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The network nature of focal epilepsy is exemplified by mesial temporal lobe
epilepsy (mTLE), characterized by focal seizures originating from the mesial
temporal neocortex, amygdala, and hippocampus. The mTLE network
hypothesis is evident in seizure semiology and interictal comorbidities, both
reflecting limbic network dysfunction. The network generating seizures also
supports essential physiological functions, including memory, emotion, mood,
and sleep. Pathology in the mTLE network often manifests as interictal behavioral
disturbances and seizures. The limbic circuit is a vital network, and herewe review
one of the most common focal epilepsies and its comorbidities. We describe two
people with drug resistant mTLE implanted with an investigational device
enabling continuous hippocampal local field potential sensing and anterior
nucleus of thalamus deep brain stimulation (ANT-DBS) who experienced
reversible psychosis during continuous high-frequency stimulation. The
mechanism(s) of psychosis remain poorly understood and here we speculate
that the anti-epileptic effect of high frequency ANT-DBS may provide insights
into the physiology of primary disorders associated with psychosis.
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1 Introduction

Epilepsy is a common neurologic disease characterized by
recurrent seizures that impact over 60 million people worldwide
(Institute of Medicine Committee on the Public Health
Dimensions of the Epilepsies et al., 2012; Devinsky et al.,
2018). In addition to seizures, the quality of life for people
with epilepsy (PWE) can be markedly affected by psychiatric
and neurologic comorbidities (Institute of Medicine Committee
on the Public Health Dimensions of the Epilepsies et al., 2012).
Epilepsy is a network circuit disorder with dysregulation of
specific brain networks underlying sporadic seizures and
chronic comorbidities (Institute of Medicine Committee on
the Public Health Dimensions of the Epilepsies et al., 2012;
Spencer, Gerrard, and Zaveri, 2018; Lehnertz, Bröhl, and
Wrede, 2023). Anti-seizure medications are the mainstay of
epilepsy therapy, but over 1/3 PWE have drug-resistant
epilepsy (Kwan et al., 2011) and continue to have seizures
despite taking daily medications.

Mesial temporal lobe epilepsy (mTLE) is one of the most
common epilepsies. It is defined by focal seizures originating
from mesial temporal structures (J. Engel Jr, 2001; Berg, 2008)
that comprise part of the limbic circuitry (Papez, 1937; MacLean,
1949; Child and Eduardo, 2013) with seizures involving the
amygdala, hippocampus, and parahippocampal neocortex. mTLE
(Berg, 2008) is a common limbic circuit disorder with disabling
seizures and a high incidence of interictal psychiatric (Nadkarni,
Arnedo, and Devinsky, 2007; Kanner, 2009; Kanner, Ribot, and
Mazarati, 2018), memory (B. Bell et al., 2011; McAuley et al., 2010),
and sleep (MMS) disturbances (Devinsky et al., 2018; Moore et al.,
2021; Garg, Charlesworth, and Shukla, 2022). Destructive surgical
procedures are proven treatments for drug-resistant mTLE (Wiebe
et al., 2001; Engel Jr et al., 2012). Unfortunately, many people with
drug-resistant mTLE are poor surgical candidates because the
destruction of the circuit responsible for their seizures would
negatively impact memory (Engel et al., 2012; M. L; Bell et al.,
2009). The same limbic circuitry responsible for mTLE continues to
perform vital functions when it is not producing sporadic, disabling

