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It is increasingly understood that the epilepsies are characterized by network
pathology that can span multiple spatial and temporal scales. Recent work
indicates that infraslow (<0.2 Hz) envelope correlations may form a basis for
distant spatial coupling in the brain. We speculated that infraslow correlation
structuremay be preserved evenwith some time lag between signals. To this end,
we studied intracranial EEG (icEEG) data collected from 22 medically refractory
epilepsy patients. For each patient, we selected hour-long background, awake
icEEG epochs before and after antiseizure medication (ASM) taper. For each
epoch, we selected 5,000 random electrode contact pairs and estimated
magnitude-squared coherence (MSC) below 0.15 Hz of band power time-
series in the traditional EEG frequency bands. Using these same contact pairs,
we shifted one signal of the pair by random durations in 15-s increments between
0 and 300 s. We aggregated these data across all patients to determine how
infraslow MSC varies with duration of lag. We further examined the effect of ASM
taper on infraslow correlation structure. We also used surrogate data to
empirically characterize MSC estimator and to set optimal parameters for
estimation specifically for the study of infraslow activity. Our empirical analysis
of the MSC estimator showed that hour-long segments with MSC computed
using 3-min windows with 50% overlap was sufficient to capture infraslow
envelope correlations while minimizing estimator bias and variance. The mean
MSC decreased monotonically with increasing time lag until 105 s of lag, then
plateaued between 106 and 300 s. Significantly nonzero infraslow envelope MSC
was preserved in all frequency bands until about 1 min of time lag, both pre- and
post-ASM taper. We also saw a slight, but significant increase in infraslow MSC
post-ASM taper, consistent with prior work. These results provide evidence for
the feasibility of examining infraslow activity via its modulation of higher-
frequency activity in the absence of DC-coupled recordings. The use of
surrogate data also provides a general methodology for benchmarking
measures used in network neuroscience studies. Finally, our study points to
the clinical relevance of infraslow activity in assessing seizure risk.
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1 Introduction

The epilepsies are a family of disorders characterized by a
propensity toward spontaneous, recurrent seizures. Whereas
seizures were traditionally thought to represent an imbalance
between excitation and inhibition in circumscribed foci in the
brain, it is now increasingly evident that in many patients, these
pathological states likely arise from evolving networks. The notion of
an epilepsy network was first put forth in the seminal paper by
Spencer (2002). In the 2 decades since, this network
conceptualization has proven essential in both our mechanistic
and clinical understanding of the epilepsies. Coupled with this,
there is also a growing understanding of how interacting
multiscale rhythms play a role both in normal physiology and in
pathology (Buzsáki and Vöröslakos, 2023). Specifically in epilepsy,
seizure risk seems to be modulated by rhythms across a wide
temporal range from high-frequency oscillations to circadian and
multidien cycles (Baud et al., 2018). Of these many rhythms,
infraslow oscillations have been of recent interest.

Infraslow oscillations (ISOs), which are typically defined as low-
frequency activity below 0.2 Hz, have been described for many
decades (Aladjalova, 1957; Aladjalova, 1964). A recent resurgence of
interest in ISOs was primarily due to their potential correspondence
with blood-oxygen-level dependent (BOLD) fluctuations as measured
byMRI.We previously reported a lack of correspondence between the
fMRI-defined default mode network (DMN) and infraslow envelope
correlations (i.e., the second spectrum) of the intracranial EEG
(icEEG) (Joshi et al., 2016). However, our results and a number of
studies using other modalities such as magnetoencephalography
indicate that envelope correlations in the infraslow range might
form a basis for distant spatial coupling in the brain (Hipp et al.,
2012; Nir et al., 2008). Briefly, in prior analysis of resting data, we
found that infraslow envelope relationship decreased with greater
intercontact distance, relationships were strongest in the delta band,
and that they decreased with increasing frequency (Joshi et al., 2016).
Further, ISOs appear to play a role in modulating faster frequencies as
evidenced by phase-amplitude coupling with higher-frequency
activity (Vayrynen et al., 2023). These measures also appear to
have utility in understanding pathological brain states, particularly
seizures and epilepsy. We previously found that changes in infraslow
envelope correlation structure consistently occur in periods when
patients are more vulnerable to seizure (Joshi et al., 2018).

