
Physiological signal analysis and
open science using the Julia
language and associated software

George Datseris1* and Jacob S. Zelko2,3

1Department of Mathematics and Statistics, University of Exeter, Exeter, United Kingdom, 2Department of
Mathematics, Northeastern University, Boston, MA, United States, 3OHDSI Center, Roux Institute,
Northeastern University, Portland, ME, United States

In this mini review, we propose the use of the Julia programming language and its
software as a strong candidate for reproducible, efficient, and sustainable
physiological signal analysis. First, we highlight available software and Julia
communities that provide top-of-the-class algorithms for all aspects of
physiological signal processing despite the language’s relatively young age.
Julia can significantly accelerate both research and software development due
to its high-level interactive language and high-performance code generation. It is
also particularly suited for open and reproducible science. Openness is supported
and welcomed because the overwhelming majority of Julia software programs
are open source and developed openly on public platforms, primarily through
individual contributions. Such an environment increases the likelihood that an
individual not (originally) associated with a software programwould still be willing
to contribute their code, further promoting code sharing and reuse. On the other
hand, Julia’s exceptionally strong package manager and surrounding ecosystem
make it easy to create self-contained, reproducible projects that can be instantly
installed and run, irrespective of processor architecture or operating system.

KEYWORDS

digital signal processing, physiological signals, complexity measures, Julia, time series
analysis, reproducible, open science

1 Introduction

Progress in modern physiological signal processing relies on research software tools that
support general digital signal processing procedures andmeasurements within reproducible
workflows. However, as the field advances, old software is susceptible to being outdated,
inaccessible (due to licensing fees or expired download links), or unusable because of
decaying infrastructure that renders such tools inoperable. To mitigate this issue, the field
needs modern tools and infrastructure that are designed to fulfill three criteria:

1. Encourage the reuse and maintenance of existing infrastructure.
2. Easily allow software composition and extensions to accommodate new methods.
3. Be rooted in, and by design and adoption, follow open-source and open science principles.

Proprietary software typically fails to meet these criteria. For example, proprietary
platforms are typically closed source (e.g., MATLAB) and do not allow users to extend or
maintain software by themselves but only through paid sponsorship. In contrast, the Python
programming language, which is highly popular in academia, satisfies all three of
these criteria.

OPEN ACCESS

EDITED BY

Ulrich Parlitz,
Max Planck Institute for Dynamics and Self-
Organization, Germany

REVIEWED BY

Dirk Cysarz,
Witten/Herdecke University, Germany

*CORRESPONDENCE

George Datseris,
g.datseris@exeter.ac.uk

RECEIVED 09 August 2024
ACCEPTED 08 October 2024
PUBLISHED 06 November 2024

CITATION

Datseris G and Zelko JS (2024) Physiological
signal analysis and open science using the Julia
language and associated software.
Front. Netw. Physiol. 4:1478280.
doi: 10.3389/fnetp.2024.1478280

COPYRIGHT

© 2024 Datseris and Zelko. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Network Physiology frontiersin.org01

TYPE Mini Review
PUBLISHED 06 November 2024
DOI 10.3389/fnetp.2024.1478280

https://www.frontiersin.org/articles/10.3389/fnetp.2024.1478280/full
https://www.frontiersin.org/articles/10.3389/fnetp.2024.1478280/full
https://www.frontiersin.org/articles/10.3389/fnetp.2024.1478280/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fnetp.2024.1478280&domain=pdf&date_stamp=2024-11-06
mailto:g.datseris@exeter.ac.uk
mailto:g.datseris@exeter.ac.uk
https://doi.org/10.3389/fnetp.2024.1478280
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org/journals/network-physiology#editorial-board
https://www.frontiersin.org/journals/network-physiology#editorial-board
https://doi.org/10.3389/fnetp.2024.1478280


In this mini review, we discuss how the Julia programming language
(Bezanson et al. 2017; Bezanson et al. 2012) is a strong candidate that also
addresses these criteria and can be advantageous for open science in
physiological signal processing. When compared with Python, Julia has
better computational performance for typical user-written code
(Bezanson et al., 2017), which becomes particularly important in
physiological signal processing, where time series hypothesis testing is
common (see Section 3). The design of Julia empirically leads to stronger
software composition, similar to what is seen in Python packages
(Karpinski, 2019; White, 2020). In addition to these two points, Julia
also has a plethora of existing software for digital signal processing
workflows (some of which are unique to the language), has excellent
interoperability with other programming languages, showcases strong
code reuse throughout its ecosystems, offers exceptional reproducibility
infrastructure, and is based on overwhelmingly open and community-
based software development practices.

