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Epilepsy is a common neurological disorder, affecting over 65 million people
worldwide. Unfortunately, despite resective surgery, over 30% of patients with
drug-resistant epilepsy continue to experience seizures. Retrospective studies
considering connectivity using intracranial electrocorticography (ECoG) obtained
during neuromonitoring have shown that treatment failure is likely driven by
failure to consider critical components of the seizure network, an idea first
formally introduced in 2002. However, current studies only capture snapshots
in time, precluding the ability to consider seizure network development. Over the
past few years, multiwell microelectrode arrays have been increasingly used to
study neuronal networks in vitro. As such, we sought to develop a novel in vitro
MEA seizuremodel to allow for study of seizure networks. Specifically, we used 4-
aminopyridine (4-AP) to capture hyperexcitable activity, and then show increased
network changes after 2 days of chronic treatment. We characterize network
changes using functional connectivity measures and a novel technique using
dimensionality reduction. We find that 4-AP successfully captures persistently
elevated mean firing rate and significant changes in underlying connectivity
patterns. We believe this affords a robust in vitro seizure model from which
longitudinal network changes can be studied, laying groundwork for future
studies exploring seizure network development.
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Introduction

Epilepsy affects over 65 million people worldwide (Ngugi et al., 2010). When patients
fail medical management with anti-seizure medications (ASMs), they must turn to surgical
evaluation. However, despite resective surgery and/or neuromodulatory intervention,
approximately 50% of patients experience refractory seizures (Andrews et al., 2019).
Recent studies considering electrocorticography (ECoG) obtained during
neuromonitoring have suggested that treatment failure is likely attributed to untreated
components of a pathologic seizure network (Boddeti et al., 2022). Although there are
numerous preexisting in vitro and in vivo seizure models, to our knowledge, none model
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seizure network development. As such, in this study, we describe a
novel in vitro epilepsy model using multiwell microelectrode arrays
(MEAs), to study seizure network development.

Epilepsy models suggest that seizures are characterized by
excessive synchronous neuronal firing. Primary epilepsies
(i.e., genetic epilepsies) are modeled by knock-out mice (ex.
Kcnq3, Lgi1, Mecp2, etc) and secondary epilepsies are modeled
using induction protocols (Marshall et al., 2021). These typically
involve kindling via electrical stimulation or chemoconvulsant
agents (ex. Pilocarpine, Pentylenetetrazole (PTZ), Kainate) that
are introduced on repeated occasions, resulting in eventual
spontaneous seizures (Curia et al., 2008; Lévesque and Avoli,
2013; Dhir, 2012; Goddard, 1967). Electrophysiology and seizure
activity are typically recorded using invasive cortical/subcortical
electrodes (Marshall et al., 2021).

In contrast to animal models, in vitro epilepsy models typically
consist of mammalian brain slices, derived from whole brain or
hippocampus, for acute or chronic (organotypic slices) study
(Raimondo et al., 2017). These slices are obtained either from
animal models of epilepsy or naive-animals. Electrophysiology
from slices is recorded using a number of options, including
grease gas chambers, ion-selective microelectrodes, functional
microscopy and optogenetics, and most commonly, patch-clamp
(Raimondo et al., 2017; Neher and Sakmann, 1976; Sakmann and
Neher, 1984). Patch-clamp is an electrophysiological technique
developed in the 1970s that allows for study of single-neuron
electrical behavior using a micropipette in tight contact with the
cell membrane (Segev et al., 2016). Patch-clamp recordings afford
many advantages, including the ability to record from neurons in the
context of their native, preserved circuitry and also capturing
changes in activity in real-time. However, by virtue of how
patch-clamp recordings are obtained, activity across multi-unit
neuronal populations over long periods of time are not feasible.
Furthermore, the quality of recordings from patch-clamp can vary
greatly depending on cell-specific conditions, presenting a further
challenge (Saleem et al., 2023). As such, in vitro slice models and
patch-clamp recordings do not allow for effective study of network
activity or changes.

Over the past few years, MEA technology has been increasingly
used for in vitro investigations to better understand neuronal
dynamics, balancing neuron-glia populations and a well-
controlled environment to model neurologic disease (Mossink
et al., 2021; Cerina et al., 2023). MEAs encompass
microelectrodes at the base of tissue culture wells, on which
neuronal populations are plated. These microelectrodes allow
for capture of high-frequency neuronal spiking activity by
recording of extracellular field potential from multiple
electrodes, which studies have shown strongly resembles
intracellular waveforms (Ashida et al., 2012; Funabiki et al.,
2011; Kuokkanen et al., 2018). Additionally, MEA
microelectrodes allow for delivery of electrical stimulation,
allowing for intentional probing of in vitro neuronal networks.
As discussed above, traditional in vitro epilepsy models use patch-
clamp recordings from brain slices. Although patch-clamp directly
captures intracellular neuronal action potentials, it fails to capture
activity from populations of neurons. MEAs offer a unique
advantage as recordings from extracellular field potential allow
for useful estimates of population activity. In recent years, MEAs

have been used to model neurological disease, such as Alzheimer’s
disease (AD), Glioblastoma Multiforme (GBM), Parkinson’s
disease (PD), Amyotrophic Lateral Sclerosis (ALS), and epilepsy
(Li et al., 2020; Krishna et al., 2023; Wainger et al., 2014; Woodard
et al., 2014; Tidball and Parent, 2016). Considering increasing
evidence suggesting pathomechanisms surrounding
epileptogenesis reflect distributed seizure networks, MEAs offer
a robust tool in which such changes can be studied and modeled.