Given that infraslow activity includes a wide range of
frequencies that span a timescale of many seconds to minutes, it
is important to better characterize the exact activity that is captured
in studies of infraslow functional connectivity. Initial studies of
infraslow activity have suggested that the slowest activity observed in
this range possessed periods of up to 2 min (Aladjalova, 1964).
Though network studies of infraslow activity have provided
significant insight, the functional connectivity measures used in
these studies have generally not been thoroughly characterized.
Importantly, the study of infraslow activity necessitates segments
of data that are sufficiently long to capture ISOs possessing periods
on the scale of minutes, an issue that is often overlooked. Estimation
methods that rely on further segmentation and windowing of data,
such as theWelch’s overlapped segmentation approach (WOSA) for
magnitude-squared coherence (MSC) and others, must also be
optimized to use windows that are sufficiently large to capture

low-frequency activity, while still minimizing estimator bias
and variance.

To this end, there were three main objectives for our study. First,
we used surrogate data to empirically characterize the MSC
estimator as applied specifically to the study of infraslow activity
in the intracranial EEG and to provide parameters for optimal
estimation. This use of surrogate data also provides a framework
for methodology that can be used to benchmark network measures
in neuroscience. Second, as the slow modulations of interest in our
study contain activity on the order of many seconds to minutes, we
sought to determine whether correlation structure may be preserved
even with some time lag between signals. We therefore used time lag
analysis to study the timescale of these infraslow envelope
correlations. Finally, we examined how correlation structure
changes over the period of icEEG monitoring, specifically during
periods before and after antiseizure medication (ASM) taper.

2 Methods

2.1 Patient selection

We selected and studied icEEG data from 22 medically
refractory adult epilepsy patients (aged 18 and older) who
underwent surgical evaluation and seizure onset zone (SOZ)
localization at Yale-New Haven Hospital. Of these, 10 patients
were female and 12 were male, and they had a mean age of
32.3 years. Further information about individual patients may be
found in Table 1. The patients provided written informed consent
for analyses of their records.

2.2 Intracranial EEG acquisition and
selection of epochs

Intracranial macro depth, strip, and grid electrodes (Ad-Tech
Medical Instrument Corporation, Racine,WI) were implanted based
on an approach uniquely tailored to each individual patient. The
icEEG and simultaneous video were recorded and sampled at 256 Hz
with a commercially available 128-channel long-term video-icEEG
monitoring system (Natus/Bio-logic Systems Incorporated, San
Carlos, CA). The reference used for these recordings was a peg
electrode implanted in the diploic space of the skull at a distance
from all icEEG electrodes. We used the referential recording for
all analyses.

We sought to determine whether long-term correlation
structure is preserved in time-shifted resting icEEG signals. In a
prior study of a smaller cohort of patients, we found that infraslow
envelope MSC increases after ASM taper (Joshi et al., 2018). As part
of icEEG monitoring, patients are typically tapered off their
antiseizure medications (ASMs) to elicit a greater number of
seizures that can be used for SOZ localization. We therefore
chose to study resting data both prior to and after ASM taper.
We selected an hour-long background icEEG segment before and
after ASM taper for each patient. The selected epochs were time
periods when patients appeared to be resting quietly with eyes open
as determined retrospectively by the video and icEEG record
(i.e., patients were not directed to be in a non-task state). To
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minimize the possibility of contamination of these data by seizure or
potential pre-seizure changes, the selected epochs were at least 6 h
removed from seizure.

2.3 Characterization of the infraslow
envelope magnitude-squared
coherence estimator

We computed measures of infraslow envelope MSC as reported
previously (Joshi et al., 2016; Joshi et al., 2018). Briefly, we computed
running power in the traditional EEG frequency bands (delta
[0.5–4 Hz], theta [4–8 Hz], alpha [8–13 Hz], beta [13–25 Hz],
and gamma [25–55 Hz]) at a 1-s resolution over each of the hour-
long icEEG epochs. To quantify correlations in infraslow amplitude
modulations of these band power time-series, we estimated MSC
between all possible electrode contact pairs for each 1-h band power
time-series in each frequency band (3,600 samples), using 3-min
windows (180 samples) with 50% overlap, with a mean deletion
performed on each segment. We then averaged the MSC spectrum
the frequency range lower than 0.15 Hz to provide a single MSC

estimate for correlations in infraslow envelopes of band power time-
series for each contact pair.

