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Oscillatory complex networks in the metastable regime have been used to study
the emergence of integrated and segregated activity in the brain, which are
hypothesised to be fundamental for cognition. Yet, the parameters and the
underlying mechanisms necessary to achieve the metastable regime are hard
to identify, often relying on maximising the correlation with empirical functional
connectivity dynamics. Here, we propose and show that the brain’s hierarchically
modular mesoscale structure alone can give rise to robust metastable dynamics
and (metastable) chimera states in the presence of phase frustration. We
construct unweighted 3-layer hierarchical networks of identical Kuramoto-
Sakaguchi oscillators, parameterized by the average degree of the network
and a structural parameter determining the ratio of connections between and
within blocks in the upper two layers. Together, these parameters affect the
characteristic timescales of the system. Away from the critical synchronization
point, we detect the emergence of metastable states in the lowest hierarchical
layer coexisting with chimera and metastable states in the upper layers. Using the
Laplacian renormalization group flow approach, we uncover two distinct
pathways towards achieving the metastable regimes detected in these distinct
layers. In the upper layers, we show how the symmetry-breaking states depend
on the slow eigenmodes of the system. In the lowest layer instead, metastable
dynamics can be achieved as the separation of timescales between layers reaches
a critical threshold. Our results show an explicit relationship between
metastability, chimera states, and the eigenmodes of the system, bridging the
gap between harmonic based studies of empirical data and oscillatory models.
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1 Introduction

The macroscopic dynamics of the human brain are characterized by a balance and
flexible switching between integrated and segregated activity (Fox and Raichle, 2007). The
coexistence of both segregative and integrative tendencies is thought to be essential for
healthy brain functioning and cognitive processing (Tognoli and Kelso, 2014; López-
González et al., 2021; Wang et al., 2021; Capouskova et al., 2023). In coordination dynamics
(Kelso, 2013), this coexistence is the defining feature of complex dynamical systems in the
metastable regime (Tognoli and Kelso, 2014; Hancock et al., 2023a). In the last 2 decades,
various indexes of metastability have been proposed to quantify these dynamical behaviours
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from empirical data (Hancock et al., 2023a). Recently, measures of
metastability have been successful in characterizing changes in the
brain’s metastable-like dynamical features in the presence of
pathological or pharmacological alterations (Lee et al., 2018; Lord
et al., 2019; Hancock et al., 2023b), brain injury (Hellyer et al., 2015),
the aging brain (Cabral et al., 2017) [as well as the aging rat brain
(Alteriis et al., 2024)], and after brain stimulation (Bapat et al., 2024).

Motivated by these empirical observations, numerous whole-
brain dynamical models have been employed to reproduce the
metastable features of macroscopic brain dynamics (Cabral et al.,
2014; Hansen et al., 2015). A whole-brain model consists of a
complex dynamical system in which each of the constituent
elements interacts with other elements according to the structural
connectivity of real brains. The most frequently used indexes of
metastability are the variation of the Kuramoto Order Parameter
(KOP) (Shanahan, 2010) and the variation of the leading eigenvector
of the instantaneous phase locking matrix and its eigenvalue (Cabral
et al., 2017; Alteriis et al., 2024) (see review (Hancock et al., 2023a)
for an in-depth discussion). Whole-brain oscillatory based models,
in particular, allow for an extensive exploration of the structural and
dynamical parameter space, enabling researchers to identify key
parameters that dictate the models’ behaviours in the metastable
regime (Cabral et al., 2011; Deco et al., 2017; Torres et al., 2024). A
large number of key control parameters have been suggested to play
a vital role in the emergence of metastable-like features. For instance,
heterogeneity in couplings, delays, and connectivity has been shown
to be crucial for the emergence of metastable states that synchronize
at frequencies lower than the average oscillator frequency (Cabral
et al., 2022). Turning to the role of structure, graph theoretical
properties of connectomes have been shown to alter indexes of
metastability (Váša et al., 2015) and similar measures of functional
complexity (Zamora-López et al., 2016).

In these models, indexes of metastability have been hypothesised
to peak when the correlation with empirical dynamical functional
connectivity (dFC) is maximised (Deco and Kringelbach, 2016)
[however, see also (Pope et al., 2023)]. Thus, most studies
primarily focus on the properties of a system in the metastable
regime and how the system’s parameters change these observations.
However, the criteria that should be satisfied by an oscillatory system
to achieve themetastable regime, and themechanisms underpinning
metastability, are not fully understood. As suggested in (Cabral et al.,
2022), understanding the mechanisms that give rise to the
emergence of metastable states is essential to be able to make
predictions about the appearance and duration of specific
metastable modes, and eventually to design possible therapeutic
interventions.

In dynamical systems theory, metastable-like dynamics have
been observed in various systems of oscillators. Here, metastability is
usually associated with instability of chimera states: symmetry
breaking states characterised by the coexistence of coherent and
incoherent patterns in systems of phase-lagged identical oscillators
(Abrams and Strogatz, 2004; Panaggio and Abrams, 2015;
Haugland, 2021). For instance, in (Shanahan, 2010), metastable
chimera states arise as a result of winnerless competition between
modules of identical oscillators to join the coalition of synchronized
modules. Similar metastable behaviours can be found in (Bick, 2018)
due to the addition of higher-order interactions. Chaos, turbulence,
and other dynamics with metastable-like features have also been

shown to arise in the case of heterogeneous couplings and phase lags
in the two-population model (Bick et al., 2018). Thus, these studies
suggest that the interplay between modular structures, coupling
heterogeneities, and phase frustration is necessary for metastable
chimera states to arise. The effects of non-local hierarchical
topologies on chimera states have also been investigated. In these
settings, the structural symmetries and the clustering coefficient
have been found to be important parameters for the emergence of
chimera states in networks of Van der Pol oscillators (Ulonska et al.,
2016). Closer to the approach taken in this study, authors in
(Makarov et al., 2019) analyzed a system of Kuramoto-Sakaguchi
oscillators composed of subnetworks connected via hub nodes
placed on a ring. The authors showed how the size and
connectivity of the subnetworks promote a competition
mechanism between scales which results in an expansion of the
range of parameters within which chimera states arise when
compared to the case without subnetworks. Hence, hierarchical
network properties seem to promote the emergence of chimera
states, but their role in achieving the metastable regime and the
specific mechanisms enabled by hierarchical structures
remain unclear.

Some insights have come from computational neuroscience
studies that explored in more detail effects of the hierarchically
modular structure of the brain (Meunier et al., 2010), such as Griffith
phases (Rubinov et al., 2011; Moretti and Muñoz, 2013; Ódor et al.,
2015). In particular, recent research suggested that including the
brain’s mesoscale connectivity in whole-brain oscillatory models can
help us identify and understand the mechanisms underlying
metastable dynamics. In (Mackay et al., 2023), the authors
generated spatially constrained random networks to approximate
the mesoscale neocortex, allowing the implementation of
heterogeneous phase delays in a model of non-identical
Kuramoto oscillators. The authors observed how the topology of
these constrained networks widens the range of critical couplings
within which metastable behaviours arise, analogous to Griffith
phases. In (Villegas et al., 2014) instead, the authors studied in
detail real and synthetic hierarchically modular brain networks of
oscillators in the absence of phase frustration. Whilst it is well
known that the hierarchical network structure affects the dynamics
of oscillatory systems in the path towards global synchronization
(Arenas et al., 2006; Arenas and Díaz-Guilera, 2007; Villegas et al.,
2022), in (Villegas et al., 2014) the authors observed that modules of
identical units at the bottom of the hierarchy synchronize first (fast
timescale dynamics). However, synchronization can be lost as
interactions with other modules become more significant at
longer timescales, giving rise to transient metastable states on the
path towards synchronization. Thus, these observations highlight
how the slow dynamics associated with the lowest eigenvalues of the
graph Laplacian affect the faster timescale dynamics that dictate the
oscillators’ behaviour within lower-layer modules. This study,
however, did not consider the effect of phase frustrations, such as
phase lags or phase delays, and whether robust metastable and
chimera states can persist, preventing global synchronization even in
the case of identical oscillators.