In a cohort of patients with drug-resistant epilepsy (DRE), we
found evidence of increased functional connectivity (FC)
between regions of seizure onset and spread. Based on these
findings, it is plausible that years of repeated seizure insults may
result in changes in underlying neuronal connectivity, that result
in interictal FC changes. As such, to better understand network
changes that may take place in epilepsy patients, we describe an
in vitro epilepsy model, motivated by our findings in DRE
patients, where we capture seizure-like hyperexcitability over
time and monitor network changes longitudinally. We use 4-
aminopyridine (4-AP), a known pro-convulsant agent, to capture
hyperexcitable activity and model seizures. We use
electrophysiology recorded from MEAs to characterize
network changes after 2 days of chronic 4-AP treatment. We
posited that we would be able to effectively capture network
changes in our seizure model, serving as a proof-of-concept that
our in vitro MEA seizure model could be used to study seizure
network development over time. We find that 4-AP successfully
captures hyperexcitable activity that persists at baseline.
Furthermore, we find after 2 days of chronic treatment,
network connectivity is significantly increased in 4-AP treated
wells, compared to control, when considering functional
connectivity (FC) and a novel technique using dimensionality
reduction. These results support the idea that 4-AP can be used to
effectively model hyperexcitable activity on MEAs and allow for
in vitro study of network changes, that may provide insight into
the pathogenesis of seizure networks.

Materials and methods

Functional connectivity in human
epilepsy patients

We retrospectively identified three patients (1 female, 39.0 ±
13.1 years, (�x ± σ), with mesial-temporal lobe epilepsy (MTLE) who
underwent resective surgery. All patients in the study cohort
underwent neuromonitoring between 1 August 2014, and
1 November 2017, for 11.7 ± 4.2 days (�x ± σ). In each case, the
clinical team determined placement of electrode contacts to localize
ictal regions. All surgical procedures and icEEG monitoring were
performed at the Yale Comprehensive Epilepsy Center at the Yale
New Haven Hospital (YNHH) (New Haven, CT). During
neuromonitoring, each patient had 4.0 ± 2.0 seizures (�x ± σ), for
a total of 12 seizures across all patients, and 4.0 ± 1.0 (�x ± σ)
interictal epochs were extracted. The study was conducted with
approval from the Yale Institutional Review Board (IRB) and
informed consent was obtained from all participants. The study
was conducted in accordance with the relevant guidelines and
regulations.
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For each interictal epoch, we considered contacts recording
from regions of seizure onset (SOZ), spread (SP), and uninvolved
controls (Figure 1A). We were interested in comparing FC
between SOZ-SP and SOZ-control. For each contact, we
preprocessed signals by applying a local detrending procedure
to remove slow fluctuations from the time series. We then used a
regression-based approach to remove line noise at 60 and 120 Hz
(Kutsy, 1999). We used a low-pass type 1 finite impulse response
(FIR) filter (order = 180), to remove higher order line harmonics
as well as high-frequency noise. After preprocessing signals, we
applied a band-pass FIR filter (order = 390) designed using the
Parks-McClellan algorithm in the high-gamma band (70–90 Hz)
(Parks and McClellan, 1972). We were interested in the high-
gamma band considering its relevance in seizure onset regions
(Ren et al., 2015). We computed phase-locking coherence (PLC)
based on raw real Hilbert transformed time series, comparing
estimates across SOZ-SP and SOZ-control pairs (Lachaux et al.,
1999). We considered PLC as our FC metric as it measures the
degree of synchronization between icEEG signals, with high
values reflecting greater synchronization, and this
connectivity, and low values reflecting weaker (Figure 1B).

Neuron-glia culture preparation

We established a mixed neuron-glia rat cortical cell culture on
MEAs according to previously published protocols (Ksendzovsky
et al., 2022; Mortazavi et al., 2022). Cortices were dissected from
newborn P1 rat pups in a modified Puck’s dissociation medium D1
(5 mM HEPES, 16.5 mM glucose, 22 mM Sucrose, 137 mM NaCl,
0.32 mM Na2HPO4, 0.22 mM KH2PO4 in deionized water, pH 7.4,
Osm 320-330). Cultures typically consisted of cortical cells harvested
from 3 to 12 pups (male or female). Once cortices were collected,
cortical cells were subsequently dissociated in a Puck’s/papain
solution (1.5 mM CaCl2, 0.5 mM EDTA, 0.75% papain
(Worthington Biochemical Corporation, Lakewood, NJ) and
8.25 nM Cysteine in D1 medium). After appropriate dissociation,
cortical cells were plated on MEA plates precoated with 1 mg/mL of
poly-D-lysine (PDL) in borate buffer, pH 8.4. Cells were plated in 6-
well Axion CytoView MEA plates (Axion Biosystems, Atlanta, GA)
at a density of 2 × 105 cells/well, with each well serving as a technical
replicate. Cultured plates were maintained in a cell-culture
incubator at 37°C and 5% CO2. 24-h after plating, a complete
media change was performed, after which cells were maintained