Prior to applying these measures to icEEG data, we wanted to
further characterize theMSC estimator. Importantly, the application
of MSC, and indeed, all similar measures to neural time-series data
necessitates the use of an estimator, as auto- and cross-spectra
cannot be computed analytically. The most commonly used
estimator for MSC is the fast Fourier transform (FFT)-based
Welch’s overlapped segmentation approach (WOSA) (Carter
et al., 1973a; Zaveri et al., 1999). In this method, the time-series
are divided into overlapping segments. Using the FFT to estimate
auto- and cross-spectra, the MSC is computed on each segment and
averaged over the entire time-series. Formally the WOSA coherence
estimator with n overlapping windows is given by:

γ̂xy ω( ) � 1
n

∑n
i�1S

i( )
xy ω( )��������������������∑n

i�1S
i( )
xx ω( )2∑n

i�1S
i( )
yy ω( )2

√

In the above, S(i)xx (ω), S(i)yy (ω), and S(i)xy (ω) are the auto- and
cross-spectra of the ith windowed segments x(i) and y(i). MSC is
then simply:

TABLE 1 Patient information.

Patient Sex Age Seizure onset zone Antiseizure medications

1 M 54 Bilateral anterior hippocampi CBZ, ZNS

2 F 27 Right medial anterior temporal LEV, TPM

3 M 36 Not localized CBZ, PGB

4 M 31 Right inferior medial temporal extending posteriorly LEV, OXC

5 M 54 Right inferior temporal LEV, OXC

6 M 27 Anterior lateral temporal CBZ, LTG

7 M 51 Left medial temporal GBP, LEV, OXC, VPA

8 F 39 Left medial temporal CBZ, VPA, ZNS

9 M 35 Left inferior parietal-occipital PHT, VPA, ZNS

10 M 27 Left medial temporal OXC, PHT

11 F 19 Right occipital pole OXC, ZNS

12 F 31 Right inferior posterior temporal-occipital LEV, OXC

13 F 41 Right anterior lateral parietal CBZ, LTG, PBB

14 F 24 Left medial occipital CBZ, GBP

15 F 35 Left superior parietal lobule CBZ, PHT, CLN

16 F 26 Right posterior medial frontal-parietal CBZ, TPM

17 F 18 Right anterior and inferior temporal LEV, OXC

18 M 26 Left medial temporal PGB, PHT, ZNS

19 M 20 Left anterior and medial frontal CBZ, LEV, ZNS

20 M 38 Left medial temporal and inferior temporal LTG, OXC

21 M 23 Right temporal-parietal-occipital CBZ, LTG, TPM

22 F 28 Right medial temporal LEV, PHT, ZNS

CBZ, carbamazepine; CLN, clonazepam; ZNS, zonisamide; LEV, levetiracetam; TPM, topiramate; PGB, pregabalin; OXC, oxcarbazepine; VPA, valproate; LTG, lamotrigine; PBB, phenobarbital;

PHT, phenytoin.
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MSC � γ̂xy ω( )
∣∣∣∣∣ ∣∣∣∣∣2

Such estimators will have an associated bias and variance, where
bias refers to the expected difference between the estimated value of
a parameter and its true value, and variance refers to the spread of
the sampling distribution after repeated distribution. Both must be
characterized before applying these measures to the analysis of time-
series data, primarily because establishing estimator bias and
variance also allows us to set a threshold for considering an MSC
value significantly nonzero (i.e. correlation not attributable to
statistical noise). Descriptions of estimator performance for MSC
estimation, including theoretical approximations of bias based on
the analytic probability density function for the MSC estimate, were
initially provided by Carter and colleagues (in the context of
developing measures to estimate time delay between signals)
(Carter et al., 1973a; Carter et al., 1973b; Carter, 1987).
Characterization has also been performed specifically in the
context of the icEEG (Zaveri et al., 1999). However, applying
MSC to the measure of correlations in infraslow activity poses
the challenge of balancing the tradeoff between overlapping
windows that are sufficiently long to capture oscillatory activity
in the infraslow range (thought to contain activity as slow as
0.01 Hz) and keeping windows short enough to provide a
sufficient number of segments to minimize estimator bias and
variance. This, combined with the fact that we computed MSC
over band power time-series instead of on raw icEEG signals,
suggested that further empirical characterization of the estimator
in this context was necessary.