Taken together, these studies suggest that modular or
hierarchically modular structures, combined with either higher-
order (non-additive) interactions, or the heterogeneity of both
couplings and delays, are crucial to achieve the metastable regime
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[but also see the case for nonlinear couplings (Haugland et al., 2015;
Haugland, 2021)]. In this work, we investigate the more
parsimonious hypothesis that the brain’s hierarchically modular
mesoscale structure alone can give rise to robust chimera states and
modulate metastable dynamics in the presence of phase-frustration.
Under the assumption that dFC patterns in real brains are supported
by the brain’s mesoscale structural connectivity, our hypothesis is
motivated by the fact that dFC patterns can be constructed using the
spectral information of structural brain networks (Atasoy et al.,
2016; Atasoy et al., 2017). Inspired by the network structures used in
(Villegas et al., 2014; Zamora-López et al., 2016; Kang et al., 2019;
Fuscà et al., 2023), we construct 3-layer hierarchical networks using
a variation of the nested Stochastic Block Model (nSBM) (Peixoto,
2014). Our variation of the nSBM is parametrized by two quantities:
the average degree of the network, and a structural parameter
controlling the ratio of connections between and within blocks at
high hierarchical layers while keeping the average degree of the
network conserved and homogeneous. In the absence of coupling
and oscillator frequency heterogeneities, we show how the
Kuramoto-Sakaguchi dynamics on these networks display robust
metastable and chimera states at different hierarchical layers
depending on the mesoscale structure of the network. Through
explaining the mechanisms underpinning the emergence of
metastable and chimera states we elucidate an explicit
relationship between these states and the eigenmodes of the
graph Laplacian. In particular, we show how the system we
investigated may be reduced to the classic two-population model
for a specific range of the structural parameter via the Laplacian
Renormalization Group (LRG) flow. Our results suggest that, while
the slow eigenmodes determine the functional organization in
higher coarse-grained layers, the spectral gap between fast and
slow eigenmodes affects the stability of cluster synchronization in
the lower fine-grained layers. We conclude by pointing towards
possible future extensions of this work to further bridge the gap
between harmonic based studies of empirical dFC and oscillatory
based whole-brain models.

2 Methods

2.1 Hierarchical network model choice

To test our hypothesis, we seek to construct hierarchically
modular networks while avoiding the presence of structural
heterogeneities such as network motifs, hubs and the rich club,
as well as non-homogeneous degree distributions, all of which have
already been studied in (Ulonska et al., 2016; Zamora-López et al.,
2016; Krishnagopal et al., 2017). Hence, we seek to construct
hierarchical networks with a single control parameter that
smoothly varies the mesoscale organization of the network while
maintaining the average degree of the network fixed and
homogeneous across all vertices. Critical mesoscale structures,
which, in the context of information-diffusion and
synchronization dynamics, are identified as structures that
emerge at a characteristic timescale in the dynamical process, are
an important feature of hierarchically modular networks such as the
brain (Villegas et al., 2022). Such structures naturally arise in
community-structured networks such as the Stochastic Block

Model (SBM) and its nested variations (nSBM) used in various
computational neuroscience studies such as (Villegas et al., 2014;
Kang et al., 2019; Villegas et al., 2022; Fuscà et al., 2023). Therefore,
nSBMs are a good starting point for our study. In the next
subsection, we introduce a single-parameter nSBM variation,
allowing us to smoothly vary the system from a SBM to a nSBM
for a given desired average degree.

2.2 Variation of the nSBM

Given an arbitrary partition P of N � |V| nodes, where V is
the set of nodes, a SBM is defined by assigning a probability of
connection between all pairs of nodes in terms of P. Starting from
an initial node partition into B1 blocks (layer l � 1), we obtain a
L-layer nSBM (Peixoto, 2014) by defining a new SBM in each
layer l′> l in terms of the partition at layer l′ − 1 (Figure 1A). The
last layer L is defined as a single block for convenience. This
process results in a partition matrix P ∈ NL×N (Figure 1B). Each
column of the partition matrix P assigns a node to a specific block
in each layer l, where each row of P corresponds to the partition
in layer l. Thus, the system is parametrized by assigning a
probability of connection to all N(N − 1) possible connections
in terms of the partition matrix of dimension L × N. We may
reduce the dimension of the [L × N]-dimensional parameter
space by choosing specific probability of connection rules that
depend on the nodes’ block membership in each layer. In our
variation of the nSBM, see Figure 1C, we introduce the following
constraints:

• each block in layer l contains the same number nl of layer
l − 1 blocks;

• the probability of connection between two nodes in a block in
layer l is the same for all Bl blocks in the same layer;

• in layer L there is only one block containing nL � 2 blocks
from layer L − 1.

The first two constraints ensure structural homogeneity at layer
level for all layers, while the third constraint was chosen to model the
brain’s two-hemisphere configuration, similar to previous studies
(Villegas et al., 2014; Kang et al., 2019). We assign non-zero
probabilities only for edges between nodes in the same block of
any layer. Then, since layer L is a single block, only L probabilities
are required given these constraints. For the case L � 3, all possible
edges are assigned a probability p1, p2, or p3 as depicted in
Figure 1C. However, we wish these probabilities to depend on a
single control parameter H ∈ [0, 1] such that
pi ≡ pi(H), i � 1, 2, 3. To do this, we add three more
requirements:

• for communities in layer 1 to be almost fully connected, i.e., p1

must be as close to unity as possible;
• for layers 2 and 3 to be identical whenH � 0. Then, the nSBM
reduces to the classical SBM with only intra- and inter-
community connection probabilities, i.e., p2(0) � p3(0),
with p1(H) reducing to the intra-community connection
probability and p2 � p3 reducing to the inter-community
connection probability;
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• for communities in layer 2 to be completely decoupled for
H � 1, such that p3(H � 1) � 0.

