximum system entropy. It means that the uniform distribution is
chosen as the base level for the entropy production evaluation, and the
following model is used instead of Equation 10:

_S t( ) � ∑N
k,l�1

Pkl t( )logPkl t( )
P*

, (18)

where probability P* � 1
N2 defines the uniform distribution.

The Kullback–Leibler divergence (Equation 18) can also serve as
a measure of the current state deviation from the detailed balance
state. Taking Equation 18 as the model of the goal function for the
speed-gradient method and repeating the calculations, we obtain the
following expressions instead of Equation 16:

_Pij t( ) � γ log
Pij t( )
P*

− 1
N

∑N
l�1

log
Pil t( )
P*

⎛⎝ ⎞⎠, i, j � 1, . . . , N. (19)

where γ> 0 is the gain (activity) coefficient. Because in reality, only
measurements in the discrete (sampled) time instants are possible,
we arrive at the following final relation instead of Equation 17:

Pij t( ) − Pij t − 1( ) � γ log
Pij t − 1( )

P*
− 1
N

∑N
l�1

log
Pil t − 1( )

P*
⎛⎝ ⎞⎠, i,

j � 1, . . . , N.

(20)
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Equations 16, 19 and Equations 17, 20 are continuous-time
models and discrete-time models, respectively, for human brain
entropy dynamics proposed via speed-gradient method. Which
model is closer to reality? It is necessary to conduct a series of
experiments with real data to answer this question.

5 Networks and cybernetical
neuroscience

Over the past 2 decades, system theory and cybernetics have
yielded many new results and approaches that enable researchers to
study various properties of complex networks. These findings can be
applied to network physiology. For instance, numerous stability and
synchronization criteria for complex networks are relevant to
network models composed of interconnected mathematical
models of neurons. The first results on the control of neuron and
neural network models were obtained in the 1990s, focusing on
chaos control and synchronization. Carroll (1995) proposed an
algorithm for pulse synchronization control of two
FitzHugh–Nagumo (FHN) neuron models, drawing parallels
between neuronal and electrical processes. In Dragoi and Grosu
(1998), an algorithm was designed to control a chain of FHN
neurons, aiming to synchronize each neuron oscillation with
those of a “reference” neuron. The stability of the
synchronization process was established within a certain range of
initial conditions using a linear approximation.

Plotnikov et al. (2016a) proposed algorithms for synchronizing a
heterogeneous network of diffusion-coupled models of FHN neurons
with a hierarchical architecture based on the speed-gradient method.
Synchronization conditions were obtained based on the Lyapunov
function method. Similar results were obtained for adaptive control
algorithms that do not require precise knowledge of the neuronmodel
parameters (Plotnikov et al., 2016b).

The Lyapunov function method and the speed-gradient method
have also been effectively utilized in designing and analyzing control
algorithms for synchronization and chaos control problems involving
Hindmarsh–Rose models and their networks (Plotnikov, 2021;
Semenov et al., 2022).

Currently, a growing body of research focuses not only on
studying the properties of neural networks with
neurophysiological interpretations but also delves deeply into the
challenges associated with intentionally creating or eliminating these
properties, that is, controlling networks. Other cybernetics-related
tasks concerning networks of neurons or their models are being
explored as well, such as state and parameter estimation, pattern
recognition, and machine learning. In summary, there is a notable
trend leading to the establishment of a substantial and significant
new domain within computational neuroscience, which can
naturally be called cybernetical neuroscience.

The main directions of the research in cybernetical neuroscience
are as follows (Fradkov, 2024):

1. Analysis of the conditions for the models of neural ensembles
to possess some special behaviors observed in the brain, such as
synchronization, desynchronization, spiking, bursting,
solitons, chaos, and chimeras.

2. Synthesis of external (control) inputs that create the special
behaviors in the brain models.

3. Estimation of the state and parameters of the brain models
based on the results of measuring input and output variables.

4. Classification of brain states and human intentions (using
adaptation and machine learning methods) based on real
brain state measurements (invasive or noninvasive).

5. Design of control algorithms that provide specified properties of
a closed loop system consisting of a controlled neural system and
a controlling device, interacting via brain-computer interface.

The approach to searching for how a system should evolve to
reach the state of maximum information entropy presented in this
article also originated in the area of control science or cybernetics. Its
applications to neural systems belong to the area of cybernetical
neuroscience.

6 Conclusion

This article proposes a version of the speed-gradient evolution
model for systems following the maximum information entropy
principle developed by H. Haken in his seminal book in 1988. An
explicit relationship (Equation 8) defining system dynamics for
general linear constraints Ap − b � 0 is derived. Analogous
results can be formulated for the spatially continuous case, where
discrete information entropy is replaced by differential information
entropy, in line with Fradkov and Shalymov (2015a). The approach
is also extended to living systems. Two versions of a human brain
entropy detailed balance-breaking model are proposed (Equations
16, 17, 19, 20).

Furthermore, the contours of a novel scientific area termed
cybernetical neuroscience, focused on controlling neural systems, are
delineated.

Future research might focus on examining the diverse dynamic
issues in network physiology. For example, the methodology presented
here could be applied to recent findings on utilizing entropy to analyze
brain dynamics, as reported by Antonopoulos et al. (2015), Jirsa and
Sheheitli, (2022), Keshmiri (2020), and Yufik (2019).
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