FIGURE 1
Limbic Circuit of Papez and MacLean: McLean modified Papez version of the limbic circuitry and emphasized the amygdala and septum in addition
to hippocampus [20]. (A) Schematic of Limbic Circuit highlighting the closed-loop pathway from the entorhinal cortical (EC) input to hippocampus (HC).
The outflow of HC via the Fornix (fx) fibers spans the corpus callosum (CC) and divides into pre- (terminate in Septal Nuclei (SN)) and post- (terminate in
the mammillary bodies (MB)) CC commissural fibers. The post-commissural fibers project through the hypothalamus to the MB, and MB fibers
project viamammillary thalamic tract (MTT) to the anterior nucleus of the thalamus (ANT). (Note: TheMTT is widely used for direct targeting of the ANT for
ANT-DBS). The ANT output via anterior thalamocortical fibers to the anterior Cingulate Gyrus and back to EC and HC via the Cingulum. (B) Diffusion
tensor imaging (DTI) demonstrating white matter tracks discussed above. (C) Fast gray matter acquisition T1 inversion recovery (FGATIR) MRI sequence
visualizing the MB, MTT and ANT. (D)Human brain dissection demonstrating the MB andMTT connecting MB and ANT. (B)modified fromOjeda Valencia,
Gabriela, et al. “Signatures of Electrical Stimulation Driven Network Interactions in the Human Limbic System.” Journal of Neuroscience: 43, no. 39
(27 September 2023): 6697–6711. (C,D) modified from Grewal, S., et al. “Fast Gray Matter Acquisition T1 Inversion Recovery MRI to Delineate the
Mammillothalamic Tract for Preoperative Direct Targeting of the Anterior Nucleus of the Thalamus for Deep Brain Stimulation in Epilepsy.”Neurosurgical
Focus 45, no. 2 (2018).
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seizures. These treatment challenges are more pronounced for
people with normal structural imaging (M. L. Bell et al., 2009),
bilateral mTLE (Squire, 2009), or high baseline memory
performance. This has stimulated interest in non-destructive,
reversible options like electrical brain stimulation (Fisher and
Ana, 2014).

The human limbic circuit is a complex system involving
multiple brain structures and is essential for regulating
emotional processing, memory processing, and sleep and
alertness. The circuit is generally considered to include the
amygdala, hippocampus, anterior nucleus of the thalamus,
hypothalamus, cingulate cortex and fornix (Figure 1). The
amygdala (AMG) is critical for processing emotions and how
memories are influenced by emotion (Paré and Headley, 2023).
The HPC is critical for encoding memories in thalamocortical
networks including long-term, autobiographical memory (Baker
and Zeman, 2017; Lemesle et al., 2021). The anterior nucleus of the
thalamus (ANT) is crucial for regulating memory, sleep, and
alertness (Szabó et al., 2022). The hypothalamus regulates
homeostatic functions. The cingulate cortex plays a role in
emotional and cognitive processing and the fornix (FRX) is a
significant output tract from the hippocampus.

1.1 Ictal and interictal epileptiform
discharges mTLE

The symptoms and signs of TLE seizures have appeared in
medical literature throughout history (Temkin, 1994). Hughlings
Jackson, in the 19th century, described intellectual or “dreamy state”
temporal lobe seizures (Hughlings-Jackson, 1888; Hogan and Kitti,
2003). The seizures in people with mTLE are primarily diurnal,
occurring during the daytime (Durazzo et al., 2008; Mivalt
et al., 2023).

Interictal epileptiform spikes (IES) and pathological high-
frequency oscillations (Worrell and Gotman, 2011) are interictal
biomarkers of the epileptogenic brain with ultradian, circadian, and
infradian periodicities (Baud et al., 2018; Karoly et al., 2021).
Interestingly, the IES are increased in slow-wave sleep but
seizures are more likely in wakefulness in mTLE (Kremen
et al., 2024).

1.2 Interictal comorbidities of mTLE

It is widely appreciated that mTLE is associated with Memory,
Mood, and Sleep (MMS) Epilepsy Comorbidities. There are well-
known but poorly understood complex bidirectional interactions
between epilepsy, sleep (Grigg-Damberger and Foldvary-Schaefer,
2021; Moore et al., 2021), mood (Bølling-Ladegaard et al., 2023), and
memory (Blake et al., 2000).

Verbal and spatial memory deficits are a common problem in
mTLE, contributing to one of the major comorbidities affecting
quality of life (Milner, 1968; L. R; Squire and Zola-Morgan, 1991;
McAuley et al., 2010). Multiple studies show that IES in TLE can
impair memory task performance (Kleen et al., 2013; Matsumoto
et al., 2013; Horak et al., 2017). Accelerated long-term forgetting
describes difficulties that people with epilepsy have in retaining new

information over extended periods of time (Blake et al., 2000; Baker
and Zeman, 2017; Helmstaedter et al., 2019). Seizures and interictal
epileptiform spikes/sharp waves (IES) may interfere with the neural
process by which memories are stabilized and stored for long-term
use, i.e., the memory consolidation process (Blake et al., 2000). The
possibility that mTLE “hijacks” the physiological process of memory
and consolidation of engrams underlying the natural progression of
mTLE is interesting to consider and suggests that post-ictal
disruption of consolidation may be a viable treatment strategy
(Beenhakker and Huguenard, 2009; Bower et al., 2015; 2017).

