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Introduction: Accurate localization of the seizure onset zone (SOZ) is critical for
successful epilepsy surgery but remains challenging with current techniques. We
developed a novel seizure onset network characterization tool that combines
dynamic biomarkers of resting-state intracranial stereoelectroencephalography
(rs-iEEG) and resting-state functional magnetic resonance imaging (rs-fMRI),
vetted against surgical outcomes. This approach aims to reduce reliance on
capturing seizures during invasive monitoring to pinpoint the SOZ.

Methods: We computed the source-sink index (SSI) from rs-iEEG for all
implanted regions and from rs-fMRI for regions identified as potential SOZs by
noninvasive modalities. The SSI scores were evaluated in 17 pediatric drug-
resistant epilepsy (DRE) patients (ages 3–15 years) by comparing outcomes
classified as successful (Engel I or II) versus unsuccessful (Engel III or IV) at
1 year post-surgery.

Results: Of 30 reviewed patients, 17 met the inclusion criteria. The combined
dynamic index (im-DNM) integrating rs-iEEG and rs-fMRI significantly
differentiated good (Engel I–II) from poor (Engel III–IV) surgical outcomes,
outperforming the predictive accuracy of individual biomarkers from either
modality alone.

Conclusion: The combined dynamic network model demonstrated superior
predictive performance than standalone rs-fMRI or rs-iEEG indices.

Significance: By leveraging interictal data from two complementary modalities,
this combined approach has the potential to improve epilepsy surgical outcomes,
increase surgical candidacy, and reduce the duration of invasive monitoring.
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1 Introduction

Epilepsy is a devastating neurological disease that affects more
than 50 million people globally, according to the World Health
Organization, with 30% of cases classified as drug-resistant epilepsy
(DRE) (Kwan and Brodie, 2010; Kwan and Sander, 2004; Wieser
et al., 2001). DRE causes significant costs, morbidity, and mortality
(Engel, 2016; Laxer et al., 2014; Sillanpaa and Shinnar, 2010). The
most effective treatment for DRE is surgery (Luders et al., 2006),
which requires accurate localization of the seizure onset zone (SOZ)
for success. Unfortunately, given the high diagnostic and surgical
costs ($200,000/patient) (Begley et al., 2000; Murray et al., 1996),
many opt out of this potentially curative procedure (England
et al., 2012).

The first step in epilepsy surgery evaluation is a noninvasive
multi-modality investigation, which may include anatomical
magnetic resonance imaging (MRI), resting-state functional
MRI (rs-fMRI), functional MRI (fMRI), scalp
electroencephalography (EEG), simultaneous EEG-fMRI,
positron emission tomography (PET), single-photon emission
computed tomography (SPECT), and magnetoencephalography
(MEG). Among the results, the clinically annotated SOZ-candidate
(ca-SOZ) locations are often discordant. As surgery is typically
permanent and has risks, if discordancy results in high uncertainty
in the true location of the SOZ, then the ca-SOZ guides the
placement of invasive intracranial EEG (iEEG) (Rosenow and
Luders, 2001; Rosenow and Luders, 2001). iEEG is considered
the gold standard of preoperative SOZ localization, yielding the
highest assurance of localization of the “true positive” SOZ
(tp-SOZ).

Despite the integration of noninvasive and invasive approaches
for SOZ localization, surgical failure rates remain high, ranging from
30% to 70% (Bulacio et al., 2012; Engel, 2016; Gonzalez-Martinez
et al., 2007; Laxer et al., 2014; Malmgren and Edelvik, 2017;
McIntosh et al., 2004; Sillanpaa and Shinnar, 2010). Surgical
failures may arise for several reasons, including mislocalization,
inadequate resection (especially in proximity to functional areas), or
secondary epileptogenesis. The proposed computational tool
integrates advanced imaging biomarkers to address these
challenges and enhance the accuracy of SOZ localization, thereby
improving the prediction of surgical outcomes.

Unfortunately, iEEG is a time-intensive and resource-
demanding procedure, as it requires clinicians to monitor
patients until seizures occur (Engel, 2016; Laxer et al., 2014;
Sillanpaa and Shinnar, 2010). Patients often remain in the
epilepsy monitoring unit for 1–3 weeks, during which tens of
seizures may be recorded, each of which may last a few minutes.
To interpret this data, clinicians rely on
stereoelectroencephalography (sEEG), a specific form of iEEG
that uses depth electrodes to monitor brain activity. sEEG signals
recorded immediately before, during, and after seizures are critical
for localizing the SOZ, rendering most interictal recordings less
actionable. Despite its utility, iEEG fails to localize the SOZ in 10%–
15% of patients (MacDougall et al., 2009; Pondal-Sordo et al., 2007;
Steriade et al., 2019). In such cases, only interictal information is
available, further limiting the utility of iEEG in these patients. Given
these limitations, novel approaches that focus on interictal data and
leverage complementary modalities are critically needed.