2 Digital signal processing

2.1 File I/O

The start of a typical DSP analysis workflow is file I/O, which is
straightforward within Julia. The FileIO ecosystem provides I/O
machinery for a variety of data formats (hierarchical data, imaging,
etc.) unified into one standardized interface, while the JuliaHealth
organization (and associated groups) provides support for specialized
physiological data formats. In Julia, most data loading operations return
data in the form of a “dataframe.” First originating in R and popularized
further through the tidyverse (Wickham et al., 2019) and pandas (Wes,
2010) ecosystems, this data structure in Julia is implemented through
the package DataFrames.jl (Bouchet-Valat and Kamiński, 2023) and
further described by the interface package Tables.jl. Because of this,
several ecosystems across Julia have opted to support this interface,
allowing the ready application of various software methods to signals
and simplifying one’s workflow needs.

Furthermore, some particular physiological data I/O capabilities
within Julia are

1. Medical Imaging Data: DICOM.jl and DICOMTree.jl for
reading, writing, and viewing DICOM image data and
associated metadata; NIfTI.jl for reading MRI NIfTI files, and
BIDSTools.jl for working with the Brain ImagingData Structure.

2. Time series: NeuroAnalyzer.jl (Wysokiński, 2024) supports the
ability to load EEG, MEG, NIRS, MEP, and other body sensor
data, and KomaMRI.jl (Castillo-Passi et al., 2023) supports
loading of MRI signals and image formats.

3. Patient Medical Records: FHIRClient.jl for connecting to FHIR
servers and building SMART on FHIR applications, EDF.jl for
manipulating EDF/EDF+ and BDF files, and
OMOPCDMCohortCreator.jl (Zelko et al., 2024) for
working with OMOP CDM formatted patient databases.

Finally, Julia provides support for other data formats used broadly
across different ecosystems. For example, one of the most common
data formats, “delimited files” (such as CSVs and TSVs), is broadly
supported by CSV.jl (Quinn et al., 2023). For data formats from
proprietary tools (where the format is publicly disclosed), there is

support in Julia for several tools such as XLSX.jl for Microsoft Excel,
ReadStatTables.jl for STATA files, andMAT.jl for the various versions
of MATLAB mat files. Additionally, for other more specialized data
formats, there are tools likeHDF5.jl for hierarchical data files, Arrow.jl
for Apache Arrow binary files, and packages such as Tar.jl for other
compressed data files. Finally, if support for a particular format is not
existent or robust enough within Julia, one can use a variety of
interoperability packages from JuliaInterop to supplement one’s
Julia workflow with other ecosystems.

2.2 DSP in Julia

Building upon the compositional aspects of Julia, several tools
have been created to analyze signals or time series within Julia such as

1. Traditional DSP methods: DSP.jl (Kornblith et al., 2023) is the
largest package with a collection of “traditional”DSP algorithms.
It includes periodogram and parametric estimation, filter design
and filtering methods, window functions, convolutions, and
more. AdaptiveFilters.jl provides adaptive filtering.
Additionally, SignalAnalysis.jl complements and extends
DSP.jl with additional functionality such as time–frequency
analysis, Wigner–Wille distributions, or DEMON spectra.

2. Signal alignment and comparison: SignalAlignment.jl attempts
to align signals either through shifting or warping methods
(DynamicAxisWarping.jl; Bagge Carlson and Chitre (2020)
provided the time warping methods used within
SignalAlignment.jl). SpectralDistances.jl (Bagge Carlson and
Chitre, 2020) also examines signals primarily in the frequency
domain via optimal-transport distance metrics as an extension
to Distances.jl.

3. Direct spectral transforms: Julia has several packages for
transforming time series into spectral space: FFTW.jl and
AbstractFFTs.jl for standard Fourier transforms, NFFT.jl
(Knopp et al., 2023), LPVSpectral.jl (Bagge Carlson et al.,
2017); ?, and FastTransforms.jl for non-equidistant
transforms, and Wavelets.jl for wavelet transforms.