FIGURE 1
Functional connectivity in human epilepsy patients. (A) Here, we show the schematic for how FC was computed in our cohort of DRE patients.
Specifically, we considerd icEEG obtained during neuromonitoring for seizure localization. We selected for contacts recording from regions identified as
SOZ, SP, or control, equidistant to the SOZ. We then computed PLC and compared across all SOZ-SP and SOZ-control contact pairs across all patients
(left). (B) Here, we depict extreme cases of what PLCmeasures. Specifically, PLC captures how in-phase, or synchronized two signals are. High PLC
values (top) mean signals are synchronized, and therefore suggests that the underlying recording sites may be functionally connected. On the contrary,
low PLC values recording sites are likely unrelated to one another. (C)We average PLC computed for all SOZ-SP and SOZ-control contact pairs. We show
that within a given contact pair, SOZ-SP contacts are more functionally connected than their respective SOZ-control pair (left). When we compare PLC
across all patients, we find that SOZ-SP contact pairs are truly significantly more synchronized, and hence likely more strongly connected, compared to
SOZ-control pairs (0.29 versus 0.25, t(2) = 6.72, p = 0.0215, paired t-test, right). Abbreviations: FC, functional connectivity; DRE, drug-resistant epilepsy;
SOZ, seizure-onset zone; SP, seizure spread; icEEG, intracranial electrocorticography; PLC, phase-locking coherence.
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in maintenance medium (5% FBS, 1X B-27, 1X antibiotic-
antimycotic mix, 5 mM HEPES, 1.2 mM L-glutamine in
Neurobasal medium, pH 7.4) with partial media changes every
48-h. To reduce neuron-glia culture variability, rat pup cortices
are mixed after dissection and prior to plating on MEA wells.
Furthermore, neuron-glia cultures are obtained from multiple rat
moms, to further reduce inter-MEA well variability.

Induction of hyperexcitable activity using
4-AP

There are numerous techniques to capture hyperexcitable
activity in dissociated cultures on MEAs (Grainger et al., 2018).
One approach is introduction of proconvulsant agents (ex.
Picrotoxin, Gabazine, PTZ, Bicuculline, Tutin, Tranexamic Acid,
Endosulfan, 4-Aminopyridine (4-AP), SNC80, NMDA, Linopirdine,
Strychnine HCL, Amoxapine, Pilocarpine HCL, Thioridazine HCL,
Domoic Acid, Tetrodotoxin (TTX)) (Bradley et al., 2018). Another is
by manipulation of ion concentrations (ex. lowMg2+2 ) (Bradley et al.,
2018). In this model, we used 4-AP, a potassium-channel blocker
that has been well established as a reliable and potent seizurogenic
agent to model seizures in vitro (Bradley et al., 2018; Choquet and
Korn, 1992; Cramer et al., 1994; Yamaguchi and Rogawski, 1992; Pea
and Tapia, 2000; Gonzalez-Sulser et al., 2011). Specifically, 4-AP
results in partial blockade of repolarizing A-type potassium

channels, resulting in membrane depolarization, increased
intracellular Ca2+ concentrations, and increased glutamate release
from presynaptic terminals, ultimately inducing hyperexcitable
activity (Žiburkus et al., 2013; Yokoi et al., 2022). We chose 4-
AP over other candidate models, such as low Mg2+2 or electrical
stimulation, for its relative simplicity of use and minimization of
confounding effects. Namely, 4-AP can be delivered by adding a low
volume of concentrated stock solution to treatment MEA wells to
achieve the desired working concentration. Furthermore, 4-AP has
been shown to induce slow seizure-like events (SLEs), unlike low
Mg2+2 and electrical stimulation models (Heuzeroth et al., 2019;
Luhmann et al., 2000; Chiang et al., 2018).

Experiments with 4-AP began after neuron-glia culture
maturation and differentiation, around day-in-vitro (DIV) 20, as
suggested by previous literature (Latchoumane et al., 2018) and
direct observation of stabilizedmean firing rate (MFR) across at least
3 days. Experimental protocol consisted of obtaining 5-min baseline
MEA recordings prior to 4-AP treatment. After baseline MEA
recordings, concentrated 4-AP solution was applied to treatment
wells, achieving a 500 μM working concentration of 4-AP. This was
chosen as the most optimal 4-AP concentration to achieve
hyperexcitable activity in our in vitro model after dose response
experiments and considering it is concordant with ranges typically
used in vitro (Matsuda et al., 1986). Simultaneously, control wells
were “treated” with an equivalent volume of Neurobasal medium. 4-
AP treatment wells were exposed to 4-AP-induced hyperexcitable