These constraints allow to smoothly vary the system
configuration from a 2-layer community structured network to a
3-layer hierarchically modular network while keeping blocks in layer
1 always almost fully connected. Finally, we obtain expressions for
p1(H), p2(H) and p3(H) by requiring the average degree of the
network to remain constant with respect to varying H (see
derivation in Supplementary Appendix SA):

p1 H( ) � 1 − 1 −H

2
( ) n1γ

n1 − 1
( ), (1)

p2 H( ) � 1 +H

2
( )γ, (2)

p3 H( ) � 1 −H

2
( )γ, (3)

where the factor γ ∈ [0, 1] in the expressions for p2 and p3 can be set
to control the average degree of the network. Given these
constraints, the theoretical average degree of the network can be
written as

〈k〉 � n1 − 1( )p1 H( ) + n1 n2 − 1( )p2 H( ) + n2n1 n3 − 1( )p3 H( ),
(4)

allowing us to find γ given a desired average degree k. Intuitively, we
may see Equation 4 as the sum of the connection probabilities of any
single row in Figure 1B. Additionally, we may also note how this
equation shows the structural homogeneity in each layer; each node
(block) has the same average degree as any other node (block) in the
same layer. After plugging in the expressions for pi, Equation 1–3,
we obtain the following expression for the average degree of the
network (see Supplementary Appendix SA):

〈k〉 � n1 + γ n1n2 − n1( ) − 1, γ ∈ 0, 1[ ].
Hence our model allows to choose an average degree in the range
between n1 − 1 and n1n2 − 1, i.e., the maximum number of
connections in a layer 1 module and the maximum number of
connections in a layer 2 module. This limitation is a result of the
imposed model requirements. Note that the total number of nodes is
determined by nl, withN � n1n2n3. In what follows, we used n3 � 2,

B3 � 1, and B2 � 2, to model the two-hemisphere division of the
brain and to allow comparison of our results with the 2-population
model analytical results (Abrams et al., 2008). Finally, following the
model’s constraints, we also have that B1 � 2n2. Therefore, given the
size of blocks in layers 1 and 2, specified by n1 and n2, our variation
of the nSBM is fully parametrized by k and H, which control the
average degree and the density of connections between and within
blocks in higher hierarchical layers of the resulting network,
respectively. In Figure 2, we show three examples of adjacency
matrices constructed using our variation of the nested SBM. The
parameterH changes the density of connections within and between
the two populations of nodes, while preserving the average degree
and the node’s degree distribution of the resulting networks. For
easier understanding, in the remainder of the manuscript, we will
refer to blocks of nodes in layer 2 as populations, and blocks of nodes
in layer 1 as modules. Then, the subset of nodes belonging to a
population ρi, i � 1, 2 are formally defined as ρi � {v |P2v �
i, v ∈ V} where P is the partition matrix and V is the set of all
nodes. Instead, the subsets of nodes belonging to a module are
defined as μi � {v |P1v � i, v ∈ V} and a module i is said to belong to
population ρj if μi ⊂ ρj. To ease comparisons with other studies and
real brain structural connectivities, we also computed the
modularity index

Q � 1
2|E| ∑c ec − ∑i∈cki

2|E|( )2[ ],
where each c in the summation denotes a community given a
partition P′, ec is the number of edges in c, ki is the degree of a
node i ∈ c, and |E| is the number of edges of a network G � (V, E)
with V and E ∈ V × V being the set of nodes and edges, respectively.
In Figures 2D, E, we report the modularity index Ql of the networks
generated with our variation of the nSBM using the partition of
nodes in layers l � 1, 2.

2.3 Dynamical model and measures

We consider the underlying network to be static, and associate
each node to a Kuramoto-Sakaguchi oscillator. The phase θi of each
oscillator i is governed by the following equation of motion:

FIGURE 1
Example of a 3-layer hierarchical network. (A) At each layer l, we define a SBM with Bl blocks containing nl blocks from the layer below (or nodes if
l � 1). The last layer is fixed to be a single block, B3 � 1, containing n3 � 2 blocks from layer 2. In this example in layer 1 (blue blocks μi) we have
B1 � 8,n1 � 2, in layer 2 (green blocks ρi) we have B2 � 2,n2 � 4, in layer 3 (red block) we have B3 � 1,n3 � 2. (B) Corresponding partition matrix. (C) Using
our constraints, the 3-layer hierarchical network is fully parametrized by the connection probabilities pi, i � 1, 2, 3 (blue, green, red).
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dθi
dt

� ωi −K∑N
j

Aij sin θj − θi − αij( ) (5)

where A � {Aij}i,j∈V is the adjacency matrix, ωi is the natural
frequency of oscillator i, αij is the phase lag between oscillators i
and j, and K is the coupling constant. As in the classical models for
chimera states and metastability in oscillatory networks (Abrams
et al., 2008; Shanahan, 2010; Panaggio and Abrams, 2015), we used
identical oscillators by choosing ωi � ω � 1. We also fixed the phase
lag to be equal to zero if i, j are in the samemodule at layer l � 1, and
αij � α otherwise. The zero phase lag for within-module connections
at the lowest hierarchical layer was chosen as an approximation of
shorter phase delays between oscillators in the same module of real
networks embedded in a metric space. As standard practice in the
dynamical systems’ literature (Panaggio and Abrams, 2015), we
parametrized the phase lag α using the lag parameter β � π/2 − α. In
this manuscript, we report results for β � 0.1 which exemplifies our
results. Since the oscillators are identical (i.e., they have the same
natural frequency), the coupling constant effectively acts as a time
re-scaling factor, leaving results qualitatively invariant. Here,
numerical simulations were performed using a coupling constant
K � 50/k normalized by the average degree of the network, allowing
us to compare networks of the same size for varying degree. At time
t � 0, oscillator phases θi were randomized in U(−π, π). All
simulations were performed using the Euler method with steps

Δt of size 0.001 for a total of 55,000 steps with 5,000 steps of
relaxation. We confirmed that this step size was appropriate by
verifying that results were unchanged when using smaller Euler step
sizes (results not shown).

2.3.1 Kuramoto Order Parameter
To quantify the degree of synchrony of the whole systemwe used

the Kuramoto Order Parameter (KOP)

Z � Reiψ � 1
N

∑N
j

exp iθj( ), (6)

where the real part R ∈ [0, 1] quantifies the degree of
synchronization, with R ~ 1/

��
N

√
suggesting incoherent motion

and R ~ 1 full synchronization.

2.3.2 Local Kuramoto Order Parameter
In a similar fashion, we defined the local KOP for a subset μ ⊂ N

of oscillators as

Zμ � Rμe
iψμ � 1

|μ| ∑j∈μ exp iθj( ). (7)

Similarly to Equation 6, the real part of this measure, Rμ ∈ [0, 1],
quantifies the degree of coherence of the subset of oscillators μ

in isolation.

FIGURE 2
(top) Example adjacency matrices for H � 0.0 (A) H � 0.5 (B) and H � 1 (C). Each network was generated using n1 � 16, n2 � 8 and exemplifying
average degree k � 51.2. Note how for H � 0.0 the generated network is similar to a SBM while for H � 1.0 the two populations are decoupled. (bottom)
Modularity index Ql calculated over partitions {Pl,i | i ∈ V} for l � 1 (D) and l � 2 (E) as a function of H and k.
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2.3.3 Measures for metastability
Oscillatory systems are said to be in the metastable regime when

they exhibit spontaneous flexible switching between segregative
(incoherence) and integrative (synchronization) tendencies1

(Kelso, 2013). To quantify this switching behaviour, here we used
the metastability index σmet, introduced in (Shanahan, 2010). In its
original form, σmet is obtained by computing the average standard
deviation of the local KOPs (Equation 7). Since the 3-layer
hierarchical model is equipped with a partition matrix defining
distinct blocks in each layer, the index of metastability can be
calculated in each layer l. Consequently, here we define a distinct
index σ lmet for each layer l. For instance, consider the set of blocks in
layer 1, then the degree of metastability of the layer 1 blocks is
σ1met � 〈σ(Rμi(t))〉i∈[1,B1], where B1 is the number of blocks in the
first layer, μi with i ∈ [1, B1] identifies the set of oscillators that make
up a block i in the first layer, and σ is the standard deviation.
Similarly, we define σ2met for layer 2 blocks (i.e., the populations ρ1
and ρ2). For layer 3 instead, the metastability index is just the
variation of the whole system KOP since all oscillators belong to the
same block, i.e., σ3met � σ(R).