To address this, we propose a novel approach that reduces the
subjective interpretation of iEEG and rs-fMRI data by integrating these
modalities into a unified framework. This method leverages the
complementary strengths of both modalities to further enhance SOZ
localization.Most importantly, it captures dynamic interictal signatures,
an underutilized yet valuable source of information for SOZ
localization. To reduce subjective interpretation, many proposed
SOZ-localizing computational algorithms of fMRI (Rolls et al., 2020)
and/or iEEG data (Burns et al., 2014; Gliske et al., 2016; Holler et al.,
2018; Khambhati et al., 2015; Li et al., 2018; Yaffe et al., 2015) have yet to
realize clinical impact. This may be due to epilepsy being a brain
network disorder, and an important limitation of these computational
approaches is that they either rely on the traditional static functional
connectivity of networks, such as Pearson correlation analysis, and have
thus ignored possibly key dynamic network properties, or they are too
cumbersome because they require the capture of seizures. Furthermore,
iEEG and rs-fMRI measure two different time scales of brain activity,
thus possibly co-informing on the other’s “blind spots,” which may
increase the sensitivity and specificity of SOZ detection and localization.

To overcome the need for capturing seizures to “see” where they
may originate, we propose leveraging connectivity properties derived
from dynamic network models (DNMs) from the combination of
synergistic rs-fMRI and interictal “resting-state” intracranial EEG (rs-
iEEG) data. We posit that dynamic network information may help us
“see” the SOZ by differentiating regions that exhibit excitation versus
inhibition, which static techniques do not evaluate well. More
specifically, we hypothesize that the interictal epileptic brain
network is not seizing because neighboring regions are inhibiting
the SOZ and that a seizure occurs when this inhibition temporarily
becomes disabled (Figure 1).We further hypothesize that themaximal
excitation comes from the SOZ toward these inhibiting regions, and
this will add to the approach’s localization capacity.

Therefore, we propose to identify two groups of nodes in the brain
network from rs-fMRI and rs-iEEG-derived DNMs: nodes that are
inhibiting a specific group of nodes (sources) and the group of inhibited
nodes themselves, that is, the SOZ (sinks) (Gunnarsdottir K. M. et al.,
2022). Our source-sink hypothesis was validated in a retrospective study
including 65 adult patients who underwent iEEG monitoring
(Gunnarsdottir K. M. et al., 2022). The source-sink hypothesis is
also supported by a recent study that demonstrated high inward-
directed connectivity computed to the SOZ from rs-iEEG
(Gunnarsdottir K. M. et al., 2022). However, this study relied on
pre-selecting specific frequency bands to analyze and compute
connectivity from static graph theoretic measures and could not
reliably distinguish whether connections are excitatory or inhibitory.
In rs-fMRI, we tested this hypothesis in a homogeneously located SOZ
cohort that showed high SOZ concordance with surgical outcomes and
did differentiate between excitation and inhibition (Boerwinkle V. L.
et al., 2022). However, the population had subcortical SOZ from
hypothalamic hamartoma; thus, this method has yet to be validated
in cortical epilepsy, which has much greater variability in location and
expected greater variability in network dynamics.

The aim of this study is to develop a comprehensive epilepsy
surgery prediction tool by integrating SSIs of DNMs from both rs-
iEEG and rs-fMRI and vet this against surgical outcomes. By relying
solely on resting-state data, this approach has the potential to
minimize the need for prolonged iEEG monitoring, reducing
patient burden and improving surgical planning.
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2 Methods

2.1 Study participants and overview of
study workflow

This retrospective analysis was approved by the local
institutional review board. Rs-fMRI became the standard
evaluation for epilepsy surgery at Phoenix Children’s Hospital
in May 2017, following evidence that surgical targeting of the rs-
fMRI–detected SOZ improved surgical outcomes in pediatric
epilepsy with a favorable safety profile (Boerwinkle V. L. et al.,
2017). Rs-fMRI scans were obtained regardless of the timing of

the last known seizure event, and no additional consent
was required.

The retrospective collection of study data was conducted by
reviewing the electronic medical record. The study included patients
aged 6 months to 18 years diagnosed with drug-resistant epilepsy
(DRE) under the care of the institutional epilepsy surgery team.
Inclusion criteria were: preoperative continuous video iEEG and rs-
fMRI with high-quality, artifact-free data obtained between May
2017 and December 2020; documented ca-SOZ prior to surgery;
post-operative brain imaging; and seizure frequency documented
preoperatively and at 1 year postoperatively. Surgical outcomes were
classified using the Engel Epilepsy Surgery Outcome Scale (Engel,

FIGURE 1
Source Sink Hypothesis. (A) Interictal (between seizure or at rest) iEEG snapshot and (B) corresponding source-sink schematic where sinks represent
seizure focus (C) Ictal (seizure) EEG snapshot and (D) corresponding source-sink schematic where sources represent seizure focus.

FIGURE 2
Workflow of study. Clinically annotated SOZ-candidate locations were derived from clinician interpretations of multiple noninvasive modalities,
including MRI, EEG, and rs-fMRI by ICA. These informed the placement of the sEEG depth electrodes. The clinicians interpreted the sEEG and determined
the ca-iEEG-SOZ. From the locations of the depth electrode placement, the rs-fMRI DCM, rs-iEEG DNM, and their combined dynamic indices were then
determined. The index values were compared to the SOZ determined by clinicians’ sEEG interpretation and separately with the combination of
surgical location and Engel outcomes.
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1993): Engel class I and II outcomes were defined as successful (free
of disabling seizures), while Engel classes III and IV were defined
as failures.