FIGURE 2
Experimental workflow. Here, we show the experimental workflow, delineating 4-AP treatment protocol. Treatment begins Day 0, after MFR has
stabilized across neuron-glia cultures (seeMethods). MEA recordings are collected prior to each day’s 4-AP wash-in using the Maestro Pro MEA system
(Axion Biosystems, Atlanta, GA). 6-well MEA plates are used, with three wells serving as untreated controls and remaining used for 4-AP treatment.
Protocol was repeated across multiple biological replicates, with each 6-well MEA plate reflecting a single biological replicate. During a single day’s
4-AP treatment, treatment wells (red) were spiked with concentrated stock solution of 4-AP. Simultaneously, control wells (grey) were treated with
equivalent volume of Neurobasal medium. Treatment period lasts for 30-min, after which all wells (control and 4-AP-treated) undergo full wash-out and
media change with Neurobasal medium. Treatment is repeated for 2 days, at approximately the same time each day. As such, each MEA recording is
effectively collected 24-h apart, allowing for quantifying chronic changes. Abbreviations: 4-AP, 4-aminopyridine; MFR, mean firing rate; MEA,
microelectrode arrays.
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conditions for 30-min. Afterwards, treatment and control wells
underwent full media changes. This protocol was repeated for a
total of 3 days, to allow for study of changes on a chronic timescale.
Effectively, other than the initial MEA recording, subsequent MEA
recordings are collected 24-h after previous day’s 4-AP
treatment (Figure 2).

MEA recording acquisition and
preprocessing

In vitro electrophysiology was collected using the Maestro Pro
MEA system (Axion Biosystems, Atlanta, GA) and AxIS Navigator
software v3.5.2 (Axion BioSystems, Atlanta, GA). We used six-well
MEA plates, due to their high microelectrode density
(64 microelectrodes). Microelectrodes are made of polymer poly
(3,4-ethylenedioxythiophene) (PEDOT) and arranged in an 8 ×
8 grid, with a 50 μm electrode diameter and 300 μm interelectrode
spacing. All voltage traces were sampled at 12.5 kHz.

To extract spiking activity, we processed all electrophysiology
recordings offline using custom MATLAB (MathWorks, Natick,
MA) scripts. Preprocessing steps involved downsampling signals
from 12.5 kHz to 2.5 kHz and band-pass filtering signals between
0.1 and 300 Hz (Butterworth, order = 20). These steps were done to
eliminate the impacts of low-frequency drift, DC artifacts, and filter
for multi-unit activity (MUA) to capture high-frequency neuronal
spiking (Stark and Abeles, 2007; Waldert et al., 2013; Ahmadi et al.,
2021). Subsequently, signals were filtered using a series of notch
filters (Butterworth, order = 4) to eliminate 60 Hz line noise and its
first two harmonics (i.e., 120, 180 Hz), with a narrow bandwidth
within 1 Hz of the target frequency. All signals were
subsequently z-scored.

Functional connectivity

We were interested in computing changes that estimate
synchronized neural activity, or FC, across all multi-unit
populations. To this end, we considered degree of correlation, a
measure of statistical interdependence, between spike trains (Cohen
et al., 2002; Selinger et al., 2004; Chiappalone et al., 2006;
Chiappalone et al., 2011; Eisenman et al., 2015). For each spike
train recorded from respective microelectrodes, we vectorized spike
counts by binning spikes in non-overlapping 50-ms windows. FC
was then quantified by computing Pearson’s correlations (Fisher
z-transformed) across all unique pairwise binned spike trains
in each well.

Of note, considering our choice of Pearson’s correlation (Fisher
z-transformed) across pairs of binned spike trains, FC estimates
would be biased when including periods of highly-synchronous
firing, such as that observed during population bursts. This is a well
understood confounder, in which correlation as a measure of spike
train synchrony is positively biased in periods of higher firing rate
(Cutts and Eglen, 2014). To assess whether inclusion of population
burst periods in FC analysis would truly bias estimates in our data,
we compared impact of including and excluding population burst
periods on FC estimates. We observed in representative MEA
recordings that FC was significantly greater when including burst

periods, as anticipated (ρ = 0.038 versus 0.018, p < 0.0001, two-
sample t-test). This suggests that including highly synchronous
burst periods would bias our FC estimates, and hence, our
decision to exclude population burst periods.

Mapping network connectivity in low-
dimension space

The aim of the presented method is to model seizure activity and
be able to characterize network changes. To this end, we compute
FC, as described above, to estimate connectivity between pairwise
multiunit populations. However, network dynamics can be complex
and therefore may not be appropriately captured by simply
comparing difference of means of computed FC estimates. For
example, if a treatment group exhibits a small number of
pairwise connections that are preferentially strengthened, this
difference may not be captured by comparing difference of
means between treatment and control groups as connectivity
distributions may be skewed. As such, it is important we devise a
method that is able to capture relevant network changes.

In recent years, dimensionality reduction has emerged as a
powerful tool for revealing patterns in complex neural data
(Langdon et al., 2023; Cunningham and Yu, 2014). Here, we use
the high-dimensional connectivity information we compute and
represent this in a low-dimension embedding, using principal
components analysis (PCA), allowing us to characterize how
network connectivity evolves across a single well, over time.

We performed dimensionality reduction separately for each well
considering each individual well has unique network connections
that may evolve differently over time. Conducting dimensionality
reduction across different wells represented in the same feature
matrix would confuse the dimensionality reduction procedure into
treating each pairwise connectivity estimate as a feature representing
the same relative information across different wells, when in reality,
pairwise connectivity estimates only serve as meaningful features in
the context of individual wells.