2.3.4 Measures for chimera states
The term chimera state is generally invoked to denote the

coexistence of coherent and incoherent patterns in systems of
identical oscillators. Over the past decade, various measures have
been defined to characterize different types of chimera states
(Kemeth et al., 2016; Haugland, 2021). In the case of identical
sinusoidally-coupled oscillators with fixed amplitude, the local
KOPs can be used to measure the degree of phase-coherence
(Panaggio and Abrams, 2015) between the system’s parts.
However, since an analytical characterization of chimera states is
only possible in the limit of an infinite number of oscillators, an
arbitrary threshold needs to be introduced, δ1, to numerically assess
the presence of chimera states (Kemeth et al., 2016). For instance, if a
system self-organizes into two subsets ρ1, ρ2 of oscillators with
different degrees of synchronization at some time t,
i.e., d(t) � |Rρ1(t) − Rρ2(t)|> δ1, we conclude that system is in a
chimera state. Here, due to the similarity with the classic two-
population model (Abrams et al., 2008), we focus on chimera states
in layer 2, which can be fully characterized using the degree of
synchronization of the oscillator subsets ρ1 and ρ2 (or populations)
defined in Section 2.2. Specifically, we numerically identified
chimera states by computing the mean and standard deviation of
the difference between the populations’ local KOPs in time:

�d � 1
T − r

∑T
t�r+1

d t( ) (8)

σ d( ) �

�����������������
1

T − r
∑T
t�r+1

d t( ) − �d( )√√
, (9)

whereT is the number of steps in the simulation and r the number of
relaxation steps. These measures were then averaged over
100 distinct initial conditions. Using these measures and an
additional threshold δ2, we can distinguish three types of
chimera states:

• stable chimera state (Panaggio and Abrams, 2015): a chimera
state in which the local KOPs are different and remain
constant, i.e., �d> δ1 and σ(d)< δ2 (Equations 8, 9);

• breathing chimera state (Panaggio and Abrams, 2015): a
chimera state in which one of the local KOPs oscillates,
i.e., �d> δ1 and σ(d)> δ2;

• metastable and alternating chimera state (Shanahan, 2010;
Buscarino et al., 2015; Feng et al., 2023): the state of a system in
which the degree of synchronization of both subsets of
oscillators varies irregularly or in an alternate manner,
i.e., �d< δ1 and σ(d)> δ2;

where thresholds δ1 and δ2 are chosen to be 3 standard
deviations higher than the baseline mean �d and standard
deviation σ(d) calculated in the case of no mesoscale structure,
i.e., H � 0 (see also sensitivity analysis in Supplementary Figure
SA10). These measures allow us to identify the regions of the
parameter space in which symmetry breaking states occur in the
second layer. This classification scheme is similar to that described
in (Kemeth et al., 2016), with the main difference being the
correlation measure. While the local curvature measure used in
(Kemeth et al., 2016) is a more general correlation measure, its
application to our case is not practical as it would require
approximating the phase of a modules or population using the
local order parameters to detect symmetry breaking states in a
specific layer.

2.4 Data availability

All code and notebooks related to this work can be downloaded
from (Caprioglio, 2024).

3 Results

3.1 Metastable dynamics are detected at the
whole-system level

To detect metastable dynamics and chimera states, we
numerically analyzed the dynamics of Kuramoto-Sakaguchi
oscillators (governed by Equation 5) on 3-layer hierarchical
networks at different levels of observation. We started by
examining the dynamics at the whole-system level, presenting the
KOP and σ3met for networks of size N � 512 with n1 � 16, n2 � 8 in
Figure 3. Our analysis of the whole parameter space (Figures 3B, C)
suggests that, while there is some degree of variability depending on
the average degree of the network, k, the degree of synchronization
of the system and the index of metastability mostly depend on the
structural parameterH. Thus, we analysed in more detail our results
for fixed average degree k � N/5 � 51.2, which exemplifies the
results obtained for both smaller and larger average degrees

1 Note the distinction between metastability and multistability. While in

multistable systems a trajectory can escape a basin of attraction only

due to external perturbations or noise, trajectories in metastable systems

do this spontaneously (Hancock et al., 2023a).
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(Figure 3A). Metastable dynamics are detected only when mesoscale
structures are well defined (H> 0.3, see also Figure 2D) in good
agreement with our hypothesis. In contrast, in the absence of well-
defined populations (i.e., low values of H) the system displays high
coherence and a low index of metastability. As the connectivity
within populations increases further, metastability reaches a local
maximum around H � 0.5 while the whole-system degree of
synchronization decreases sharply. Beyond H> 0.7, the density of
connections between populations is very low (see Figure 2D).
Consequently, the metastable index increases sharply while the
KOP approaches 0.5, indicating that the system has decoupled
into two independent populations. While metastable dynamics
can already be detected at the whole-system level in the presence
of well-defined populations, global measures do not provide insights
into why metastability starts to increase only for values of H> 0.3.

3.2 Self-organized chimera states are
detected at the population layer

To understand why metastable dynamics are detected as the
connectivity within population increases, we analysed the
populations’ local KOPs, Rρi, and the populations’ metastability
index, σ2met for varying values ofH. We computed the values of �d and
σ(d) to identify chimera states (Figure 4C) as illustrated in the
Methods section. Independently of the value of k, we identified
5 regions of the parameter space, i − v, in which distinct states are
detected in the population layer. Symmetry breaking states are
detected in regions ii − iv, with stable (ii), breathing (iii),
metastable and alternating (iv) chimera states. When stable and
breathing chimera states are detected, we define as stable population
the subset of oscillators displaying the higher mean local KOP, and

as unstable population the subset of oscillators with a lower degree of
synchronization. As an example, in Figure 4(iii), we identified ρ2 as
the stable population and ρ1 as the unstable (breathing in this case)
population. In Figure 4, we present our results for k � 51.2.

In good agreement with our results of Section 3.1, metastability was
found to reach its minimum in region i, where the absolute difference
between local KOPs (�d from Equation 8) was below the threshold δ1.
This confirms that the system reaches a symmetric coherent global state
(for instance, see Figure 3(i)) in the absence of well-defined mesoscale
structures. In this region, both populations display a high degree of
synchronization, equal to that of the whole system, R � 0.84 ± 0.04,
with some fluctuations due to phase lag frustration.

In the same region of the parameter space in which metastable
dynamics are initially detected at the whole-system layer, we
encounter stable and breathing chimera states (regions ii and iii)
in the second layer. Within these regions, the system self-organizes
into a symmetry breaking state in which one of the two populations
is more synchronized than the other, such that �d> δ1. While in
region ii the unstable population displays a stable degree of
synchronization (σ(d)< δ2), in region iii the unstable
population’s local KOP presents oscillatory dynamics (σ(d)> δ2).
This result suggests that the initial increase in metastability σ3met

detected at the whole-system level reflects the presence of stable and
breathing chimeras in the second layer.

Metastable and alternating chimeras are detected in the range
0.49<H< 0.66 in which �d< δ1 and σ(d)> δ2. In the vicinity of
H � 0.5, both local KOPs display a similar degree of
synchronization and the populations’ metastability, σ2met, is
maximised. When the metastability index is at its maximum,
populations (de) synchronize in a non-predictable manner. For
instance, in Figure 4(iii), when a population desynchronizes the
other populations’ response can either be an increase or decrease in

FIGURE 3
(A) Degree of synchronization, R (blue), and index of metastability, σ3met (purple), in the l � 3 (whole-system) layer as a function of the structural
parameterH. (B)Degree of synchronization R as a function ofH and the average degree of the network k. (C) Index of metastability σ3met as a function ofH
and k. Results were obtained using n1 � 16, n2 � 8, and k � 51.2, averaged over 100 seeds.
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synchronization. In the same region, as the parameterH is increased
further, the number of connections between the two populations
decreases and alternating chimera states can also found (see
Supplementary Figure SA12).