4. Noise reduction and signal decomposition:
SignalDecomposition.jl is used for de-noising signals via
decomposition, and KissSmoothing.jl is used for smoothing
(other tools like convolutions and wavelet transforms can also
be used directly for smoothing). For multidimensional data,
there is SingularSpectrumAnalysis.jl, while principal
component analysis exists within MultivariateStats.jl.

5. Hypothesis testing: HypothesisTests.jl provides a plethora of
standard statistical tests. Time seriesSurrogates.jl (Haaga and
Datseris, 2022) combined with ComplexityMeasures.jl (§3)
provides tests for determining the nature of the system
generating the signals. Associations.jl (Haaga and RomeoV,
2024) provides several methods for independence and
dependence testing between signals.

6. Optimization: Julia’s flagship optimization package, JuMP
(Lubin et al., 2023), along with its subpackage, Convex.jl
(Udell et al., 2014, can be used to solve a variety of
optimization problems that arise during DSP workflows,
eliminating the need to resolve to a specialized
optimization package.

Frontiers in Network Physiology frontiersin.org02

Datseris and Zelko 10.3389/fnetp.2024.1478280

https://github.com/JuliaIO
https://github.com/JuliaHealth/
https://github.com/JuliaHealth/
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2024.1478280


In addition to these general DSP tools, specific physiological
signal analysis tools also exist such as

1. Neurophysiological signal processing: NeuroAnalyzer.jl
(Wysokiński, 2024) is a robust Julia toolbox for reviewing
neurophysiological data. It provides several methods including
loading recordings for EEG, MEG, NIRS, MEP, and other body
sensors; processing methods (ICA, PCA, NIRS, etc.); analysis
of specific neurological responses (ERPs, EROs, etc.);
visualizations; and more.

2. MRI signal simulation: KomaMRI.jl (Castillo-Passi et al., 2023)
is a Julia package for highly efficient MRI simulations. It
focuses on simulating scenarios that could arise in pulse
sequence development and offers several methods and
comprehensive tutorials for MRI signal analysis.

2.3 Toolboxes and code reuse

It is common that in other programming ecosystems,
physiological digital signal processing toolboxes exist. For
example, for neurophysiological signal processing, there is
EEGLAB (Delorme and Makeig, 2004) in MATLAB, and within
Python, there is mne-python (Gramfort et al., 2013). In Julia, there
exists NeuroAnalyzer.jl (Wysokiński, 2024) and KomaMRI.jl
(Castillo-Passi et al., 2023). The BrainFlow toolbox (Parfenov
et al., 2023) also has a Julia implementation.

However, due to the strong inter-package communication,
facilitated largely by the language design and the multiple
dispatch system, functionalities that exist in one package can be
reused in another one. This often removes the need for creating
dedicated toolboxes that bring many tools together; in the majority
of cases, the tools already work together out of the box.

Additionally, due to Julia’s interoperability with other languages,
one may easily utilize, for example, Python packages within Julia
using PythonCall.jl. The same applies to software written in C,
FORTRAN, R, MATLAB, and other programming languages. This
inter-operability makes Julia conducive to code reuse and a strong
candidate for sustainable software development.

3 Complexity measures for signal
processing

Complexity measures are one of the most well-established tools in
physiological time series analysis, as evidenced by hundreds of software
programs created for physiological complexity analysis (Mayor et al.,
2021). Complexity measures are statistics derived from time series that
quantify some property of the underlying dynamics generating the time
series. They have been used to distinguish determinism from noise (Rosso
et al., 2007), classify time series into classes with different dynamics (Zanin
and Olivares, 2021; Mayor et al., 2023), quantify directional associations
between time series (Vejmelka and Paluš, 2008), and more.

Julia is the basis for the software ComplexityMeasures.jl (Datseris
and Haaga, 2024). It provides thousands of complexity measure
estimators out of the box, and a recent objective comparison
shows it to outclass alternative software programs in terms of
computational performance, reliability, total number of features,

and extensibility (see Table 1 in the study by Datseris and Haaga
(2024)). ComplexityMeasures.jl is a component of the
DynamicalSystems.jl (Datseris, 2018) software library for nonlinear
dynamics and time series analysis. ComplexityMeasures.jl integrates
fully with Time seriesSurrogates.jl (Haaga and Datseris, 2022), a
highly optimized and, to the best of our knowledge, the most
extensive software program for surrogate hypothesis testing. The
combination of ComplexityMeasures.jl with Time
seriesSurrogates.jl is routinely 1,000× faster than alternatives
(Datseris and Haaga, 2024). These aspects make
ComplexityMeasures.jl a unique advantage of the Julia language in
the context of physiological signal processing.