Sleep disruption is common in epilepsy (Moore et al., 2021;
Garg, Charlesworth, and Shukla, 2022) and can be exacerbated by
thalamic deep brain stimulation (Voges et al., 2015; Szabó et al.,
2022; F; Mivalt et al., 2022; Kremen et al., 2024).

People with epilepsy have high rates of psychiatric comorbidity
and there is a well-established bidirectional relationship (Kanner,
Ribot, and Mazarati, 2018; Bølling-Ladegaard et al., 2023). The
lifetime prevalence of major depressive disorder and anxiety-related
disorders in epilepsy is 6% and 22%, higher than in the general
population (Tellez-Zenteno et al., 2007). The severity of depression
and anxiety symptoms can be better predictors of quality of life in
epilepsy than seizure frequency (Boylan et al., 2004; Johnson
et al., 2004).

Psychosis is a less common but clinically significant
phenomenon in mTLE (Nadkarni, Arnedo, and Devinsky,
2007). Psychosis symptoms in mTLE resemble those seen in
primary psychiatric disorders such as schizophrenia, including
hallucinations (typically auditory but also visual), delusions, and
paranoid thoughts. Psychosis is associated with seizures is
referred to as “ictal or post-ictal psychosis,” occurring during
or closely following a seizure. Interictal psychosis occurs
independently of seizure activity (Leutmezer et al., 2003;
Hilger et al., 2013).

1.3 Neuromodulatory treatment for drug-
resistant mTLE

Early investigations using thalamus deep brain stimulation
began with anterior nucleus of thalamus deep brain stimulation
(ANT-DBS) (Cooper and Upton, 1985) and centromedian nucleus
of thalamus (CMT-DBS) (Velasco et al., 1987). Later controlled
trials targeting vagus nerve stimulation (VNS) (E. Ben-Menachem
et al., 1999; Ben-Menachem, 2002; R. S; Fisher, 2012), deep brain
stimulation targeting the anterior nucleus of the thalamus (ANT-
DBS) (R. Fisher et al., 2010; Salanova et al., 2021), and responsive
neural stimulation (RNS) (Morrell and RNS System in Epilepsy
Study Group, 2011) lead to class-I evidence for drug-resistant
mTLE. But patients rarely achieve long-term, >1 year, seizure
freedom. The pivotal SANTE (Stimulation of ANT for Epilepsy)
trial proved duty cycle, high-frequency stimulation (145 Hz; 1 min
on and 5 min off) reduced seizures. However, ANT-DBS with
SANTE stimulation parameters rarely yields seizure-free
outcomes and can exacerbate mood, memory, and sleep (MMS)
comorbidities (Voges et al., 2015; Tröster et al., 2017; Szabó et al.,
2022). Despite increased mood and memory complaints in SANTE
standard neuropsychological assessments did not detect a change
(Tröster et al., 2017).
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Relatively little is known about ANT-DBS parameter
optimization (R. S. Fisher, 2023; Lundstrom and Gregg, 2023;
McIntyre et al., 2006) and assessment of MMS comorbidities
have largely relied on sparse data collected at clinic visits. Seizure
counts have relied on patient diaries that are known to be inaccurate
(Elger, 2014; Morrell, 2014; Osorio, 2014; Elger and Hoppe, 2018).
Advances in MRI imaging have significantly improved the targeting
for ANT-DBS (Figure 1) (Grewal et al., 2018; Järvenpää et al., 2020).
In summary, optimal ANT-DBS parameters for mTLE remain
unknown. Emerging device technologies are overcoming the gaps
and providing dense behavioral tracking and accurate seizure diaries
(Figure 2) (V. Kremen et al., 2018; Sladky et al., 2022; F; Mivalt et al.,
2022; Kremen et al., 2018; Filip Mivalt, Sladky, et al., 2023; Gregg
et al., 2020) to help optimize ANT-DBS parameters.