In region v both populations display a high local KOP but they
are not synchronized between each other, indicating once again that
beyond H ~ 0.7 the two populations become effectively uncoupled.
In Figure 4(i − iv), we show examples of the evolution of the local
KOPs over time for four exemplifying values of the structural
parameter H.

3.3 Chimera states can be supported by
metastable modules

The remaining question is whether modules in the first layer also
exhibit metastable dynamics, and whether modules in different
populations display distinct dynamics depending on the
symmetry-breaking states detected in layer 2.

To answer the first question, we computed the degree of
metastability σ1met for varying values of H and k (Figure 5A).
While in layers 2 and 3, metastable dynamics were dependent on
the structural parameter H, our analysis shows that in layer 1 the
dominant parameter is the average degree of the network k. For
systems of size n1 � 16, n2 � 8, the modules’ degree of metastability
was zero for values of k below ~ 30, the same range of values in
which modularity in layer 1 is the highest (Figure 2E). In this regime,
all modules remain fully synchronized for all values of H (see
Figure 5A(a) for an example). As k increases and modularity in
layer 1 decreases, modules start to display metastable dynamics
modulated by the value of H (see Figure 5A(b)). Likewise, as in the
previous subsection, for fixed k> 30, the metastability index
calculated for all modules peaks at H � 0.5. However, as k is
increased further, the metastability index slightly increases only
around H � 0.5 while slightly decreasing for all other values of H
(see Supplementary Figure SA13). Thus, our analysis indicates that
while the average connectivity of the network and modularity in
layer 1 determines whether spontaneous (de) synchronization

FIGURE 4
(A) Mean degree of synchronization Rρi , i � 1, 2 for varying values of H. (B) Populations’ metastability index, σ2met, as a function of H. (C) (Blue line)
mean difference between the populations’ local KOP �d and (orange line) standard deviation of the difference between local KOPs, σ(d) as a function ofH.
Red dashed lines separate the regions of the parameter space in which symmetry-breaking states are detected. (i − iv) Examples of the evolution in time
of the populations’ local KOPs and the whole-system KOP (black dashed lines) in distinct dynamical regimes. (i) For low values of H the system
displays coherent dynamics and the two populations display the same degree of synchronization. (ii, iii) For intermediate values ofH stable and breathing
chimera states emerge, respectively. (iv) Metastable chimera states emerge for H � 0.5. Results obtained using n1 � 16, n2 � 8, and k � 51.2, averaged
over 100 seeds.
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manifests or not in modules in layer 1, the presence of a mesoscale
structure modulates the degree of metastability.

To address our second question, we computed the average local
KOP and the degree of metastability of modules within each
population separately, with fixed k � 51.2 and varying values of
H (Figures 5B, C). Here, the metastability index of modules in
population ρj was defined as σmet(Rμi) � 〈σ(Rμi)〉μi⊂ρj. We divided
the parameter range into the same regions i − v as presented in the
previous section (see Figure 4C). In the absence of a well-defined
mesoscale structure (region i), modules in each population display
the same index of metastability and the same average degree of
synchronization. In contrast, in regions ii and iii, modules in the
stable and unstable populations display different degrees of
synchronization and metastability. The stable population displays
a higher average KOP and lower metastability while the modules in
the unstable population exhibit the opposite. As expected, in regions
iv and v, modules in both populations display the same index of
metastability, as well as the same degree of synchronization.
Therefore, it is only in the presence of stable and breathing
chimeras in layer 2 that modules in distinct populations display
different degrees of metastability, reflecting the stability or instability
of the populations to which the modules belong.

3.4 Relationship between symmetry-
breaking states and characteristic timescales
of the system

In the previous sections, we provided numerical evidence for the
emergence of chimera and metastable states in hierarchically
modular networks at different levels of observation. While in
layer 2 different types of chimera states were identified

depending on the mesoscale structure of the network
(determined by H), in layer 1 we showed how metastability
arises as the average connectivity of the network reaches a
certain threshold. In this section, we aim to explain these
observed phenomena by analyzing the spectral information of the
graph Laplacian.

The systems we investigated are structurally homogeneous in
each layer (uniform degree distribution). Nonetheless, a peculiar
property of diffusive-like dynamics on hierarchically modular
networks, such as synchronization dynamics, is the richness of
distinct information-diffusion pathways across different
timescales (Villegas et al., 2022). In the absence of phase
frustration, blocks of oscillators synchronize hierarchically,
from layer 1,until the whole system is synchronized (Arenas
et al., 2006). As shown in (Arenas et al., 2006), the linearized
Kuramoto model (without phase lags) reduces to a linear
diffusion model governed by the graph Laplacian. The graph
Laplacian is defined as L � D − A with eigenvalues λi ranked as
0 � λ1 < λ2 < . . . < λN, where A is the adjacency matrix of the
network and D is a diagonal matrix with Dii � ∑N

j Aij. Crucially,
authors in (Arenas et al., 2006) showed how the gaps between
eigenvalues, which separate blocks of nodes at distinct
hierarchical layers, are associated with the relative difference
in characteristic timescales between hierarchical layers. When
the spectral gaps are small, the relative difference between
hierarchical timescales is also small, and blocks at distinct
hierarchical layers are not well defined. Conversely, when the
spectral gaps are large, the opposite is true. Owing to the
similarities with the networks studied in (Arenas et al., 2006),
our Laplacian spectrum analysis (depicted in Figure 6) also
reveals similar spectral gaps depending on the value of k and
H. In particular, we identify two spectral gaps:

FIGURE 5
(A) Left: Metastability index σ1met calculated over all modules μi as a function ofH and k. Right: example of Rμi

dynamics in time for a single simulation
with average degree k � 51.2 (top) and k � 21 (bottom). (B) Average local KOP within each population j � 1, 2, i.e., 〈Rμi

〉 for μi ⊂ ρj , for fixed k � 51.2 and
varying values of H. (C) Metastability index within each population j � 1, 2, i.e., σmet(Rμi

), for μi ⊂ ρj , for fixed k � 51.2 and varying values of H, and overall
metastability of the first layer blocks σ1met (black dashed line). Red dashed lines separate the regions of the parameter space in which symmetry-
breaking states are detected in layer 2.
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• the first spectral gap is found to be between λ−1B2
and λ−1B2+1,

separating the slowest mode associated with the characteristic
timescale of layer 3 and the slowmodes associated with layer 2,

• the second spectral gap is found to be between λ−1B1
and λ−1B1+1,

separating the slow modes associated with the characteristic
timescales of layer 2 and the fast modes associated with layer 1,

where B1 and B2 are the number of blocks in layers 1 and 2,
respectively, and the inverse of each eigenvalue λi is indicative of the
characteristic timescale of mode i, i.e., λ−1i ~ τi. Informed by these
observations, we hypothesised that (a) the eigenmodes associated
with the slower timescales of the system, λj for j ∈ [1, B1], determine
the state of the system in layers 2 and 3, and that (b) the second
spectral gap between fast and slow eigenmodes affects the
synchronizability and metastable dynamics of modules in layer 1.