An overview of the study workflow is presented in Figure 2. Rs-
iEEG and rs-fMRI data were modeled using dynamic network
analyses (Figure 3) and compared to the clinician-interpreted
SOZ from iEEG and surgical outcomes. Both rs-fMRI and rs-
iEEG analyses used sliding windows to transform interictal time
series data into matrix-based connectivity values, which were then
used to derive SSI scores.

2.2 Surgical outcomes and ROIs

Of the 30 patients reviewed, 17 consecutive patients met the study
eligibility criteria, as detailed in Table 1. Of these 17, nine were female
subjects, with an age range of 3–15 years (mean: 8.6 years). Reasons
for exclusion, along with the number of patients excluded for each
reason, were as follows: 1) Five patients lacked an adequately defined
ca-SOZ due to non-localizing seizure activity; 2) one patient had
corrupted sEEG lead data; 3) five patients underwent monitoring with
grids and/or strips rather than sEEG; 4) Two patients had a ca-SOZ
determined to be bilateral and diffuse across more than one lobe in a
hemisphere and subsequently underwent bilateral recurrent nerve
stimulator (RNS) placement. The epilepsy etiologies of the included
patients were as follows: seven with focal cortical dysplasia or low-

grade tumor, three with tuberous sclerosis (TSC), three with non-TSC
brain malformations, two with MRI-negative epilepsy and no other
identified etiology, one with mesial temporal sclerosis, and one with
prior meningoencephalitis.

The surgical procedure types were eight stereotactic laser
ablations, eight open craniotomy approaches, and one RNS. The
RNS procedure was performed for a patient whose SOZ was bilateral
and diffuse, rendering resective or ablative surgery unsuitable.
Although RNS is considered a palliative treatment, this case was
included as the SOZ-candidate regions could still be evaluated using
the same biomarker methods. Surgical locations were eight right,
eight left, and one bilateral (RNS); of these, six were frontal, six were
temporal, and five involved two or more lobes. The number of
patients with 1-year Engel I, II, III, and IV outcomes was 8, 4, 1, and
4, respectively. The numbers of SOZ-candidate regions of interest
(ROIs) per patient were one patient with two ROIs, seven patients
with three ROIs, and eight patients with four ROIs. Three patients
did not have post-operative imaging. Among the 17 patients, there
were a total of 59 ROIs. Of these, 16 of 28 ca-ICA-SOZ overlapped
the ca-SEEG-SOZ.

2.3 Data acquisition and preprocessing

Rs-fMRI Acquisition and Preprocessing: The rs-fMRI was
performed as part of the standard presurgical evaluation on a 3-

FIGURE 3
Model estimations. (A) rs-fMRI model estimation. Demonstrative node locations with the rs-fMRI BOLD signal over time are transformed from the
time domain, y(t), to the spectral domain, where K(ω) is the Fourier transform of the system Volterra kernel K(t), which is a function of the effective
connectivity (A). gv represents the effect of other nodes on a given region, ge is the endogenous effect of the region on itself, and gy is the cross-spectrum
effective connectivity, taking both these exogenous and endogenous signals (amplitude (α) and slope (β)) into consideration. (B) rs-iEEG model
estimation. Model notation defined on electrode implantation. Each channel is a “node” in the iEEG network, where the signal on node i is denoted as xi(t).
The influence that node j has on node i is captured through Aij. The DNM, based on interictal iEEG, is characterized by the A matrix for each 500-ms
window, generating a sequence of matrices resulting in one linear time-varying DNM.
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T Philips MRI with a 32-channel head coil. Conscious sedation was
administered when clinically indicated, according to institutional
standards, to ensure image quality. Patients were instructed to rest
with their eyes closed if awake. Imaging parameters included T2*-
weighted sequences with a TR of 2000 ms, TE of 30 ms, matrix size

80 × 80, and voxel dimensions of 3.4 × 3.4 × 3.4 mm³. Each session
consisted of two 10-min runs (600 total volumes). Detailed
parameters are provided in Supplementary Material Section 2.2.

Rs-fMRI preprocessing followed previously established clinical
pipelines (Boerwinkle et al., 2019; Boerwinkle et al., 2018a;

TABLE 1 Patient demographics, exclusion criteria, and surgical data.

ID Included
no.

Sex
0 = M;
1 = F

Age
in

years

Exclusion
criteriaa

1 = Laser;
2 = open

craniotomy
procedure;
3 = RNS

Lobe 1 = F;
2 = T; 3 = P,

4 = O,
5 = 2 or

more lobes

Surgical
location;