Perhaps even more relevant for this mini review however is that
ComplexityMeasures.jl follows an open community approach in its
development practices, and actively invites practitioners to become part
of the software by contributing their new algorithms to it directly [see
Conclusions in Datseris and Haaga (2024)]. This is particularly relevant
for open and reproducible science because 1) it can decrease
reproducibility issues in complexity measure applications and 2)
merge the currently disparate efforts on software for complexity
measures; so far, hundreds of such software programs have been
created, often with minimal differences between them, essentially
putting more effort into replication than into new progress.

Hence, by design, ComplexityMeasures.jl plays an instrumental
role in promoting open science in physiological signal processing. By
being well-documented, inviting practitioners with its open
development practices, and being exceptionally well-tested, it
provides a guarantee on maintaining high-quality and open-
source implementations of existing algorithms and enabling
trustworthy and reproducible physiological signal processing. For
more details, refer to Datseris and Haaga (2024) and the list of
software programs in the supplementary material provided by
Mayor et al. (2021) for further comparison.

The usage of ComplexityMeasures.jl is straightforward. A single
function called complexity (or entropy, depending on the
measure) may estimate the measure by taking as an input 1) the
measure to estimate and 2) the input time series (univariate,
multivariate, or spatiotemporal). As such, ComplexityMeasures.jl is
designed to be composable not only with the whole Julia ecosystem
but also with any programming environment due to its simple
interface. The code example in Section 6 shows its application
to EEG data.

4 Julia efficiency for
numerical computing

Another aspect of the Julia language that affects time series analysis
and beyond is the efficiency of getting work done with Julia itself. One
can quickly prototype algorithm implementations or analysis pipelines
within Julia due to its simple and high-level syntax. Sometimes, even
these prototype implementations within Julia canmeet the performance
needs of individuals due to its robustly constructed just-in-time (JIT)
compiler. Then, by optimizing one’s code within Julia itself through
various approaches, highly performant code can be created that is
competitive at the level of languages that are commonly regarded as
high performance (i.e., C, Fortran, or Rust) (Godoy et al., 2023), without
the need for language extensions or re-writing code in another language.

Frontiers in Network Physiology frontiersin.org03

Datseris and Zelko 10.3389/fnetp.2024.1478280

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2024.1478280


5 Open and reproducible science
with Julia

5.1 Vibrant open-source community

One of the most crucial aspects of the Julia programming language is
not a technical contribution but rather the Julia community itself. There
are several official community platforms where Julia discussions and
collaborations take place, totaling tens of thousands of active participants
and hundreds of thousands of messages being shared. Additionally, as an
emergent property, the overwhelming majority of projects in the Julia
programming language are hosted publicly on GitHub, an international
platform fostering open-source code collaboration.

Within the Julia community, self-organized communities have
organically emerged to specifically leverage Julia for common tasks
across several domains. In particular, many tools for domains of work
and research are centered within these Julia “organizations,” such as

1. JuliaHealth: an organization that leverages Julia to improve
health and medical research. They organize monthly meetings
with organization members, and anyone interested in getting
started in research software development, conducting novel
health research, or sharing a question or work they have done
can join. Moreover, they centralize some smaller workgroups
focused on areas such as medical imaging, standards and
interoperability, and more within health research contexts.

2. JuliaInterop: while Julia is still growing, JuliaInterop exists to
bridge packages and workflows from other languages into Julia.
As a result, Julian are free to use their favorite tools from other
languages within Julia workflows while also maintaining a
presence within these other language communities.

3. JuliaML: utilizing Julia’s priority support for numerical methods,
JuliaML gathers for monthly community meetings to discuss the
latest developments in machine learning research. In these
meetings, development discussions are common to triage
what various members are developing and what they need
within the JuliaML ecosystem for their work.

4. JuliaDynamics: an umbrella organization for Julia software
related to nonlinear dynamics, nonlinear time series analysis,
and complex systems. They organize monthly meetings
showcasing interesting applications of the software in real-
world problems and discussing future developments for the
organization and its software.