To test hypothesis (a), we adopted the Laplacian
Renormalization Group (LRG) flow approach recently introduced
in (Villegas et al., 2022; Villegas et al., 2023). In summary, this
approach allows us to rescale the system up to a timescale 1/λ* ~ τ*
by discarding the fast modes associated with eigenvalues λi > λ*.
Then, the resulting coarse grained structure is obtained by using the
slow modes associated with λi < λ* only. We adopt the bra-ket
notation used in (Villegas et al., 2023), such that |λi〉 denotes the
column eigenvector associated with eigenvalue λi while 〈λi| is its
corresponding row vector. Then, the dot product can be written as
〈λj|λi〉 while the outer product is indicated by |λi〉〈λj|. Using this
notation, we rewrote the graph Laplacian in terms of its eigenmodes
|λi〉, i.e.,

L � ∑N
i

λi|λi〉〈λi|,

and constructed the time-rescaled Laplacian at
τ* � 1/λ* � 1/λB1+1, as

L′ � ∑N
i<B1+1

λi|λi〉〈λi|, (10)

discarding the N − B1 fast modes of the system. Next, we
constructed the adjacency matrix A′ from the resulting time-
rescaled Laplacian L′. This was done by aggregating nodes within
each of the B1 modules. Specifically, we defined B1 orthogonal
vectors |α〉 � (α1, α2, . . . αN)′, α � 1, 2, . . . B1, using the
partition of the 3-layer hierarchical networks at layer 1,
i.e., αi � 1 if P1α � α and αi � 0 otherwise. Each element of the
B1 × B1 adjacency matrixA′was obtained by projecting the rescaled
Laplacian (Equation 10) onto the new B1-dimensional basis defined
by the vectors |α〉, i.e., Aαβ′ � −〈α|L′|β〉, with Aαα′ � 0 to avoid self
interactions. The resulting weighted fully-connected adjacency
matrix A′ (an example is shown in Figure 7A) shares similar
properties with the weighted adjacency matrix of the analytically
solvable two-population model. Specifically, pairs of nodes in the
same population are more strongly connected than pairs of nodes in
distinct populations.

WhileA′ loses the fine-grained structural information in layer 1,
it preserves the structural information in layer 2 which depends on
the structural parameter H. This allows a numerical comparison of
a, the symmetry breaking parameter of the two-population model,
with the structural parameterH, where a is defined as the difference
between the interaction strength between pairs of nodes in the same
population and that of between pairs of nodes in different
populations. From the reconstructed adjacency matrix A′, we
obtained a numerical approximation of the symmetry breaking
parameter a′ by computing the normalized difference between
the average strength of interaction between nodes in the same
population, K1, and nodes in distinct populations, K2, as
illustrated in Figure 7A. Next, we investigated the relationship
between a′ and H for different average degrees of the network
(see Figure 7B). Our results suggest that there is a linear relationship
between a′ and H when the average degree is low, and a nonlinear
relationship as k increases. Notably, we found that when the
relationship is linear or approximately linear, the symmetry-
breaking parameter a′ predicts well the range of H in which
stable and breathing chimeras are detected (for instance, see the
case for k � 21 in Figure 7A and Supplementary Figure SA11).
However, we found this not to be the case for larger average degrees,
such as k � 51.2 used in the previous sections, when the relationship
between a′ and H was found to be nonlinear. For instance, using
k � 51.2 we found stable and chimera states in the range
0.31<H< 0.49 of the structural parameter, which corresponds to
the range 0.8< a′< 0.9 of the numerical approximation of the
symmetry breaking term, which is well outside the range of
values in which stable and breathing chimeras appear in the two-
population model (Abrams et al., 2008). This result suggests that, as
the second spectral gap decreases (equivalently, as the average
degree of the network increases), the slow modes of the graph
Laplacian alone do not describe well the behaviours we observe in
layer 2 and that the fast modes contributions should be taken
into account.

To test hypothesis (b), we computed the size of the second
spectral gap, λB1+1 − λB1, and the degree of metastability σ1met of layer
1 modules for varying k. As depicted in the log-log plot in Figure 7C,

FIGURE 6
Gaps between consecutive eigenvalues λ2 , λ3 , . . . λN are affected
by the structural parameter H and the average degree k. In this model,
increasing k reduces the size of the second spectral gap, between λB1

and λB1+1 (where B1 � 16 is the number of layer 1 blocks). On the
other hand, increasing H increases the size of the first spectral gap
(inset figure), between λB2 and λB2+1 (where B2 � 2 is the number of
layer 2 blocks). Each eigenvalue was obtained by averaging over
10 randomly generated 3-layer networks with n1 � 16,n2 � 8.
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the degree of metastability σ1met decreases sharply for values of the
spectral gap λB1+1 − λB1 > 2, indicating a clear cutoff point in the
vicinity of λB1+1 − λB1 ≈ 2 for systems of size n1 � 16, n2 � 8 with
fixed value ofH � 0.5. The same behaviour was found for any other
value of H. This result suggests that when the timescale separation
between hierarchical layers 1 and 2 is large enough and modules are
well defined, modules of oscillators remain completely
synchronized, such that each subset effectively behaves as a single
macro-oscillator. In contrast, when there is no clear timescale
separation between hierarchical layers 1 and 2, the slow modes of
the system (associated with λi, i<B1) affect the synchronization
dynamics within modules, resulting in random (de)synchronization
patterns that persist in the system.

3.5 Robustness against structural
perturbations and heterogeneous natural
frequencies

Our numerical analyses have shown the relationship between
different symmetry-breaking states and the system’s hierarchically

modular structure. In layers 2 and 3, chimera and metastable states
are detected as the populations become more defined (with
increasing H). In layer 1 instead, we found the opposite
relationship: as modules become less defined for increasing k (as
shown by decreasing spectral gap and modularity) metastable
dynamics are detected. To measure the robustness of these
observed dynamics, we analysed systems generated with fixed
values of H and k when perturbed in two separate ways: by
randomly rewiring r edges in the network (Figure 8), and by
including heterogeneous frequencies ωi drawn from a normal
distribution N (1, δω) with mean 1 and increasing standard
deviation δω (Figure 9). We report results for systems
constructed using H � 0.5, since most peaks in metastability in
all layers were found for this value, and using two exemplifying
average degrees k � 51.2 and k � 21, since metastability in layer
1 was found to depend on the size of the second spectral gap, itself
controlled by the average degree of the network.

By randomly rewiring r edges in the network, the average degree
of the network remains fixed while modularity in layers 2 and 1 is
progressively lost (Figure 4). We found that the system starts to lose
its modular features when r � 103 random rewirings are performed,