In a previous study, we used surrogate icEEG signals known to
be uncorrelated (white Gaussian noise, randomized icEEG data, and
pink noise) to determine the effect of frequency band, segment
length, and signal power on estimator bias and variance. Of these
surrogate signals, we found that white Gaussian noise did not
faithfully recapitulate signal characteristics of icEEG data. In
examining randomized icEEG data, we selected random pairs of

electrodes from different patients (i.e. signals known to be
uncorrelated), thereby allowing us to preserve the power
spectrum and phase information of each of the signals. Finally,
we generated pairs of pink noise signals, as the 1/f power spectrum
matches well with what is expected of icEEG data. Briefly, we found
that frequency band and signal power do not significantly affect
MSC bias and variance, but increasing the segment length helps
decrease bias and variance, with hour-long band power time-series
being sufficiently long to bring bias and variance down to an
acceptable level (Joshi et al., 2016). Interestingly, we also found
that thresholds for considering infraslow envelopeMSC significantly
nonzero matched almost exactly between the randomized icEEG
data and pink noise surrogates. In this study, we further characterize
these effects and consider the effect of window size and window
overlap on infraslow envelope MSC estimation using pink noise
signals as surrogate data. The concordance in results between the
methods above (pink noise surrogates and randomized icEEG data)
in our prior work, along with the fact that using pink noise signals
afforded us greater control over the parameters of surrogate signal
generation, were the reasons for focusing on pink noise as our
surrogate signal of choice for this study. Notably, these methods for
empiric characterization of the coherence estimator using surrogate
data are analogous to those used in other modalities, such as
cardiovascular data (Faes et al., 2004).

We generated 5,000 pairs of pink noise signals that were
921,600 samples long (i.e., 1 hour of data sampled at 256 Hz).
For each of these signals, we generated band power time-series by
computing power spectral densities (PSDs) on a second-by-second
basis. Power in each of the conventional EEG frequency bands
defined above was computed by summing the PSD over the
corresponding frequency range for each second. This gave us
band power time-series at a 1-s resolution (i.e., 3,600 samples)
for each signal. We then estimated infraslow envelope MSC between
these time-series by computing the average MSC below 0.15 Hz
between all these time-series. We first confirmed our previous results

FIGURE 1
Histograms of infraslow envelopeMSC estimates for 0 dB pink noise signals using different window sizes ranging from 1 to 20min (each 5,000 trials).
The mean and standard deviations for infraslow envelope MSC were 0.027 ± 0.007 for 3-min windows, 0.055 ± 0.011 for 6-min windows, 0.116 ±
0.021 for 12-min windows. Estimator bias and variance was minimized when 3-min windows were used.
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that there was no difference between estimator bias and variance
between different frequency bands. Then, we used pairs of delta
band power time-series to assess the effect of window size and
window overlap.

Given that infraslow modulations can be as slow as 0.01 Hz, we
decided that 3-min windows would be the shortest window size that
could reliably pick up these fluctuations. To determine the effect of
window size, we tested window sizes ranging from 1 to 20 min with
50% overlap. To assess the effect of window overlap, we fixed the
window size to 3 min and varied the window overlap between 25%,
50%, and 75% overlap.We then examined the resulting distributions
to optimize each of the parameters for the MSC estimation on
real icEEG data.

2.4 Time lag analysis

We determined whether long-term correlation structure is
preserved despite some time lag between the signals. Given that
infraslow activity includes process on the order of many seconds to
minutes, we expected some significantly nonzero infraslow envelope
MSC to be preserved even if one of the signals was slightly
shifted in time.

For each hour-long icEEG segment pre- and post-ASM taper, we
selected 5,000 random electrode contact pairs and computed
infraslow envelope MSC for the delta, theta, alpha, beta, and
gamma bands. Using these same contact pairs, we then circularly
shifted one signal of the pair by random amounts in 15 s increments,
i.e. in a set of 5,000 pairs of signals, one signal of each pair was shifted
by a random amount between 0 and 15 s, 15 and 30 s, etc., to give us

5,000 trials per patient for each time lag interval. We performed this
analysis in 15 s increments through 300 s of lag. We then aggregated
these data across all patients, giving us a total of 110,000 MSC values
across all patients for each lag interval, and examined the resulting
distributions to determine how the infraslow envelope MSC varies
with time lag duration. We also determined whether and how the
character of these distributions varied before and after ASM taper.