These “organizations” are not incorporated in any official
sense but serve as gathering points for interested practitioners
and volunteers to coalesce tools they have been developing and
share expert insights. To the best of our knowledge, other
languages generally do not have as strong social coherence. For
example, in Python, we could not find such self-organized
organizations for DSP or Health, perhaps because functionality
tends to be aggregated into huge infrastructures like NumPy,
making it daunting for individuals to become involved. In
contrast, within the Julia community, this self-organization is
much more common and robust; practically, every (sub) field of
science has an associated Julia GitHub organization that is self-
organized and not owned by a corporation or large research
group. This may be facilitated by characteristics of Julia, such
as multiple dispatch and the subsequent package communication it
provides, allowing small projects to grow while still being part of a
greater whole. These aspects of Julia result in a low contribution
barrier: a researcher can easily turn their scripts into published
source code within a registered Julia package.

5.2 Package manager

One of the biggest strengths of the Julia language is its “package
manager,” Pkg.jl, which is a Julia software program that installs “packages”
(individual Julia software). Hence, installing new packages happens from
within the language itself and allows full access to all of Julia’s infrastructure
during installation. Pkg.jl is the only package manager in Julia, and it
defines and records dependencies in only one way.

A critical feature of Pkg.jl is its support for “environments.”
Julia environments are self-contained Julia projects that have
their own list of dependencies and installed packages. This
allows one to use different versions of the same software
package across Julia environments. The latest version of one
package can be used within new projects, while older project
environments can safely continue to use older versions in old
projects, greatly alleviating dependency hell problems
(Wikipedia contributors, 2024).

Each Pkg.jl environment is governed by two configuration files:
Project.toml and Manifest.toml. The Project.toml is a user-created
file that declares the direct dependencies of the project, optionally
declaring compatibility bounds. The Manifest.toml is a Julia-
generated file that lists the current full dependency tree of the

FIGURE 1
Exemplary time series analysis of EEG signals from one channel. EEG signals for two subjects are first decomposed into frequency bands (with “F”
standing for the Full EEG signal that has not been decomposed and only been passed through a denoising filter). For each signal and band, we estimate
various complexity measures, in particular order-3 permutation entropy (Bandt and Pompe, 2002), wavelet entropy (Rosso et al., 2001), spectral entropy
(Tian et al., 2017), and sample entropy (Richman and Moorman, 2000). See Listing 1 for the code that produced the figure.

Frontiers in Network Physiology frontiersin.org04

Datseris and Zelko 10.3389/fnetp.2024.1478280

https://juliahealth.org/
https://github.com/JuliaInterop
https://github.com/JuliaML
https://github.com/JuliaDynamics
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2024.1478280


environment and is updated each time any package update is done
in the environment. The Manifest.toml file can be sent to another
user, who can then instantiate an identical environment (with
respect to the package versions) as the original created
environment.

Pkg.jl also does exceptionally well in a problem that older
programming languages still struggle with: robust installation. It
provides the “artifact system,” provisioned via Yggdrasil.jl and
BinaryBuilder.jl. An “artifact” within Julia is any raw data file or
precompiled binary dependency (i.e., a piece of software program
that exists from outside of Julia). Developers may distribute these
artifacts during the installation of their package by utilizing this
system. As a result, installing an “artifact” from scratch is not a
problem that every single user of one’s Julia software has to solve;
rather, it is a problem that needs to be solved once by a software
developer through configuring the needed artifacts. The user then
“simply installs” their Julia package, and the artifacts are shipped to
them during the installation. Additionally, the artifacts are versioned
in the same way as normal packages and hence are also included in
the aforementioned Manifest.toml file, further enabling
reproducibility.

5.3 Other projects fostering sharing and
reproducibility

In addition to Pkg.jl, Julia has a couple of highly popular projects
to further facilitate scientific reproducibility. Pluto.jl is a
programming notebook alternative to Jupyter (Kluyver et al.,
2016) that places a strong focus on the reproducibility and
accessibility of the code. It solves some of the reproducibility
problems related to Jupyter, such as hidden variables or
translating a notebook to pure source code, and it also provides a
reactive environment for accelerating code development and/or
scientific workflows.

DrWatson (Datseris et al., 2020) is scientific project assistant
software. It simplifies and accelerates managing a scientific
software project by setting up simulations or processing
workflows. Like Pluto.jl, it places a strong focus on
accessibility and reproducibility and provides several
functionalities for making a scientific project more robust and
easier to share and reproduce. DrWatson also has the benefit of
being completely non-invasive in contrast to many other similar
software programs [see comparison provided by Datseris et al.
(2020)]. DrWatson is used like a typical Julia package: a user may
use any of its exported functions in their source code or scripts
without altering any of the surrounding code.