1 = R; 0 = L;
2 = B

Etiology
codeb

Engel
outcome

A 0 5 1 2 1 1 1 IV

B 1 6 1 2 1 1 1 Ia

C 0 10 3 2 1 1 3 IV

D 1 1 8 2 1 0 3 II

E 1 12 3 2 2 0 1 III

F 2 1 13 2 5 1 1 II

G 3 1 6 1 1 1 3 Ia

H 4 0 5 2 2 1 1 IV

I 5 1 9 2 2 0 2 IV

J 6 0 11 2 2 1 1 Ia

K 7 0 7 2 2 1 1 1

L 8 1 4 1 5 0 1 1

M 9 0 3 1 1 0 2 1

N 10 1 12 2 1 0 1 II

O 1 10 3 3 1 1 7 III

P 0 7 3 2 1 1 0 I

Q 0 6 1 3 5 0 6 IV

R 11 0 5 1 1 0 2 IV

S 0 5 1 3 1 0 6 III

T 12 0 15 1 5 1 6 I-D

U 1 16 3

V 13 1 13 1 2 1 4 IV

W 0 12 2

X 14 1 9 2 2 1 3 I

Y 0 8 4 3 5 0 5 I

Z 1 14 1

AA 15 0 8 1 1 0 1 III

BB 16 1 6 1 5 0 5 I

CC 17 0 12 3 5 2 5 II

DD 1 13 4 1 1 1 5 IV

aExclusion criteria: 1 = No ca-SOZ due to lack of localizing seizure activity during SEEG; 2 = SEEG but leads went bad before seizure captured, resulting in a poor quality SEEG; 3 = grid/strips

with seizure; 4 = ca-SOZ, bilateral and diffuse beyond one lobe in each hemisphere.
bEtiology code: 1 = FCD or low-grade tumor; 2 = TSC; 3 = non-TSC, congenital brain malformation; 4 = MTS; 5 = acquired brain insult including traumatic brain injury (TBI) or prior

meningoencephalitis; 6 = MRI, negative; 7 = genetic.
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Boerwinkle et al., 2020; Boerwinkle V. L. et al., 2017; Boerwinkle
et al., 2022a; Boerwinkle et al., 2022b; Boerwinkle et al., 2018b). In
brief, data were high-pass filtered (cutoff = 100 s), spatially
smoothed (1 mm), and realigned to the mean functional image.
Functional scans were co-registered to the anatomical T1 image,
visually inspected, and subjected to independent component
analysis (ICA) using the FMRIB Software Library (FSL) tool
MELODIC. ICA was applied to separate the Blood oxygenation
level dependent (BOLD) signal into independent components
generated by brain networks, which were evaluated for suspected
SOZs based on validated spatial and temporal features (details in
Supplementary Material, Section 2.2). The general linear model
(GLM) was used to extract gray matter voxel time courses from
predefined SOZ-candidate locations, excluding white matter,
cerebrospinal fluid, and extracranial voxels.

iEEG Acquisition and Preprocessing: iEEG data were recorded
using depth electrodes placed according to clinical indications. Data
acquisition utilized the XLTEK EEG/Sleep System with a maximum
sampling rate of 2000 Hz for intracranial electrodes. Following
surgical placement, patients underwent continuous monitoring in
the epilepsy monitoring unit for 1–21 days. Preprocessing included
bandpass filtering (0.5–300 Hz) and notch filtering at 60 Hz (±2 Hz)
to remove artifacts. Electrodes not recording from gray matter or
deemed “bad” were excluded, and signals were re-referenced using a
common average. Further details on preprocessing steps and
instrumentation are provided in Supplementary
Material, Section 2.2.

The study SOZ location subtypes: 1) preoperatively clinically
annotated SOZ (ca-SOZ), 2) rs-iEEG, 3) rs-fMRI, 4) combined
dynamic rs-iEEG and rs-fMRI, and 5) post-operative outcome.

2.3.1 Clinically annotated SOZ
For each patient, the ca-SOZs were evaluated by clinical

investigators based on comprehensive patient evaluation data
obtained through an independent two-step procedure
(noninvasive and invasive). The evaluation included regions
suspected of being the SOZ based on findings from anatomical
MRI, EEG, MEG, PET, SPECT, semiology, and neuropsychological
testing. Noninvasive data were used to define the ca-SOZ hypothesis
and guide the sEEG implantation strategy. Additionally, ICA data
from the rs-fMRI (Chakraborty et al., 2020) informed the ca-SOZ
candidates, distinct from the study’s rs-fMRI dynamic causal
modeling (DCM) SOZ candidates.

iEEG signals were also used to anatomically define the ca-SOZs
through expert clinician visual analysis, focusing on regions
involved at seizure onset, typically characterized by low-voltage
fast activity. During the multidisciplinary patient management
conference, the clinical team formulated a hypothesis regarding
the classification of each node (anatomical area recorded by a single
electrode contact) in the epileptic network based on anatomic-
electro-clinical correlations. Each node was assigned to one of the
following categories:

a) ca-SOZ: Nodes exhibiting the earliest electrophysiological
changes during an ictal event, generally preceding the
clinical onset of seizures;

b) Propagation zone: Nodes involved at the time of the earliest
clinical (semiological) manifestations during an ictal event; or

c) Other: Nodes not falling into the above categories.

The ca-SOZ nodes will be hereafter denoted as the ca-SOZ-
candidate set. The region(s) among the ca-SOZ that underwent
surgery are reported in the results.

2.3.2 Rs-iEEG SOZ
2.3.2.1 Background on sources and sinks in a rs-
iEEG network

Recently, the source-sink metrics were proposed as a promising
interictal marker of the SOZ (Gunnarsdottir K. M. et al., 2022). The
metrics are derived based on the source-sink hypothesis, which
states that SOZ regions, denoted as sinks, are persistently inhibited
by neighboring regions (denoted as sources) during interictal
periods to suppress seizures.