2 Case report of two patients
undergoing continuous high-
frequency ANT-DBS

Here, we describe two subjects implanted with an investigational
device (Medtronic Plc. Summit RC + S™) with continuous
hippocampal local field potential (LFP) sensing, enabling accurate
seizure diaries (Sladky et al., 2022; V; Kremen et al., 2018). The
patients each had over 1 year of weekly contact with the research and

clinical teams to assess device connectivity, signal fidelity, seizure
frequency, and clinical status. This close monitoring yielded the
following case narratives which are high-level summaries of both in-
person and remote clinical assessments and patient self-reported
symptoms. Although neuropsychological testing was performed at
fixed, pre-determined intervals during the study, additional
quantitative assessments were not performed at the time of the
patients’ psychotic symptoms. Both patients developed reversible
psychosis with continuous high-frequency ANT-DBS. The
psychosis resolved with the transition to duty cycle stimulation
(1 min on and 5 min off) as used in the SANTE trial.

2.1 Patient 1

A 57-year-old, ambidextrous female presented with a 40-year
history of epilepsy, depression, and anxiety. At 9 years old, she had a
significant head trauma associated with a brief loss of consciousness.
No imaging was performed at the time, and she made a complete
recovery. She did well in school, but at age 14 years she began having
sporadic episodes of déjà vu lasting less than a minute and without
loss of awareness. The spells became more intense in college, with
intense fear, depersonalization, and false memories lasting 1–2 min
in duration. By age 21, the spells commonly progressed to
generalized tonic-clonic convulsions. She was started on

FIGURE 2
Human limbic circuit electrophysiology. Continuous LFP streaming was used to track mesial temporal lobe and ANT electrophysiology in people
with mTLE living in their natural home environment. (A) Synchronized bidirectional communications between patients, implantable neural sensing-
stimulation devices, mobile devices, and cloud computing infrastructure enable monitoring electrophysiology. Top) Implanted neural sensing and
stimulation device in subclavicular pocket (1). The implanted devices have bidirectional communication with the mobile device (2) and cloud
environment (3). Bottom) Lateral x-ray post-implant showing the 4 leads implanted in bilateral ANT and AMG-HPC. (B) Top) Continuous LFP overmultiple
hours. Bottom) Circles highlight automated IES and seizure detections on mobile devices (tablet computers). (C) Co-registration of CT and MRI-DTI
demonstrating the posterior approach to the AMG-HPC and ANT for brain sensing and stimulation electrodes.
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anti-seizure medications that eliminated the convulsive seizures, but
she continued to have seizures with loss of awareness despite
multiple anti-seizure medications (ASMs) trials.

She reported a long-standing history of anxiety, stating she
awakened each day with fear about having a seizure. She had a
history of depression accompanied by low mood, anhedonia,
decreased appetite, tearfulness, and insomnia. She had no prior
history of mania, hypomania, or psychosis.

She underwent a comprehensive evaluation for drug-
resistant epilepsy.

1) Laboratory studies were unremarkable, including an
autoimmune epilepsy panel.

2) MRI was unremarkable except for subtle indistinct bilateral
hippocampal internal architecture and possible left amygdala
enlargement.

3) EMU: Video-EEG monitoring showed frequent bilateral
temporal intermittent rhythmic delta activity and
independent, left greater than right, temporal epileptiform
sharp waves. Focal impaired aware seizures (FIAS),
originating from both the left and right temporal head
regions, were recorded.

4) Stereo EEG: Four left hippocampal onset FIAS and two right
hippocampal onset FIAS were recorded.

5) Presentation at epilepsy surgery conference: Consensus
recommendation for neuromodulation with bilateral mesial
temporal RNS, ANT-DBS, or investigational study.

6) The patient was consented for the FDA-IDE (https://
clinicaltrials.gov/study/NCT03946618) and underwent
placement of Medtronic RC + S™ device with 4 leads
(bilateral anterior nucleus of thalamus and bilateral
amygdala-hippocampus).