We constructed a single m × k feature matrix (A) for each well,

where m = number of MEA recordings (i.e., 3), k =
n
2

( ),
representing the number of unique microelectrode pairs, and
n = number of microelectrodes (i.e., 64). This results in the
following feature matrix:

A �
α1, i,j( ) / α1, n,n−1( )

..

.
1 ..

.

αm, i,j( ) / αm, n,n−1( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where (i, j) ∈ Z+ | 1≤ (i, j)≤ n and α(i,j) = FC estimate between
microelectrode i and j. After performing PCA analysis, we extract
the low-dimension embedding for each recording timepoint using
the first two principal components (PCs). We plot PC2 versus PC1,
to visually represent how network connectivity evolves in a well over
time. This results in three points plotted in a low-dimension space,
with each point corresponding to the network connectivity in a well,
across pre-treatment, Day 1, and Day 2 recordings. To assess how
significantly network connectivity changes, we compute Euclidean
distance of points to the pre-treatment point. Points that remain in a
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smaller subspace likely reflect similar network connectivity patterns,
whereas those that occupy distinct subspaces reflect vastly different
network connectivity patterns.

Statistical analyses

All data analysis was conducted using custom MATLAB scripts
(MathWorks, Natick, MA) and Prism (GraphPad, San Diego, CA).
Groups were compared using two-tailed t-tests. Parametric
statistical tests were used considering data were normally
distributed (p > 0.05, D’Agostino-Pearson test). We corrected
for multiple comparisons using post hoc Holm-Bonferroni
testing, where appropriate (Curran-Everett, 2000). A threshold of
p < 0.05 was used to denote statistical significance. Asterisks (*),
(**), (***), and (****) indicates significance p < 0.05, p < 0.01, p <
0.001, p < 0.0001, respectively. Data are represented as mean (�x) ±
standard error of mean (SEM), unless otherwise noted.

Results

Evidence of seizure networks in
epilepsy patients

To investigate seizure networks in epilepsy, we computed FC
between regions involved in seizure onset and primary spread, and
compared this to FC between seizure onset and equidistant,

uninvolved control regions. We hypothesized that areas
connected by seizure spread are more strongly connected
compared to those that are not, lending evidence to the network
theory of epilepsy. In our patient cohort, we find that regions
involved in seizure spread are in fact more strongly synchronized
in the high-gamma band (70–90 Hz), compared to control regions
(0.29 versus 0.25, t (2) = 6.72, p = 0.0215, paired t-test, Figure 1C).
From this, it is clear that on average, SOZ and SP regions are more
synchronized than SOZ and control regions, suggesting that regions
of seizure activity are more strongly functionally connected, and
may comprise a pathologic seizure network that strengthens over
time, serving as the primary motivation for our in vitro
seizure model.

4-AP captures hyperexcitability in vitro

The presented model is predicated on effectively capturing
hyperexcitable conditions in vitro to model high firing conditions
observed during seizures. To assess whether 4-AP-induced
hyperexcitability was reflective of this, we considered spike
rasters and changes in neuronal firing activity. When considering
representative spike rasters from control (Figure 3A) and 4-AP-
treated (Figure 3B) and wells, apparent differences in firing activity
are observed, with the 4-AP-treated well exhibiting increased
spiking density and periods of synchronous firing (bursts).
Changes in firing activity were quantified using mean firing rate
(MFR) normalized to pre-treatment baseline (i.e., Day 0, see

FIGURE 3
4-aminopyridine successfully captures hyperexcitable activity in vitro. To assess if 4-AP could capture hyperexcitability in our neuron-glia cultures
on MEAs, we considered spike rasters and MFR before and after chronic 4-AP treatment. (A) Here, we show spike rasters from a representative control
well before 4-AP treatment protocol (left) and after (right). We observe no discernable changes in spiking density. (B) Here, we consider spike rasters
before (left) and after (right) 4-AP treatment. Compared to control, we note significantly higher spiking density andmore synchronous firing periods,
consistent with expectations. (C) We show changes in MFR throughout 4-AP treatment protocol, normalizing to pre-treatment MFRs, across multiple
technical (9) and biological (3) replicates. MFR is significantly moreso increased in 4-AP-treated wells compared to control after just 1 day of treatment
(1.90 ± 0.10 versus 0.53 ± 0.04, t= 11.70, Cohen’s d= 0.73, p < 0.0001, two-sample t-test). MFR elevation persisted after 2 days of 4-AP treatment as well
(2.51 ± 0.14 versus 0.31 ± 0.05, t = 14.36, Cohen’s d = 0.89, p < 0.0001, two-sample t-test). Data are represented as �x ± SEM. Abbreviations: 4-AP, 4-
aminopyridine; MFR, mean firing rate.
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Figure 2). We observed that after just one treatment with 4-AP, the
next day’s MFR was significantly elevated (1.90 ± 0.10 versus 0.53 ±
0.04, t = 11.70, Cohen’s d = 0.73, p < 0.0001, two-sample t-test,
Figure 3C). In fact, MFR was consistently elevated after 2 days of 4-
AP treatment at baseline as well (2.51 ± 0.14 versus 0.31 ± 0.05,

t = 14.36, Cohen’s d = 0.89, p < 0.0001, two-sample t-test,
Figure 3C). In conjunction, these findings validate that 4-AP is
effective in capturing hyperexcitable conditions that persist at
baseline, creating a chronic model of epilepsy, ultimately allowing
for study of longitudinal network changes.