We modeled the iEEG data using all iEEG electrodes as a
dynamic network that captures how every network node (iEEG
contact) evolves and interacts with every other node dynamically
(Gunnarsdottir K. M. et al., 2022). The interictal DNM is
constructed by concatenating a sequence of linear time-invariant
(LTI) DNMs defined in each sub-window of the data as

x t + 1( ) � Ax t( ) + e t( ),
where x(t)ϵRn*1 represents the iEEG channel signals, AϵRN*N is

the state transition matrix, N is the number of iEEG channels, and
e(t) represents white Gaussian noise, uncorrelated with x(t).

For each patient, the DNMs were estimated in every sliding
window of the iEEG data via least squares to obtain a sequence of
connectivity matrices over time, Ajϵ[1, 2, . . . , T], where T is the
number of 500 msec windows. From this sequence of Aj matrices,
we computed one overall computational matrix, A, to represent the
DNM for each patient as

A � 1
T
∑
T

j�1
abs Aj( ).

Unlike rs-fMRI, rs-iEEG cannot distinguish between excitatory
and inhibitory connections due to its lower spatial resolution. Thus,
we take the absolute values of the connectivity matrices as the only
information we can glean from the rs-iEEG Aj matrices, indicating
the strength of the connection between any two nodes, hereafter
referred to as the amount of influence one node has on another. InA,
row i represents the amount of influence all other nodes have on
node i, and column j represents the amount of influence node j has
on all other nodes in the network.

Next, we identified the top sources and sinks of the iEEG
network by quantifying the extent of each channel’s source and
sink behavior and positioning them in a 2D source-sink space
(Gunnarsdottir K. M. et al., 2022). Figure 4 shows a patient-level
model of a 2D source-sink space. By definition, the top sinks of the
iEEG network are in the bottom right, and the top sources are in the
top left of the source-sink 2D space.

2.3.2.2 Computing rs-iEEG SSI
Once all channels were plotted in the source-sink space, we

computed four indices for each channel to quantify their
hypothesized epileptogenicity. These indices are (Gunnarsdottir
K. M. et al., 2022): a) sink index, which captures the distance
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from a given node to the ideal sink (Figure 4, pink star), b) source
influence, which quantifies the amount of influence the node
receives from top sources in the network, c) sink connectivity,
which measures the influence from top sinks to the node, and
finally, d) SSI, computed as the normalized (0–1 for each patient)
product of the other three indices. The SSI will be high if all indices
are high. We hypothesize that the larger the SSI for a given node, the
more likely it is in the SOZ.

2.3.2.3 Determining rs-iEEG SOZ candidates
In line with the assumption that the SOZ nodes are sinks

inhibited by their neighboring sources at rest, the SSI score
captures three criteria for SOZ nodes. First, a SOZ candidate
must be a top sink, and second, it must be highly influenced
(inhibited) by the top sources. Finally, the SOZ candidates are
strongly connected to each other; that is, a SOZ node is also
highly influenced by other top sinks.

For each patient, the LTI DNMs were constructed in every
500 msec sliding window of the iEEG data and then summarized by
an overall connectivity matrix (Equation 2), which is depicted in
Figure 4. From this matrix, an SSI - EEG score was obtained for each
implanted iEEG channel. See Gunnarsdottir K. M. et al. (2022) for
details on computing the SSI.

2.3.3 Rs-fMRI DCM SOZ
2.3.3.1 Background

DCM estimates neuronal interaction models to explain
measured brain activity, as depicted in Figure 3 (Sussman et al.,
2022). DCM uses differential equations to model brain responses
generated by neural hemodynamic properties, providing Bayesian

estimates of biologically related quantities, such as excitatory and
inhibitory connectivity between neural populations. By modeling
spectral dynamics, DCM evaluates how population interactions
either increase or decrease each other’s activity over time.

Our application of DCM focuses on SOZ network directionality.
It identifies regions with dominant inhibitory or excitatory
connectivity, using Bayesian model averaging to optimize
parameter estimates related to inhibition (Boerwinkle V. L. et al.,
2022). Further details are provided in Supplementary Material,
Section 2.2.3.

2.3.3.2 Rs-fMRI preprocessing for DCM
The rs-fMRI data were pre-processed using an adapted SPM

12 pipeline (Friston et al., 1994), including slice timing correction,
realignment, and co-registration to T1-weighted anatomical scans.
A general linear model (GLM) was applied to denoise the data,
removing contributions from white matter, cerebrospinal fluid, and
motion-related noise. High-pass filtering excluded low-frequency
artifacts, and data were not constrained to frequencies <0.1 Hz to
capture potential SOZ-related activity (Boerwinkle V. L. et al., 2017).
Further preprocessing details can be found in Supplementary
Material Section 2.2.3.

2.3.3.3 Defining rs-fMRI DCM SOZ-candidate ROIs
DCM “nodes”were defined as regions of interest (ROIs) likely to

contain the SOZ (Supplementary Table S1). These ROIs were
identified from multiple modalities, including:

a) rs-fMRI ICA candidate SOZs: Identified preoperatively by the
surgical team based on clinical rs-fMRI findings;

FIGURE 4
Patient-level source-sink algorithm. (A) Example of a connectivity matrix, A, derived from either the rs-fMRI DCM or rs-iEEG LTV DNM. Dark blue
cells are significantly negative and represent inhibition, while dark red cells are significantly excitatory. If row j is relatively blue and column j is relatively
red, node j received inhibition from other nodes in the network and projected excitation to other nodes in the network. (B) 2D source-sink map. Pink
nodes represent top sinks, and blue nodes represent top sources.
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b) ca-SOZ from ca-iEEG: Specified by clinical iEEG as part of the
ca-SOZ;

c) Anatomical MRI lesions: Highlighted as probable SOZ
regions. Notably, anatomical MRI regions often coincided
with the ca-SOZ and were subsequently grouped with
this category;

d) iEEG SSI score: Nodes surpassing a predefined threshold,
signifying a SOZ, as indicated by interictal iEEG data from
our collaborators.