3 Results

3.1 Infraslow envelope magnitude-squared
coherence estimator bias and variance

Based on our tests using 0 dB pink noise signals with infraslow
envelope MSC computed using 3-min windows with 50% overlap,
the mean and standard deviation of infraslow envelope MSC were
0.027 ± 0.007 in all frequency bands. The maximum MSC estimate
observed over the 5,000 trials in any frequency band was 0.07. There
was no significant difference in the MSC distributions across the
different frequency bands.

We also tested the effect of window size in the MSC estimation
on the resulting distribution of estimated infraslow envelope MSC
values in the delta band only. Specifically, we examined window sizes
ranging from 1 to 30 min with 50% overlap. There was a decrease in
estimator bias and variance with smaller window size. For example,
with 3-min, 6-min, 12-min windows, and 30-min windows with
50% overlap (20, 10, and 5 unique non-overlapping windows
respectively), the mean and standard deviations for infraslow
envelope MSC were 0.027 ± 0.007 for 3-min windows, 0.055 ±

FIGURE 2
Histograms of infraslow envelope MSC estimates for 0 dB pink noise signals using 3-min windows with varying overlap (each 5,000 trials). Themean
and standard deviations for infraslow envelope MSC estimates were 0.341 ± 0.039 for 25% overlap, 0.027 ± 0.008 for 50% overlap, and 0.025 ± 0.007 for
75% overlap.
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0.0011 for 6-min windows, 0.116 ± 0.021 for 12-min windows, and
0.341 ± 0.048 for 30-min windows. The distributions are included in
Figure 1. This also confirmed that a window size of 3 min would
allow us to strike a balance between faithfully capturing fluctuations
on the infraslow timescale while minimizing estimator bias
and variance.

Finally, we tested the effect of window overlap on the MSC
estimation. Specifically, we used 3-min windows with 25% overlap,
50% overlap, and 75% overlap. There was a significant decrease in
estimator bias and variance from 25% overlap to 50% overlap, and a
non-significant decrease in bias and variance from 50% overlap to
75% overlap. The mean and standard deviations for infraslow
envelope MSC estimates were 0.341 ± 0.039 for 25% overlap,
0.027 ± 0.008 for 50% overlap, and 0.025 ± 0.007 for 75%
overlap. These distributions are provided in Figure 2. This
indicated that increasing the window overlap beyond 50% would
increase computational load without appreciably decreasing
estimator bias and variance. We therefore used a window size of
3 min with 50% overlap for the icEEG analyses.

Based on the combination of these and our prior results, we were
able to use 0.054 as a threshold for considering a mean infraslow
envelope MSC value significantly nonzero (computed as the mean
plus 3 standard deviations, p < 0.005) (Joshi et al., 2016).

3.2 Time lag analysis of intracranial EEG
signals on- and off-ASM

Time lag analysis showed that the infraslow envelope MSC
distributions changed with increasing time lag. These distributions
are provided in Figure 3. In particular, we observed a large positive tail
in theMSC distributions that is present for time lags up to 105 s. These
time lags were present in all frequency bands, and both before and after
ASM taper. For time lags greater that 105 s, the MSC distributions
matched those that were generated in surrogate testing of the MSC
estimator. We also computed the mean infraslow envelope MSC as a
function of time lag. These results are included in Figure 4. We found
that the mean MSC decreases monotonically with increasing lag until
about 105 s of lag, then plateaus until 300 s of lag. The average MSC
remains above the threshold level of 0.054 until about 1 min of lag,
though this depended on frequency band.

In comparing the pre- and post-ASM taper epochs, we found
that although both exhibited similar results in relation to time lag
(i.e. that the positive tail in the MSC distributions was present until
about 105 s of lag), infraslowMSC increases slightly but significantly
post-ASM taper epochs in all frequency bands (Wilcoxon rank-sum
test, p < 0.01). These results are in agreement had observed
previously in a smaller cohort of patients (Joshi et al., 2018).