6 Example application

As a simple application, we showcase a code snippet that
performs two actions: first, it decomposes an input EEG time
series into time series containing frequencies from the
characteristic frequency bands: δ, θ, α, β, γ, using NeuroAnalyzer.jl
(Wysokiński, 2024). This is done for two input EEG time series from
two different subjects obtained from A Resting-state EEG Dataset for
Sleep Deprivation (Xiang et al., 2024). Then, for each time series and

some of the frequency bands, we estimate various complexity
measures via ComplexityMeasure.jl (Datseris and Haaga, 2024).
The result is presented as a barplot in Figure 1, and the code
that produced it is provided in Listing 1.

Listing 1. Example code listing for Figure 1.

See the online reproducible codebase (Datseris and Zelko, 2024)
associated with this paper for the code that loads the time series, as
well as the full dependency tree for the packages used to produce the
final figure.

7 Conclusion

We believe that the adoption of the Julia programming language
can significantly increase accessibility and reproducibility in
physiological signal processing while promoting a sustainable
ecosystem based on collaboration and code reuse. Julia can
accelerate the development of new methods and scientific
progress, in general, due to its flexible syntax, available libraries,
high performance, and package interoperability. Two similar
discussions to our paper, arriving at similar conclusions
regarding the positives of using Julia, were recently conducted in
the context of high-energy physics by Eschle et al. (2023) and biology
by Roesch et al. (2023).

Author contributions

GD: conceptualization, formal analysis, software, visualization,
writing–original draft, writing–review and editing, methodology,
and supervision. JZ: data curation, formal analysis, methodology,
software, visualization, writing–original draft, and writing–review
and editing.

Frontiers in Network Physiology frontiersin.org05

Datseris and Zelko 10.3389/fnetp.2024.1478280

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2024.1478280


Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Acknowledgments

GD received funding from UKRI’s Engineering and Physical
Sciences Research Council, grant no. EP/Y01653X/1. The
authors would like to thank Professor Adam Wysokiński for
his advice in using the NeuroAnalyzer.jl toolbox (Wysokiński,
2024) and Dr. Fredrik Bagge Carlson for his suggestions on DSP
tools in Julia.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors, and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Bagge Carlson, F., and Chitre, M. (2020). New metrics between rational spectra and
their connection to optimal transport. arXiv e-prints. arXiv–2004.

Bagge Carlson, F., Robertsson, A., and Johansson, R. (2017). “Linear parameter-
varying spectral decomposition,” in 2017 American control conference (ACC).

Bandt, C., and Pompe, B. (2002). Permutation entropy: a natural complexity measure
for time series. Phys. Rev. Lett. 88, 174102. doi:10.1103/PhysRevLett.88.174102

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B. (2017). Julia: a fresh approach
to numerical computing. SIAM Rev. 59, 65–98. doi:10.1137/141000671

Bezanson, J., Karpinski, S., Shah, V. B., and Edelman, A. (2012). Julia: a fast dynamic
language for technical computing. Corr. abs/1209, 5145.

Bouchet-Valat, M., and Kamiński, B. (2023). Dataframes. jl: flexible and fast tabular
data in julia. J. Stat. Softw. 107, 1–32. doi:10.18637/jss.v107.i04

Castillo-Passi, C., Coronado, R., Varela-Mattatall, G., Alberola-López, C., Botnar, R.,
and Irarrazaval, P. (2023). Komamri.jl: an open-source framework for general mri
simulations with gpu acceleration. Magnetic Reson. Med. 90, 329–342. doi:10.1002/
mrm.29635

Datseris, G. (2018). Dynamicalsystems.jl: a julia software library for chaos and
nonlinear dynamics. J. Open Source Softw. 3, 598. doi:10.21105/joss.00598

Datseris, G., and Haaga, K. A. (2024). Complexitymeasures.jl: scalable software to
unify and accelerate entropy and complexity time series analysis.