Regions with substantial spatial overlap (>80% visual
concurrence) were combined into a single ROI, while regions
with less overlap were maintained separately. Specifically, ROIs
were derived from:

1) The ca-SOZ from the ICA signal source mask;
2) The iEEG electrode locations encompassing the clinically

annotated SOZ electrode/channels;
3) Anatomical lesion masks, such as hippocampal masks in

mesial temporal lobe epilepsy.

ROIs were either manually drawn or created as spherical masks
to cover suspected SOZ locations. For each ROI, the voxel time
courses meeting a liberal threshold of <0.5 from the GLM were
included in the computation of the first eigenvariate, which serves as
a summary signal for the region. This threshold identifies voxels
with statistically significant contributions to the first eigenvector,
ensuring that the first eigenvariate captures the dominant temporal
variation in the BOLD signal within the node. This approach
minimizes the inclusion of irrelevant voxels and avoids relying
on an unweighted mean of the ROI time series.

The rationale for including the candidate SOZ from option (d)
above (iEEG SSI score surpassing the threshold) is supported by the
source-sink methodology, recently published by the authors in a
multicenter retrospective study. This method was shown to
outperform high-frequency oscillations in identifying the SOZ
(Gunnarsdottir et al., 2022). The source-sink methodology is
grounded in a hypothesis about epileptic network properties
during interictal periods: when the epileptic brain is not seizing,
the SOZ is inhibited by other regions of the brain.

To test this hypothesis, we defined source nodes (influencers)
and sink nodes (those being influenced) and developed a method to
identify and quantify these nodes using iEEG and DNMs. Our study
demonstrated a strong correspondence between the SOZ and sink
nodes, providing support for the inhibition hypothesis. Unlike
traditional connectivity measures such as functional connectivity,
the SSI is derived from a dynamic network model, allowing it to
capture the temporal interactions that underlie the inhibition
phenomenon. Specifically, the SSI models how the activity of a
given node at one time point influences the future activity of every
other node in the network, thereby accounting for n-to-n dynamic
interactions.

2.3.3.4 DCM specification and estimation
DCMwas implemented using the cross-spectral paradigm with

DCM 12.5 in SPM (Friston et al., 2003; Friston et al., 2014). This
approach models the spectral amplitude and phase of rs-fMRI
data, deriving directional connectivity from auto- and cross-

spectrum parameters (Friston et al., 2014). Fitting the
connectivity model involves estimating parameters that describe
the amplitude by frequency spectral representation for each region.
Each region’s local spectrum is modeled as a power law
distribution with an amplitude and scale, which indicates the
frequency by amplitude slope. Directional connectivity is then
derived by estimating the same parameters through frequency
cross-spectrum between regions. DCM estimates parameters of
auto- and cross-spectrum through multivariate auto-regression
models of rs-fMRI’s BOLD data generating estimated spectrums
(Friston et al., 2014).

For each subject’s initial model, we specified all possible
connections as “on” and then inverted the model using cross-
spectral DCM. We then performed a Bayesian model reduction
that uses a greedy search to exhaustively permute the evidence for all
possible variations of on/off connections within the full model
(Friston and Penny, 2011). Finally, we used a Bayesian model
averaging scheme that takes a maximum of the 256 models with
the highest model evidence, weighs them by their model evidence,
and averages the resulting parameters to produce an optimized
model (Penny et al., 2010). By using Bayesian model reduction
averaging over an exhaustive model space containing SOZ
candidates, this generates parameter estimates to identify and
link a region as a SOZ—the one that dominates in excitatory
outbound connectivity. Importantly, this model averaging
approach also provides a more agnostic single subject-based
estimate to compare against other methods. Following Bayesian
model averaging, the optimized parameters of the estimated
connectivity matrix were in the log scale. The model did not
include the diagonal, as self-modulation was not considered of
interest. Scores were normalized from 0 to 1 per patient. These
scores were derived from the corresponding A matrices
(connectivity matrices) generated by their respective DNMs,
including the source-sink index for rs-iEEG for both rs-fMRI and
rs-iEEG.

2.3.4 Post-operative outcomes
Post-operative outcomes were evaluated using the Engel

Epilepsy Surgery Outcome Scale (Engel, 1993), which categorizes
seizure outcomes at 1-year post-surgery. Successful surgical
outcomes were defined as Engel Class I (seizure-free) or Class II
(rare disabling seizures), while failure outcomes included Engel
Class III (significant seizure reduction without seizure freedom)
and Class IV (no improvement).