As part of the FDA-IDE protocol, she was admitted to hospital
epilepsy monitoring unit (EMU) for neurostimulator programming
prior to initiation of long-term ambulatory stimulation. She
tolerated multiple trial stimulation paradigms and did report a
decrease in seizures with ANT 2 Hz stimulation, but continued
COVID-19-related anxiety affected her appetite and mood, and
continued irritation and stable dysphoria. A subsequent trial of
high-frequency ANT-DBS (continuous 145 Hz, 90 PW, 3–5 mA)
significantly exacerbated her COVID-19-related anxiety, anorexia,
and dysphoria. Within a month of initiating continuous high-
frequency ANT-DBS, she reported increasing anxiety and
worsening insomnia and mood. She continued to lose weight. A
trial of mirtazapine for her anxiety, insomnia, and decreased
appetite was not helpful. She subsequently reported “daymares”
associated with dissociative symptoms and a sense of inability to
distinguish dreams from reality. Transition to duty cycle HF ANT-
DBS (SANTE parameters) quickly improved her symptoms of
insomnia, anxiety, daymares, dissociation, and difficulty
distinguishing between dreaming and reality.

Subsequent trials of low frequency (2 Hz continuous 3 mA,
200 μs PW) were associated with decreased frequency and severity of
seizures as well as subjective and clinically assessed improved mood
and anxiety. She reports improvement in her sleep, although she
believes her dreams have been disrupted. The patient continues to
maintain stable mood, weight, and sleep (Kremen et al., 2024).

2.2 Patient 2

A 41-year-old, right-handed female with a long-standing history
of epilepsy, major depression, and anxiety. She had no risk factors
for epilepsy. At the age of 37 years old, she had an unprovoked
generalized tonic clonic (GTC) from sleep. In the subsequent
months, she developed FIAS with staring, behavioral arrest, and
unresponsiveness occurring as often as weekly. With ASMs, she no
longer had GTC but continued to have weekly FIAS. She also
received a trial of immunotherapy after elevated GAD65 was
identified in CSF and serum without benefit. She had a VNS
implanted that decreased seizures by approximately 25%, but
despite ASM and VNS optimization, she continued to have
multiple FIAS each month.

Her mood symptoms began about 5–6 years before her initial
seizure. Her anxiety revolved around concerns about her children,
the future, her health, and seizures. Her depression was often
accompanied by insomnia, decreased appetite, tearfulness, and
hopelessness. She had no prior symptoms consistent with
hypomania, mania, or psychosis although she had a history of a
5-day episode of hyperactive delirium during her sEEG monitoring
which resolved with discontinuation of anticholinergic medications.
Her neuropsychology testing showed deficits in delayed memory for
both verbal and visual information, referable to bilateral mesial
temporal dysfunction.

1) Laboratory studies were remarkable for elevated GAD-65 in
serum and CSF.

2) MRI showed an increased T2 signal in the left hippocampus
but with normal volumetric measurements.

3) EMU: Video-EEG monitoring showed bilateral independent,
left greater than right, temporal epileptiform sharp waves.
FIAS seizures originating from the left and right temporal head
regions were recorded.

4) Stereo EEG: A single left hippocampal onset seizure was
recorded. The evaluation was complicated by a period of
agitation and psychosis requiring Haldol.

5) Presentation at epilepsy surgery conference: Consensus
recommendation for neuromodulation with RNS or
possibly ANT-DBS, but given the findings during sEEG,
ANT stimulation was considered a higher risk of side
effects. She was a possible candidate for left mesial temporal
destructive procedures with laser interstitial thermal therapy
(LITT) (Youngerman et al., 2023) or left anterior temporal
lobectomy with amygdala-hippocampectomy (Wiebe et al.,
2001). However, given the normal hippocampal volume and
left-brain dominance the likely impact on verbal memory was
not acceptable to the patient.

6) The patient was consented for FDA-IDE (https://clinicaltrials.
gov/study/NCT03946618) and underwent placement of
Medtronic RC + S™ device with 4 leads (bilateral anterior
nucleus of thalamus and bilateral amygdala-hippocampus).