FIGURE 7
(A) Left: example of populations’ dynamics in a stable chimera state in layer 2, where A was obtained using the 3-layer variation of the nSBM with
H � 0.2, n1 � 16, n2 � 8, and k � 21. Right: the weighted coarse-grained adjacency matrix A′ is obtained by time-rescaling the Laplacian associated with
the original adjacencymatrix A. The symmetry breaking parameter a′ � 0.23, obtained by computing the normalized difference between intra-population
K1 (red squares) and inter-population K2 couplings of the coarse-grained adjacency matrix A′, is also associated with stable chimera states in the
two-population model (see (Abrams et al., 2008) and results therein). (B) The symmetry breaking parameter a′ for varyingH and six exemplifying average
degrees k. (C) Log-log plot displaying the cutoff point whenmetastability in layer 1, σ1met, starts to sharply decrease as the size of the second spectral gap,
λB1+1 − λB1 , increases.
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i.e., 10% of the edges at most since the expected number of edges is
E � kN, and completely loses modularity (as well as the spectral
gaps) when 104 rewirings are performed. As expected, measures of
metastability and synchrony behave differently in layer 1 compared
to layers 2 and 3. While the system loses its metastable features in
layers 2 and 3 when r � 103 random rewirings are performed, in
layer 1 metastability slightly decreases in the case of k � 51.2 and
sharply increases in the case of k � 21. This analysis reflect the fact
that the presence of a mesoscale structure in layer 2 and 3 is
necessary for metastable dynamics to emerge in the upper layers.
Modules of oscillators in layer 1, instead, are characterized by the
absence of phase lags between pairs of oscillators in the same
module, and therefore display metastable dynamics only when
their modular structure is less defined, or, equivalently, when the
second spectral gap disappears (which is the case for k � 51.2).
While not the focus of this study, the presence of a high degree of

metastability in a random network (104 rewirings) with non-
overlapping subsets of oscillators without phase-lagged
interaction prompted further investigation. In Supplementary
Figure SA14, we report an example of a system of oscillators
constructed using the configuration model with a uniform degree
distribution k � 51. The random network system is only
characterized by the presence of a partition of oscillators, similar
to the partition in layer 1 we studied here, in which only pairs of
oscillators that do not belong to the same subset c in the partition
have phase-lagged interaction. Interestingly, results confirm the
presence of metastable chimera states very similar to those
displayed in the Shanahan model (Shanahan, 2010) despite the
absence of heterogeneous couplings and modular structures.

With the addition of natural frequencies, the system’s coupling
becomes an important factor in the dynamics. It is well known that
oscillatory systems display various degrees of metastability within

FIGURE 8
Structural perturbation analysis for fixed H � 0.5 and for k � 51.2 (top row) and k � 21 (bottom row). In each layer l, we compute the average degree
of synchronization Rl of all blocks in the layer (left column) and the metastability index σ lmet (middle column). The modularity index Ql is computed with
respect to the partitions in layer 1 and 2 (right column). Results were obtained for systems of size n1 � 16, n2 � 8 and averaged over 100 seeds.

FIGURE 9
Impact of heterogeneous frequencies with increasing δω for H � 0.5 and for k � 51.2 (top row) and k � 21 (bottom row). In each layer l, we compute
the average degree of synchronization Rl of all blocks in layer l (left column) and the metastability index σ lmet (right column). Results were obtained for
systems of size n1 � 16, n2 � 8, using normalized coupling K/k with K � 50, and averaged over 100 seeds.
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the range of critical couplings (Villegas et al., 2014). However, we
seek to investigate the behaviour of the system away from the critical
synchronization point to assess in what range of values of δω the
results we reported in the previous section with K � 50/k can hold
with the addition of heterogeneous frequencies. In the case of k �
51.2 (k � 21), the analysis reported in Figure 9 shows that for values
of δω< 2 (δω< 10) metastable dynamics at all layers remain
unchanged. As the heterogeneity of frequencies is increased
further, all blocks of oscillators in each layer display incoherent
dynamics as each average local KOP Rl reaches the inverse of the
square root of the number of oscillator in a block,
i.e., limδω≫〈ω〉Rl � (∏i

k�1nk)−1/2 (for instance, R1 reaches
1/

��
n1

√ � 1/
��
16

√
). Consequently, the indexes of metastability for

high frequency heterogeneities reflect this incoherence. Peaks in
metastability are also detected at values of δω for which the slope of
decreasing Rl is maximal (dashed red lines in Figure 9), in good
agreement with previous studies (Villegas et al., 2014).

4 Discussion

One of the hallmarks of complex systems is the presence of
hierarchically modular structures: systems composed of interrelated
substructures whose interaction across scales is thought to be
fundamental for robust and efficient information processing
(Simon, 1991). The identification of interrelated subsystems and
their role in shaping the dynamics and in the emergence of
macroscopic collective patterns is an important ongoing research
endeavour in complexity science (Jensen, 2023) and particularly in
network neuroscience (Bassett and Gazzaniga, 2011). In this work,
we hypothesised that the interplay between nested structures alone
can give rise to chimera and metastable states in minimal brain-
inspired models of phase-frustrated oscillatory systems. First, we
provided evidence for the emergence of symmetry-breaking states in
the absence of heterogeneous couplings, delays, and structural
heterogeneities. Second, we revealed the relationships between the
symmetry-breaking states we observed and the spectral properties
typical of hierarchically modular networks.

Our analysis highlighted two distinct pathways towards
achieving the metastable regime in different layers. First,
metastable dynamics were detected in layers 2 and 3 at a point
in which stable and breathing chimeras cease to exist. While it was
possible to explain the emergence of stable and breathing chimera
states by integrating out the fast modes of the system and reducing
the network to a structure similar to that of the two-population
model, the precise mechanism that leads to metastable chimera
states remains unclear. Due to the small size of the rescaled system,
we cannot exclude the possibility that the behaviours we observed
are the result of finite size effects. Additionally, a good agreement
with the results in (Abrams et al., 2008) was only possible for low
values of k and the presence of a large second spectral gap. This
result suggests that, when the gap between fast and slow modes is
small, the contribution from the fast modes should not be discarded.
To reach a conclusive answer, an analytical approach is likely
necessary. In (Abrams et al., 2008), the two-population model
was solved via the Ott-Antonsen dimensionality reduction
approach (Ott and Antonsen, 2008), by showing the existence of
inhomogeneous solutions to the dynamical system of equations in

the limit of an infinite number of nodes in each population. The
inhomogenous solutions correspond to the stable and breathing
chimera states which are very similar to the chimeras observed in
our model. However, the two-population model does not predict the
emergence of the metastable chimera states we observed for a wide
range of the parameter space. Due to the nested nature of the order
parameters in our model and the absence of heterogeneous
couplings, a similar analytical approach is not immediate.
Informed by our observations, we suggest that a synergetic-based
study of hierarchical systems of oscillators could be an interesting
future research approach (Zheng et al., 2024). As an intuitive
example, in Section 3.3 we found that chimera states detected in
layer 2 coexist with highly metastable modules in layer 1. Crucially,
these modules display a high average degree of synchronization
(Figure 5B) despite the high degree of metastability. This result
suggests a synergetic interpretation of the behaviours we observed,
in which the spontaneous (de) synchronization patterns of the
modules may be interpreted as fast fluctuations of the “enslaved”
fine-grained order parameters of the system (Haken, 2004).