Seizure frequency and post-operative imaging data were
documented during routine clinical follow-up at 3, 6, and
12 months post-surgery and abstracted from the electronic
medical record by the study team. Post-operative brain imaging,
when available, was reviewed to confirm the extent of resection or
ablation and to ensure concordance with planned SOZ-targeted
regions. For patients receiving palliative procedures (e.g., RNS),
post-operative seizure frequency was assessed as part of
standard care.

This data served as the ground truth for evaluating the predictive
performance of the rs-iEEG and rs-fMRI-derived SOZ biomarkers,
as well as the combined im-DNM index. Outcomes were compared
against biomarker-detected SOZ candidates to validate their
predictive accuracy.
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2.3.5 Combined dynamic iEEG-fMRI SOZ
candidates

Finally, to further refine the hypothesized SOZ, we computed the
combined iEEG-fMRI score, referred to as the dynamic index (im-
DNM). The combined im-DNM is the average of the separate
biomarker scores for each region. As rs-fMRI and iEEG
dynamics measure different time scales, we expected these
modalities to elucidate different aberrant network properties,
which, when combined, may differentiate between those with
projected good vs. poor outcomes for a given surgical plan. We
evaluated separate and combined biomarker thresholds from 0 to 1
(see the index categorization below). We reported the separate and
combined modality scores, thresholded to optimize the separate
biomarker sensitivity and combined biomarker overall sensitivity
and specificity.

2.4 Biomarker performance

To validate the biomarkers of DCM and rs-iEEG SOZs, we
compared the biomarker scores across the planned ROIs to the
surgical outcomes. Thus, patients were only counted once per
person to reduce the variability of results due to the number of
iEEG contacts and electrodes, which could skew the results. At a
patient level, index scores for each modality (rs-iEEG, rs-fMRI, and
combined rs-iEEG and rs-fMRI) were averaged across the ROIs for
each patient. The distributions of rs-iEEG and rs-fMRI individual
and combined SSI scores were evaluated in relation to successful
outcomes (Engel I and II) and failed outcomes (Engel III and IV) for
each modality. The threshold of each index was evaluated
independently from each other between 0 and 1 by 0.05, with the
optimal threshold selected based on peak performance in the
separation of good from poor surgical outcomes of the
respective indices.

3 Results

3.1 CombinedDNM index scores across ROIs
differentiate surgical outcomes

Patient index scores for each modality (rs-iEEG, rs-fMRI) and
for each ROI were computed, and their distributions are presented
as box and whisker plots shown in Figure 5. Patient index scores for
each modality were then averaged across the ROIs for each patient,
and the combined score distributions are shown in Figure 5C.
Figure 5 highlights that while both the rs-iEEG (Figure 5A) and
rs-fMRI (Figure 5B) SSI scores show relatively equivalent
differentiation between outcomes, the combined dynamic im-
DNM index (Figure 5C) demonstrates superior performance,
with no overlap between the successful and failed outcome groups.

3.2 DNM index scores for eachmodality may
carry different information about SOZs

These results suggest that the individual scores are biomarkers
that carry different information about the SOZ. When plotted

against each other, the patient scores for each modality are
linearly correlated (rho = 0.26, p-value = 0.049). However, as
shown in Figure 6, the correlation is not strong.

Figure 7 plots the percentage of ROIs, as determined by regions
whose scores are greater than 0.9, that have at least 80% overlap with
the surgically removed regions. All three scores show greater overlap
with surgically removed regions in patients with good (Engel I and
II) outcomes than in patients with bad outcomes. The rs-iEEG
marker overlaps with 62% of surgically removed regions for good
outcomes and 56% for bad outcomes. The rs-fMRI marker overlaps
with 58% of surgically removed regions for good outcomes and 32%
for bad outcomes. Finally, the combined marker overlaps with 72%
of surgically removed regions for good outcomes and 63% for bad
outcomes. The increased overlap with surgically removed ROIs in
the combined marker for all outcomes, especially good outcomes,
further supports the separation seen between good and bad
outcomes in Figure 5C.

4 Discussion

The concept of combining indices from two different
physiological measures of rs-iEEG and rs-fMRI on an individual
basis to prospectively identify SOZ is novel. In this cohort of
17 patients with quality iEEG data, surgical outcomes, and rs-
fMRI, the prediction of surgical outcomes improved when the
thresholded index values of rs-iEEG and rs-fMRI were integrated
into a combined index.

The improved performance of the combined measure may
stem from several physiologically relevant factors. First, the rs-
iEEG and rs-fMRI indices are sensitive and specific to different
aspects of epileptogenic sources and sinks. Rs-iEEG offers
millisecond-level temporal precision, whereas rs-fMRI
provides whole-brain spatial coverage. Second, rs-iEEG
captures electrical impulses from neuronal charge potentials
across brain regions, while rs-fMRI reflects indirect oxygen
utilization associated with neuronal activity within brain
networks. These distinct physiological underpinnings allow the
two modalities to capture complementary aspects of
epileptogenic tissue. Importantly, the combined index
enhances the ability to predict surgical outcomes based on
biomarker evaluation of SOZ-candidate regions.