FIGURE 4
Increased baseline functional connectivity after chronic 4-aminopyridine treatment. To show our model can be used to study network changes, we
considered FC changes before and after chronic 4-AP treatment. We quantified FC considering pairwise Pearson’s correlation (Fisher z-transformed ρ)
across binned spike trains across all unique microelectrode pairs (see Methods). We create network plots by plotting significant pairwise connections
(Fisher z-transformed ρ > 0.80). Stronger connections (i.e., edges) are delineated using warmer colors (red) lines that are thicker. Weaker
connections (i.e., edges) are delineated using cooler colors (yellow) lines that are thinner. Microelectrodes (i.e., nodes) with more connections are
delineated by blue with larger diameter. Below each network plot, histogram distributions of Pearson’s correlations (Fisher z-transformed ρ) are shown.
(A) Here, we show changes in FC in a representative control well from before (left) experimental protocol and after (right). We observe that FC estimates
increase slightly after 48-h, andmaintain a unimodal distribution (blue histograms). (B)Here, we show changes in FC in a representative 4-AP well before
(left) and after (right) chronic 4-AP treatment. We observe a discernable increase in the number of stronger pairwise connections, compared to control.
Furthermore, FC increases significantly more in 4-AP-treated wells, compared to control (Δρ CI(95%) = [0.3827, 0.4155], t = 47.75, p < 0.0001, two-
sample t-test). Interestingly, FC correlation distributions become more bimodal after chronic 4-AP treatment as well. Abbreviations: FC, functional
connectivity; 4-AP, 4-aminopyridine.
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Increased functional connectivity after
chronic 4-AP treatment

To show the presented model effectively captures network
changes, we compared functional connectivity (FC) (Pearson’s
correlation, Fisher z-transformed ρ) changes before and after
chronic 4-AP treatment. We observe that prior to 4-AP
treatment (Day 0), FC estimates are similarily distributed
between 4-AP and control wells and not significantly different
(Figures 4A, B). After 2-days of 4-AP treatment, we note FC
correlations are significantly increased in 4-AP-treated wells,
compared to control (Δρ CI(95%) = [0.3827, 0.4155], t = 47.75, p
< 0.0001, two-sample t-test). Furthermore, we observe that while
FC correlation distributions remain unimodal in control wells after
2-days, 4-AP-treated wells show FC correlations forming a bimodal
distribution. We additionally plotted the strongest pairwise
connections (Fisher z-transformed ρ > 0.80) across 4-AP and
control wells, and show that there are far greater strong
connections after 2-days of 4-AP treatment, compared to control.

Network connectivity occupies distinct
subspace after 4-AP treatment

We reduced high-dimensional functional connectivity information
to a low-dimension embedding to allow for study of how a individual
well’s network connectivity evolves over time (seeMethods). Using this
method, we are able to plot how a well’s network connectivity is
evolving over time and compare network connectivity changes
across different wells. We do so across all control and 4-AP-treated
wells. Specifically, we observe that network connectivity patterns in
control wells tend to cluster around pre-treatment observations,

suggesting that networks are relatively stable, and unchanged over
2 days of recordings (Figure 5A). However, when we consider 4-AP-
treated wells, we observe that after one and 2-days of 4-AP treatment,
network connectivity patterns deviate from what is observed pre-
treatment, suggesting that 4-AP causes network changes over time
(Figure 5A).We quantify these network changes by computing distance
of points toDay 0 recordings, on the low-dimension space.We find that
after 2 days of chronic 4-AP treatment, network connectivity patterns
occupy a unique subspace distinct from pre-treatment, compared to
control (22.43 ± 3.55 versus 10.67 ± 5.74, t = 2.58, Cohen’s d = 1.43, p =
0.0298, two-sample t-test, Figure 5B).

Discussion

A significant challenge in studying neurologic disease is the
availability of representative models. Although it is most optimal to
study disease pathology at the patient level, oftentimes it is not
possible to truly understand the pathomechanisms of a disease
without a fundamental understanding of underlying mechanistic
changes. In vivo and in vitro models offer the ability to study
principal changes in the context of representative models of
disease, greatly contributing to our understanding of them.