FIGURE 3
Distributions of infraslow envelope MSCwith lags varying from 0 to 105 s for the delta, theta, alpha, beta, and gamma bands, both on- and off-ASMs.
A strong positive tail in the distribution persists until about 105 s of lag. Infraslow envelope MSC is increased slightly, but significantly, after ASM taper (p <
0.01 based on Bonferonni correction, Wilcoxon rank sum test).
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4 Discussion

In this study, we sought to better characterize the timescale of
infraslow activity captured by functional connectivity measures. We
first examined theWelch’s overlapped segmentation approach of the
estimation of magnitude-squared coherence as applied to the study
of infraslow envelope correlations in the intracranial EEG.We found
that signal power does not significantly affect estimator bias and
variance. For an hour-long segment of data, estimator bias and
variance were minimized when 3-min windows with 50% overlap
were used when computing MSC. In the time lag analysis, we found
that some significantly nonzero infraslow envelope MSC may be
preserved until about 105 s of lag. Our study also shows a small but
significant increase in MSC after ASM taper with preservation of
results related to time lag across these two conditions.

In addition to these findings, consideration of bias and variance
in the numerical estimation of functional connectivity measures is
an important issue for network studies in neuroscience, but one that
is often overlooked. In the specific case of infraslow envelope
correlations and related slow activity, many prior studies do not
provide benchmarking of measures used in the studies against
surrogate data or similar methods (Nir et al., 2008; Brookes
et al., 2011; Kucyi et al., 2018). This is important to consider, as
observations of low, non-zero connectivity might reflect statistical
noise in the estimation process, not true correlation in brain activity.
In network neuroscience studies, therefore, it may not be enough to
provide statistical analysis that differentiates between different brain
regions or thresholding based on the distribution of connectivity

values obtained from the data, as this will not account for problems
with estimation of the measure itself. We also believe this highlights
the utility of developing methods for generating representative
surrogate data to benchmark measures prior to analyzing real data.

The results of the time lag analysis suggests that infraslow
envelope correlations truly reflect modulations of higher
frequency activity by ISOs, as previously described (Hughes et al.,
2011; Mitra et al., 2018; Monto et al., 2008; Rodin and Funke, 2012;
Watson, 2018) Prior work on ISOs indicates the lowest frequency
oscillations observed in this range are around 0.01 Hz, which
corresponds to a period of approximately 100 s (Aladjalova,
1957; Aladjalova, 1964; Hughes et al., 2011). This matches with
our analysis, in which we observed positive tails in the MSC
distribution until 90–105 s of lag. A limitation of this study was
that ISOs cannot be measured directly from the original signal, as a
highpass filter at 0.03 Hz is fixed in the hardware of our recording
system to mitigate the effects of slow transients and electrode drift
(Ebersole et al., 2014). However, these results indicate the feasibility
of using infraslow envelope measures as a way of studying infraslow
activity in the EEG in the absence of DC-coupled amplifiers.

The increase in MSC following ASM taper confirm the results of
our prior work (Joshi et al., 2018). This is likely reflective of a general
vulnerability to seizure that occurs post-taper, and we have
previously observed a similar increase in infraslow envelope MSC
in pre-seizure periods and during sleep (Joshi et al., 2018). The fact
that nonzero MSC is preserved with increasing lag both before and
after ASM taper suggests that ISOs are present in both states, though
their expression may change depending on ASM load. Given that

FIGURE 4
Average infraslow envelope MSC as a function of time lag for each of the frequency bands both on- and off-ASMs. The mean decreases
monotonically with increasing lag. It drops below the statistical threshold of 0.054 at about 1 min of lag, and plateaus after 2 min of lag (full 300 s
not pictured).
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infraslow activity seems to modulate both cortical excitability and
the occurrence of interictal spikes in epilepsy patients, further study
of how infraslow activity is changed by ASM status is warranted
(Vanhatalo et al., 2004). It is possible that infraslow envelope MSC
may be a reflection of large-scale modulatory influences on smaller-
scale processes and higher-frequency activity. Disruptions in this
top-down modulation could increase vulnerability to seizures.
Indeed, more recent work provides some evidence that phase-
amplitude coupling between infraslow activity and high-
frequency activity (>80 Hz) may have utility in distinguishing
preictal and interictal states (Hashimoto et al., 2021). These
combined results demonstrate the relevance of infraslow rhythms
in clinical epilepsy in assessing seizure risk, and point toward their
likely utility in novel methods of seizure forecasting.
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