Datseris, G., Isensee, J., Pech, S., and Gál, T. (2020). Drwatson: the perfect sidekick for
your scientific inquiries. J. Open Source Softw. 5, 2673. doi:10.21105/joss.02673

Datseris, G., and Zelko, J. S. (2024). Datseris/JuliaOpenPhysiologicalDSP: first
submitted version. doi:10.5281/zenodo.13284209

Delorme, A., and Makeig, S. (2004). Eeglab: an open source toolbox for analysis of
single-trial eeg dynamics including independent component analysis. J. Neurosci.
methods 134, 9–21. doi:10.1016/j.jneumeth.2003.10.009

Eschle, J., Gál, T., Giordano, M., Gras, P., Hegner, B., Heinrich, L., et al. (2023).
Potential of the julia programming language for high energy physics computing.
Comput. Softw. Big Sci. 7, 10. doi:10.1007/s41781-023-00104-x

Godoy, W. F., Valero-Lara, P., Anderson, C., Lee, K. W., Gainaru, A., Ferreira Da
Silva, R., et al. (2023). “Julia as a unifying end-to-end workflow language on the frontier
exascale system,” in Proceedings of the SC’23 workshops of the international conference
on high performance computing, network, storage, and analysis, 1989–1999.

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C.,
et al. (2013). MEG and EEG data analysis with MNE-Python. Front. Neurosci. 7,
267–313. doi:10.3389/fnins.2013.00267

Haaga, K. A., and Datseris, G. (2022). Time seriessurrogates.jl: a julia package for
generating surrogate data. J. Open Source Softw. 7, 4414. doi:10.21105/joss.04414

Haaga, K. A., and RomeoV, D. G. (2024). Juliadynamics/associations.jl: v4.2.0. doi:10.
5281/zenodo.8409495

Karpinski, S. (2019). The unreasonable effectiveness of multiple dispatch. Accessed:
September-2024-16

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., et al.
(2016). “Jupyter notebooks – a publishing format for reproducible computational
workflows,” in Positioning and power in academic publishing: players, agents and
agendas. Editors F. Loizides and B. Schmidt (IOS Press), 87–90.

Knopp, T., Boberg, M., and Grosser, M. (2023). NFFT.jl: generic and fast julia
implementation of the nonequidistant fast Fourier transform. SIAM J. Sci. Comput. 45,
C179–C205. doi:10.1137/22m1510935

Kornblith, S., Lynch, G., Holters, M., Santos, J. F., Russell, S., Kickliter, J., et al. (2023).
Juliadsp/dsp.jl: v0.7.9. doi:10.5281/zenodo.8344531

Lubin, M., Dowson, O., Dias Garcia, J., Huchette, J., Legat, B., and Vielma, J. P. (2023).
JuMP 1.0: recent improvements to a modeling language for mathematical optimization.
Math. Program. Comput. 15, 581–589. doi:10.1007/s12532-023-00239-3

Mayor, D., Panday, D., Kandel, H. K., Steffert, T., and Banks, D. (2021). Ceps: an open
access matlab graphical user interface (gui) for the analysis of complexity and entropy in
physiological signals. Entropy 23, 321. doi:10.3390/e23030321

Mayor, D., Steffert, T., Datseris, G., Firth, A., Panday, D., Kandel, H., et al. (2023).
Complexity and entropy in physiological signals (ceps): resonance breathing rate
assessed using measures of fractal dimension, heart rate asymmetry and
permutation entropy. Entropy 25, 301. doi:10.3390/e25020301

Parfenov, A. (2023). Brainflow.

Quinn, J., Bouchet-Valat, M., Robinson, N., Kamiński, B., Newman, G., Stukalov, A.,
et al. (2023). Juliadata/csv.jl: 10. doi:10.5281/zenodo.8004128

Richman, J. S., and Moorman, J. R. (2000). Physiological time series analysis using
approximate entropy and sample entropy. Am. J. physiology-heart circulatory physiology
278, H2039–H2049. doi:10.1152/ajpheart.2000.278.6.H2039

Roesch, E., Greener, J. G., MacLean, A. L., Nassar, H., Rackauckas, C., Holy, T. E., et al.
(2023). Julia for biologists. Nat. methods 20, 655–664. doi:10.1038/s41592-023-01832-z

Rosso, O. A., Blanco, S., Yordanova, J., Kolev, V., Figliola, A., Schürmann, M., et al.
(2001). Wavelet entropy: a new tool for analysis of short duration brain electrical
signals. J. Neurosci. Methods 105, 65–75. doi:10.1016/S0165-0270(00)00356-3