Epilepsy is a common neurological disorder, however, very little is
understood of the mechanisms surrounding epileptogenesis. Until
recently, epilepsy has largely been seen as a focal disorder, with
seizure models reflecting this. However, over recent years, we have
come to understand epilepsy as a network disorder, recruiting various
cortical and subcortical regions into a pathologic seizure network
(Kramer and Cash, 2012; Scharfman et al., 2018; Piper et al., 2022;
Bröhl et al., 2023). Numerous intracranial studies considering network
connectivity patterns have lent support to this idea, some even

FIGURE 5
Temporal evolution of network connectivity mapped in low-dimension space. As network connectivity may be complex and change dynamically,
we developed a method to track how a well’s network connectivity evolves over time by reducing high-dimensional connectivity information to a low-
dimension embedding (see Methods). (A) Here, we show how network connectivity evolves across 3 days in representative control (blue) and 4-AP-
treated (red) wells. Timepoint represented is delineated next to each point. We observe that after 2 days of chronic 4-AP treatment, baseline network
connectivity occupies a distinct subspace, far from pre-treatment network connectivity. In contrast, we observe that network connectivity in a
representative control well occupies a smaller subspace, closer to what is observed Day 0. (B) To quantify change in network connectivity over time, we
compute the Euclidean distance of each point to Day 0. We find that after 2 days, compared to controls, 4-AP-treated wells show significant changes in
network connectivity compared to pre-treatment (22.43 ± 3.55 versus 10.67 ± 5.74, t = 2.58, Cohen’s d = 1.43, p = 0.0298, two-sample t-test).
Abbreviations: FC, functional connectivity; 4-AP, 4-aminopyridine.
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suggesting that disruption of seizure networks is likely critical in
achieving seizure-freedom (Andrews et al., 2019; Neal et al., 2020;
Jehi, 2017; Rijal et al., 2023; Taylor et al., 2018; Josephson et al., 2013).

In fact, here, we show evidence of high interictal FC between areas
linked by seizure spread. These findings lend direct support for the
network theory of epilepsy, suggesting that seizure activity travels along
more strongly connected neuronal populations. This corroborates
previous findings in support of the network theory of epilepsy and
further suggests that longitudinal network changes are likely involved in
seizure network formation, resulting in baseline changes that can be
observed interictally. However, icEEG studies considering seizure
networks only provide snapshots in time, and preclude the ability to
study longitudinal network development. As such, it is imperative we
have models that allow us to investigate network changes over time in
the context of epileptogenesis. However, to date, there are no seizure
models that consider network changes, with most simply focusing on
studying molecular changes underlying hyperexcitability or focal
alterations. As such, in this study, we created a novel in vitro seizure
model in order to model changes in neuronal network connectivity
associated with epileptogenesis, motivated by our human
epilepsy findings.

As previously described, here we show 4-AP chronically
increases neuronal firing, akin to an in vitro correlate of kindling,
where residual hyperexcitability may lead to compensatory and
pathologic changes within epileptic networks (Heuzeroth et al.,
2019; Leite et al., 2005; Lillis et al., 2015). In addition, we
demonstrate that 4-AP induces FC changes, likely secondary to
induced hyperexcitability, which may replicate the changes that
occur in human epileptic networks, providing a bridge between
experimental models and clinical epilepsy. We further show changes
in network activity using a dimensionality reduction-based method
to characterize network connectivity changes in MEA wells.

Because network dynamics are complex, FC may fail to
appropriately capture changes that could be informative of
strengthening or weakening of specific pairwise connections.
Additionally, it is challenging to capture complex network changes
using a single measurement. As such, we reduced high-dimensional
pairwise FC information into a low-dimension embedding, from which
network connectivity information for an individual well can be simply
visualized and changes across time can be quantified. Using this, we
show changes in wells’ network connectivity over time and find that
these results parallel changes observed when considering FC alone,
suggesting that this method retains information conveyed by traditional
FC measures. Ultimately, we believe using dimensionality reduction to
reduce network connectivity information allows for more accurate
capture of how a MEA well’s connectivity patterns change over time.

While exisiting in vitromodels capture aspects of epileptic activity,
to the best of our knowledge, none allow for the detailed study of
chronic network changes of seizure-like states as effectively as our
proposed method. Our protocol holds many advantages, including the
unique ability to study network changes and circuit reorganization
afforded by the composition of dissociated neuron-glia cultures. The
inclusion of both neurons and their supporting glial cells not only better
represents the in vivo environment, but also provides a more adaptable
experimental setup with enhanced survival and cellular development
(Kaech and Banker, 2007). This flexibility is crucial for investigating
network dynamics in the absence of preexisting connections, allowing
for precise manipulations and observations of how epileptic networks

evolve and respond to interventions. For example, recent studies have
suggested that specific regulatory pathways are altered in epileptic tissue
(Ksendzovsky et al., 2022; Hammer et al., 2019; Pfisterer et al., 2020;
Sumadewi et al., 2023; Meng et al., 2015). Using our model, we can
define the molecular basis of network changes by introducing small
molecular inhibitors that target these pathways and investigate
subsequent network changes.