One month later as part of the FDA-IDE protocol, she was
admitted for neurostimulator programming prior to initiation of
long-term therapeutic ANT-DBS. With continuous 145 Hz
stimulation, 4 mA, 90 µs cycling, the patient had an
approximately 1-h episode with elevated respiratory rate,
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dyspnea, disorientation, and visual hallucinations. She became
anxious and described a visual hallucination of being in a long
room with many beds. She was considerably agitated and concerned
about her family. She repeatedly called her husband, who helped
calm her, but she continued to perseverate with concerns about her
children. There was no change in the scalp EEG or the ANT and
HPC recordings during the event, and this was different from her
typical seizure semiology. Her stimulation was adjusted to
continuous 2 Hz with the same current, and she rapidly
improved. Later in the trial she also received duty-cycle high
frequency ANT-DBS (SANTE parameters) without side effects.

With ANT-DBS, her seizure frequency decreased 90% from
baseline and 50% from VNS, and she reported decreased seizure
severity with both low and high frequency duty cycle ANT-DBS. She
continues to report substantially improved functional status, and no
worsening of depressive or anxiety symptoms throughout continued
responsive ANT-DBS stimulation. No other episodes of psychosis
reported. Each of her mood, memory, and sleep symptoms
improved with extended time without seizures.

3 Discussion

High-frequency duty cycle ANT-DBS is a proven therapy formTLE
(R. Fisher et al., 2010). The precise neurobiological mechanisms for the
effectiveness in reducing seizures remain poorly understood. Similarly,
the mechanism(s) that underlie psychosis in TLE are not well
understood (Nadkarni, Arnedo, and Devinsky, 2007). Here we were
able to rule out the patients’ habitual mTLE seizures with continuous
hippocampal LFP streaming (Figure 2).

New-onset psychiatric issues are not uncommon following
ANT-DBS, with depression being the most common (R. Fisher
et al., 2010; Salanova et al., 2015; Tröster et al., 2017). Interestingly,
an early study even reported improvement in seizures and psychosis
with ANT-DBS (Upton et al., 1985). In a study by Järvenpää et al.
(Järvenpää et al., 2018), 2 of 22 patients (9%) developed psychosis
following ANT-DBS that resolved with programming changes.
Notably, there were no group-level declines in mood or memory
status following ANT-DBS in the open-label follow-up of the
SANTE cohort (Tröster et al., 2017).

The precise neurobiological mechanisms that underlie psychosis
in TLE are not fully understood. Hypotheses include
neurotransmitter imbalance, especially serotonin and dopamine,
inflammatory cytokines, and genetic predispositions. High-
frequency ANT-DBS desynchronizes HPC LFP activity
(Stypulkowski et al., 2014; Yu et al., 2018) and fragments sleep
(Voges et al., 2015; Szabó et al., 2022; Kremen et al., 2024) that could
contribute to psychosis. Disorders of neural synchrony have been
proposed as a mechanistic model for schizophrenia (Uhlhaas and
Singer 2010). Additionally, the effect of ANT-DBS on sleep may be
related to its impact on surrounding thalamic nuclei. In particular,
HF stimulation of central laminar thalamus has been shown to
promote arousal and would likely disrupt sleep (Redinbaugh et al.,
2020). In the future, it may be possible to further dissect the
underlying mechanism of ANT-DBS related psychosis.

In the current study, limiting high-frequency ANT-DBS to duty
cycle paradigms (1 min on and 5 min off) appeared to be better
tolerated. In the setting of electrical brain stimulation, it is essential

to recognize psychiatric side effects early, adjust stimulation
parameters, and consider pharmacologic interventions such as
antipsychotic medications (de Toffol et al., 2018). It is often
difficult to rule out the role of seizure activity in the development
of psychosis in people with TLE. However, in this report with
continuous LFP tracking and seizure detection we were able to
demonstrate that seizures did not explain their psychosis.

In conclusion, ANT-DBS in people with mTLE is not
uncommonly associated with exacerbation, or even new onset of
psychiatric symptoms (Tröster et al., 2017). It is critical to quickly
recognize the development of new symptoms or exacerbation of
prior symptoms. Fortunately, here the symptoms were responsive to
programming changes in these two patients.
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