Rosso, O. A., Larrondo, H., Martin, M. T., Plastino, A., and Fuentes, M. A. (2007).
Distinguishing noise from chaos.Phys. Rev. Lett. 99, 154102. doi:10.1103/PhysRevLett.99.154102

Tian, Y., Zhang, H., Xu, W., Zhang, H., Yang, L., Zheng, S., et al. (2017). Spectral
entropy can predict changes of working memory performance reduced by short-time
training in the delayed-match-to-sample task. Front. Hum. Neurosci. 11, 437. doi:10.
3389/fnhum.2017.00437

Udell, M., Mohan, K., Zeng, D., Hong, J., Diamond, S., and Boyd, S. (2014) “Convex
optimization in julia,” in SC14 workshop on high performance technical computing in
dynamic languages.

Vejmelka, M., and Paluš, M. (2008). Inferring the directionality of coupling with
conditional mutual information. Phys. Rev. E 77, 026214. doi:10.1103/PHYSREVE.77.026214

Wes, M. K. (2010). “Data structures for statistical computing in Python,” in Proceedings
of the 9th Python in science conference, 56–61. doi:10.25080/Majora-92bf1922-00a

White, F. C. (2020). Julialang: the ingredients for a composable programming
language Accessed: 2024-September-16.

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., et al.
(2019). Welcome to the tidyverse. J. Open Source Softw. 4, 1686. doi:10.21105/joss.01686

Wikipedia contributors (2024). Dependency hell—Wikipedia, the free encyclopedia.

Wysokiński, A. (2024). Neuroanalyzer. doi:10.5281/zenodo.7372648

[Dataset Xiang, C., Fan, X., Bai, D., Lv, K., and Lei, X. (2024). A resting-state eeg
dataset for sleep deprivation. Sci. Data 11, 427. doi:10.1038/s41597-024-03268-2

Zanin, M., and Olivares, F. (2021). Ordinal patterns-based methodologies for
distinguishing chaos from noise in discrete time series. Commun. Phys. 4, 190.
doi:10.1038/s42005-021-00696-z

Zelko, J., Chinta, V., Abdelazeez, F., and Sanjay, J. (2024). Omopcdmcohortcreator
0.5.1. doi:10.5281/zenodo.11662821

Frontiers in Network Physiology frontiersin.org06

Datseris and Zelko 10.3389/fnetp.2024.1478280

https://doi.org/10.1103/PhysRevLett.88.174102
https://doi.org/10.1137/141000671
https://doi.org/10.18637/jss.v107.i04
https://doi.org/10.1002/mrm.29635
https://doi.org/10.1002/mrm.29635
https://doi.org/10.21105/joss.00598
https://doi.org/10.21105/joss.02673
https://doi.org/10.5281/zenodo.13284209
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1007/s41781-023-00104-x
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.21105/joss.04414
https://doi.org/10.5281/zenodo.8409495
https://doi.org/10.5281/zenodo.8409495
https://doi.org/10.1137/22m1510935
https://doi.org/10.5281/zenodo.8344531
https://doi.org/10.1007/s12532-023-00239-3
https://doi.org/10.3390/e23030321
https://doi.org/10.3390/e25020301
https://doi.org/10.5281/zenodo.8004128
https://doi.org/10.1152/ajpheart.2000.278.6.H2039
https://doi.org/10.1038/s41592-023-01832-z
https://doi.org/10.1016/S0165-0270(00)00356-3
https://doi.org/10.1103/PhysRevLett.99.154102
https://doi.org/10.3389/fnhum.2017.00437
https://doi.org/10.3389/fnhum.2017.00437
https://doi.org/10.1103/PHYSREVE.77.026214
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.21105/joss.01686
https://doi.org/10.5281/zenodo.7372648
https://doi.org/10.1038/s41597-024-03268-2
https://doi.org/10.1038/s42005-021-00696-z
https://doi.org/10.5281/zenodo.11662821
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2024.1478280

	Physiological signal analysis and open science using the Julia language and associated software
	1 Introduction
	2 Digital signal processing
	2.1 File I/O
	2.2 DSP in Julia
	2.3 Toolboxes and code reuse

	3 Complexity measures for signal processing
	4 Julia efficiency for numerical computing
	5 Open and reproducible science with Julia
	5.1 Vibrant open-source community
	5.2 Package manager
	5.3 Other projects fostering sharing and reproducibility

	6 Example application
	7 Conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