Nevertheless, this model’s reliance on initially naïve networks may
also be seen as a limitation, given that seizures in humans affect
preexisting neural networks. To address this, we begin our 4-AP
treatments post-culture maturation, aiming to more accurately
represent changes observed in human cortical/subcortical networks.
An additional limitation of our in vitromodel is the inherent inability to
accurately replicate epileptiform activity, as is possible in more
physiologically accurate animal models of epilepsy (i.e., electrical
kindling, Kainic Acid). Our model uses 4-AP, a potassium-channel
blocker that impairs neuronal repolarization and hyperpolarization, this
increases overall neuronal excitability in the network allowing for
modeling of seizure-like conditions. However, it is important to note
that potassium-channel blockade does not underly representative
seizure activity seen in chronic models of epilepsy i.e., Kainic Acid
animal models of epilepsy, which demonstrate spontaneous recurrent
seizures. Thus, it is important to restate that our model captures
hyperexcitable neuronal firing activity which is observed as a result
of seizure-like activity, and not direct seizure activity (Wong, 2011). As
such, in vitro models preclude the ability to characterize true ictal
activity, and rather limit us to correlates such as neuronal firing activity
(i.e., firing rate, bursting rate). These are well-acknowledged limitations
of in vitro epilepsy models, as such, conclusions must be considered in
this context (Oblasov et al., 2024). However, despite this, our model still
allows for study of what may happen to neuronal networks under
hyperexcitable conditions, such as those captured by seizure activity. A
key hallmark of epilepsy is repeated seizure insults which induce
hyperexcitable conditions in cortical/subcortical regions. Our 4-AP
model was created to simulate chronic changes that occur in the
context of repeated seizure events, reflective of what happens in
epilepsy in vivo. Daily 4-AP treatments not only replicate kindling
activity, but also provide a mechanism by which to simulate the
temporal progression of changes associated with epileptogenic
stimuli. While many theories of epileptogenesis exist, hyperexcitable
onslaughts leading tomaladaptive network changes in a kindled fashion
is certainly among them (Bromfield et al., 2006; Marques et al., 2022).
As such, it is certainly plausible to use our 4-AP model to understand
how changes in network activity advance throughout epileptogenesis. In
the future, this in vitro model and its network findings can be
corroborated by in vivo animal studies using high-density MEAs
implanted directly on the cortical surface. Recent groups have
shown that Utah Electrode Arrays (UEAs) (Blackrock Microsystems,
Salt Lake City, UT) can be implanted directly on the cortical surface of
adult rats, allowing for both multi-unit and single-unit recordings
(Black et al., 2018; Nolta et al., 2015). Using this, similar to our
in vitro model, high-resolution neuronal network connectivity
patterns and changes can be characterized in the context of a more
representative animal epilepsy model.

Additionally, our method’s integration of MEA recordings
enable investigation of multi-unit populations, offering insights
that are unattainable with traditional patch-clamp techniques
used in slice models, which do not capture population-level
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dynamics. The use of microelectrodes in our model allows for
capture of extracellular field potential at the level of multi-unit
populations, enhancing our ability to characterize network
dynamics, synaptic transmission, and plasticity in the in vitro
setting (Hofmann and Bading, 2006).

Studying mechanistic network-level changes is crucial to
advancing our pathophysiologic understanding of epilepsy and
guiding therapeutic interventions. Here, we show that there likely
exist interictal functional seizure networks in a cohort of DRE
patients. We then show how these seizure networks may be
modeled using in vitro neuron-glia cultures plated on MEAs.
Given recent studies suggesting that disruption of seizure
networks is important in achieving seizure control, our findings
and in vitromodel open a range of possible future interventions. For
example, considering the persistence of seizure networks interictally,
icEEG may be used to characterize critical nodes in a seizure
network to guide subsequent surgical intervention (ex. resection,
neuromodulation). An additional therapeutic application from our
model is the optimization of neuromodulation for targeting seizure
networks. Neuromodulation is an effective treatment option that
uses brief pulse stimuli (BPS) to reduce seizure activity prior to its
full-blown onset. Although offering a new and improved therapeutic
approach to seizure control, neuromodulation still fails to achieve
seizure control in a subset of patients (Boddeti et al., 2022). Recent
studies suggest that this treatment failure may be due to underlying
network connectivity patterns, which may inform those who may
benefit from neuromodulation and those who may not. To this end,
characterizing a patient’s interictal seizure network connectivity
patterns using icEEG may inform those who may benefit from
neuromodulation versus those who may not. Additionally, recent
studies suggest that neuromodulatory devices exerts their
therapeutic effects by modulating network activity, as opposed to
focal activity. As such, our presented in vitro MEA model offers a
unique platform in which this hypothesis can be tested, as MEA
technology allows for applying direct electrical stimulation.
Furthermore, this allows for testing various neuromodulation
paradigms and their effects in 1) modulating network activity
and 2) controlling seizure-like activity. Ultimately, using MEA
technology to better understand network activity in seizure
models allows for optimization of preexisting treatments such as
neuromodulation and also discovery of new ones, by allowing for
study of specific pathway inhibitors and pharmacologic
interventions on network connectivity changes.

Conclusion

Here, we present a novel in vitro model to study seizure
networks using neuron-glia populations cultured on MEAs. We
show that our 4-AP model serves as a robust in vitro tool for
modeling connectivity changes associated with epileptogenesis. This
model captures not only acute hyperexcitablity, a hallmark of
epileptic networks, but also chronic network adaptations over
time, as evidenced by increased FC of underlying neuronal
networks. Furthermore, we introduce a novel method for
characterizing aggregate network connectivity and how it changes
over time. We believe that our model and methods effectively
capture network dynamics akin to those in epilepsy patients.

Considering the recent idealogical shift and strong evidence for
epilepsy as a network disorder, ultimately, we believe that our model
can be used to not only better understand epileptogenesis, but also
begin to develop new therapeutics, and adapt preexisting ones
(i.e., neuromodulation) to target pathologic seizure networks.
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