High-frequency oscillations (HFOs) are among the most
extensively studied interictal iEEG features for identifying the
epileptogenic zone (Gliske et al., 2016; Murphy et al., 2017;
Akiyama et al., 2011; Wang et al., 2013; Bragin et al., 2010).
Although regions within the epileptogenic zone often exhibit
elevated HFO rates (Akiyama et al., 2011; Jacobs et al., 2010;
Zijlmans et al., 2012), significant variability and debate persist
regarding their reliability and predictive value for surgical
outcomes. Two meta-analyses concluded that HFOs have
limited predictive strength, with findings inconsistent across
studies (Jacobs et al., 2018; van’t Klooster et al., 2017). Further
challenges include variability in HFO definitions, observations in
non-epileptogenic regions, and significant temporal instability in
HFO rates, as demonstrated by Gliske et al. (2018), who found
inconsistent identification of HFO channels across short
recording segments.
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These limitations underscore the need for biomarkers that are
both robust and stable. Our combined DNMmarker addresses these
challenges by integrating source-sink analysis from rs-iEEG and
dynamic connectivity modeling from rs-fMRI. Unlike HFOs, our
approach demonstrated stability and reproducibility across random

selections of interictal activity and was robust to the inclusion or
exclusion of artifacts. This suggests that the combined biomarker
may offer a more consistent and reliable predictor of SOZ
localization and surgical outcomes, further advancing
preoperative evaluation tools in epilepsy surgery.

FIGURE 5
Score distributions of patient-level outcomes by biomarker subtype, showing (A) rs-iEEG, (B) rs-fMRI, and (C) the combined im-DNM with the
optimal outcome group differentiation. The regions evaluated do not necessarily correspond with the surgically targeted region, as the goal was to
evaluate regions with clinically reasoned SOZ hypothesis, and several patients had poor surgical outcome, implying the SOZ was outside the
resected region.

FIGURE 6
Scatterplot of each modality score.
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The complexities of epilepsy surgery evaluation often make
surgical decision-making far from straightforward. Thus, the
proposed combined score provides surgeons with a tool to
evaluate their surgical plan. A low combined score for a given
surgical plan may flag a high likelihood of failure, whereas a high
score indicates a greater likelihood of success. The ability to identify
potential failures preoperatively is perhaps the most important
utility of this combined score.

This dataset focuses on the pediatric DRE population, which
arguably exhibits greater heterogeneity in SOZ location than the
adult population, where mesial temporal SOZs are more
common. Thus, we anticipate the performance of the
biomarker will improve in adult populations wherein the ROIs
are more likely to be localized, potentially increasing specificity.
Future trials with adult populations are warranted to validate
these findings and further explore the utility of this combined
biomarker approach.

5 Limitations

As with all retrospective biomarker studies, fitting thresholds to
optimize separation between good and poor outcomes can result in
overfitting the data. To address this limitation, larger prospective
studies with pre-determined thresholds are necessary to further
validate these measures.

Surgical border-zone epileptogenic activity may influence
post-operative seizure frequency, potentially impacting the
observed outcomes. To better evaluate this factor, our study
incorporates patient-level post-operative imaging and clinical
condition data, which will be further analyzed in the ongoing
full study.

Another limitation is the dependency of iEEG on prior SOZ
location hypotheses generated from noninvasive tests. If the true
SOZ does not adequately overlap with iEEG electrode placement, the
resulting data may be low yield or misleading.

Finally, this study included only five patients in the Engel III–IV
groups, which may skew the results and limit statistical power. This
underscores the need for larger studies to validate the findings and
ensure generalizability.

6 Conclusion

This study demonstrates that combining rs-fMRI and rs-iEEG
indices in the im-DNM shows promise for improving epilepsy
surgery outcome prediction compared to using either modality
alone. Our findings, validated against surgical outcomes in this
retrospective cohort, highlight the potential utility of this
combined approach for preoperative SOZ localization.

However, these results are preliminary and limited to the
analyzed dataset. Larger, prospective studies with independent
validation cohorts are needed to confirm the predictive value of
this combined biomarker and establish its clinical utility across
diverse epilepsy populations. Future work should focus on refining
the combined index and testing it on new patient datasets to further
evaluate its generalizability.
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Glossary
AAL3 Automated Anatomical Atlas 3

ACC anterior cingulate cortex

AUC area under the curve

BOLD blood oxygenation level dependent

ca-SOZ clinically annotated seizure onset zone candidate

CAT computational anatomy toolbox

CSF cerebrospinal fluid

DCM dynamic causal modeling

DNM dynamic network model

DRE drug-resistant epilepsy

EEG electroencephalography

GLM general linear model

HFO high-frequency oscillation

HIP hippocampus

ICA independent component analysis

iEEG intracranial electroencephalography

IEDs interictal epileptiform discharges

IFG inferior frontal gyrus

im-DNM dynamic index

IPL inferior parietal lobe

LTI linear time-invariant

MEG magnetoencephalography

MRI magnetic resonance imaging

MTG middle temporal gyrus

PCC posterior cingulate cortex

PET positron emission tomography

PHP parahippocampal gyrus

RNS responsive neurostimulator

rs resting state

rs-fMRI resting-state functional magnetic resonance imaging

RSN resting-state networks

rs-iEEG resting-state intracranial stereoencephalography

sEEG stereoelectroencephalography

SFG superior frontal gyrus

SOZ seizure onset zone

SPECT single-photon emission computed tomography

SPM statistical parametric mapping

SSI source–sink index

tp-SOZ true positive seizure onset zone

TSC tuberous sclerosis
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