Second, the emergence of spontaneous (de) synchronization
patterns in layer 1 was found to be related to the size of the second
spectral gap. When there is enough separation of timescales and
modules are structurally well defined (high modularity), each
oscillator within a module has time to integrate with other units in
the samemodule the phase-frustrated inter-module interactions. When
the separation of timescales is not large enough, however, modules do
not have time to integrate those interactions, resulting in the
spontaneous desynchronization of oscillators within the module.
This behaviour has been observed in Sections 3.3, 3.4, in which we
systematically increased the average degree of the network, leading to
the loss of modularity in layer 1, as well as in Section 3.5, in which
modularity was lost by randomly rewiring edges in the network. We
also considered the more parsimonious hypothesis that spontaneous
(de) synchronization is caused by increasing the average degree of the
network since this increases the number of phase-frustrated interactions
in the system. However, as the average degree of the network is
increased beyond a threshold value, layer 1 modules do not display
increasing metastability; instead metastability reaches a plateau for all
degrees k> 30 (Supplementary Figure SA13). Additionally, our
structural perturbation analysis in Section 3.5 revealed the presence
of highly metastable dynamics in layer 1 even in the absence of any
modular structure (see also Supplementary Figure SA14). This begs the
question of the impact of the presence of phase lags only in the upper
layers on the mechanism underlying the metastable dynamics we
observed in layer 1. In the absence of phase lags and any other
source of frustration or symmetry-breaking term, the system
possesses a single solution, the synchronization manifold. Therefore,
no metastable dynamics can be detected in this case (not shown). In
contrast, the addition of phase lagged interactions in layer 1, i.e., αij � α

for all pairs i, j, has some non-trivial effects. Using our variation of the
nested stochastic block model, our results do not hold if the number of
oscillators in the first layer is small (for instance using n1 � 16).
However, if the number of oscillators is increased, for instance to
n1 � 64, preliminary results (Supplementary Figure SA15) show that
similarmetastable behaviours in the first layer can be observedwhen the
second spectral gap decreases to a minimum threshold while the
average connectivity of the network increases, i.e., the same
mechanism underlying metastability in the first layer we observed
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here. This suggests that our results are not exclusive to systems where
phase lags are present only in the upper layers.

An important distinction evident in our model is that between
metastability at the critical synchronization point and metastability
away from the critical synchronization point. In general, at the phase
transition between coherence and incoherence indexes of
metastability detect the presence of large fluctuations in the
global and local order parameters (Arenas et al., 2008; Villegas
et al., 2014; Mackay et al., 2023) indicative of the metastable regime.
In fact, these behaviours can be observed in our robustness analysis
in Section 3.5 with the addition of heterogeneous frequencies. More
specifically, in Figure 9 we comment on the observation that at the
transition between coherence and incoherence, at around δω ≈ 10,
the metastability indexes detect large fluctuations in the order
parameters at all layers. Crucially, these metastable behaviours
are different in nature from the fluctuations we observed in
Sections 3.1–3.3. The systems we studied here are characterized
by the presence of identical oscillators and a homogeneous coupling.
In this case, one may expect a system to always reach the
synchronized state given enough time. However, as we have
discussed, fluctuations in the order parameters can still arise due
to the instability of chimera states in layer 2 (Section 3.2) or due to
the spontaneous (de) synchronization of modules in layer 1 when
the timescale separation between slow and fast modes is below a
critical threshold (Section 3.3). This distinction reflects the
important observation highlighted in (Hancock et al., 2023a) that
metastability is a dynamical regime rather than a mechanism.
Therefore, as we also point out here, multiple distinct
mechanisms can lead to the metastable regime.

Our systematic numerical analysis across different levels of
observation allowed us to detect and compare metastable
dynamics and chimera states in different hierarchical layers.
However, it also highlighted the limitations of the variation of
the whole-system KOP as a measure of metastability. For
example, while we detected metastability at the whole-system
level when the structural parameter ranged between 0.3 and 0.49,
layer 2 analysis revealed the presence of stable and breathing
chimera states instead. At the same time, metastable dynamics in
layer 1 remained entirely undetected in our analysis at the whole-
system level. In computational neuroscience, the variation of the
whole-system KOP is often used to tune whole-brain dynamical
models, and has been hypothesized to peak when the correlation
with dFC is maximised (Deco and Kringelbach, 2016). In the model
we studied, and which allows a more systematic analysis of the
indexes of metastability due to the model’s inherent modular
construction, the peaks in metastability were all found to be in
the same region of the parameter space, except for the value of
metastability of the modules in the unstable population (Figure 5C).
Therefore, our findings suggest that a thorough analysis across scales
should be performed when possible, and that the index of
metastability should be properly defined in terms of the relevant
order parameters of the system. This approach may help resolve
inconsistencies in the current literature, where maximising the
variation of the whole-system order parameter has not
necessarily aligned with the best empirical fit (Pope et al., 2023).

When dealing with empirical structural brain networks, such
analysis is often not possible due to the lack of well defined
communities and consequently the absence of clearly identified

relevant local order parameters of the system. Both in our model
and the Shanahan model (Shanahan, 2010), where the metastability
index was originally formulated, the systems exhibit a clear modular
structure, inherent to the system’s construction. Consequently, the
issue of identifying the relevant local KOPs is absent. Novel
approaches based on the harmonic decomposition of structural
connectomes (Atasoy et al., 2016; Atasoy et al., 2017) have been
proposed [see also the eigen-microstate approach (Zheng et al.,
2024)], which we suggest could overcome this problem. Within this
framework, dynamical functional connectivities can be
characterized by computing the contribution of each eigenmode
of the system at each point in time (Luppi et al., 2024; Zheng et al.,
2024). Inspired by the harmonic brain modes framework and the
work of Villegas and colleagues (Villegas et al., 2014; Villegas et al.,
2022; Villegas et al., 2023), we analysed our systems using the
spectral information of the graph Laplacian. Our analysis in layer
1 showed that when the relative separation of timescales between
modes is large enough the fast eigenmodes associated with dynamics
in the first layer do not contribute to the dynamics of the system,
since modules remain completely synchronized at all times. In layer
2, instead, we found that the slow modes of the system encode the
relevant information about the system’s behaviours at higher coarse-
grainings. In particular, the time-rescaled system reduced to the
two-population model for a specific range of parameters. These
results highlight the effectiveness of the LRG approach to identify
the critical mesoscale structures with a characteristic timescale, and
suggest that a similar approach may be used to identify the relevant
order parameters of the system at different levels of observation, as
well as the spectral profiles that may facilitate hierarchical
integration (Wang et al., 2021) in oscillatory systems.

The limitations imposed on the system have allowed us to study the
effects of the presence of amesoscale structure in isolation, however, it is
unclear if the behaviours we observed would persist with the addition of
structural heterogeneities such as core-periphery structures, and, in
particular, the presence of hubs. The rich club has been shown to change
the path towards synchronization (Gómez-Gardeñes et al., 2007) when
compared to random networks: rather than small clusters
synchronizing first, the subset of hubs and the nodes more strongly
connected to them synchronize first. The combination of rich club and
modular structure has also been investigated in (Arenas and Díaz-
Guilera, 2007; Zamora-López et al., 2016), highlighting the role hubs
play in the formation of isolated synchronized communities and their
contribution to the overall functional complexity. It remains unclear
how these structural heterogeneities affect systems of phase-lagged or
phase-delayed oscillators and, in particular, away from the critical
regime. As noticed in (Arenas and Díaz-Guilera, 2007), the
dynamical equation corresponding to a hub node is a topological
average of the phases of its neighbours. In the presence of
frustration, it is unclear if the frustrations get cancelled out,
promoting integration and synchronization, or have the opposite
effect. The answer to this will likely depend on the choice between
uniform or heterogeneous lags, or, with the addition of an underlying
metric space, heterogeneous delays.

Finally, we believe that the study of metastability in hyperbolic
networks (Krioukov et al., 2010) of oscillators might help address
these limitations. Hyperbolic networks have been shown to display
many of the universal properties of real-world networks (Krioukov
et al., 2010), including clustering, hubs, rich club, and modularity

Frontiers in Network Physiology frontiersin.org14

Caprioglio and Berthouze 10.3389/fnetp.2024.1436046

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2024.1436046


(Kovács and Palla, 2021; Balogh et al., 2023). Crucially, hyperbolic
networks come equipped with an underlying metric space, allowing
a geometric renormalization procedure (García-Pérez et al., 2018)
which has been shown to detect the possible organizing principles of
the brain (Zheng et al., 2020) across scales.
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