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Sleep, or the lack thereof, has far-reaching consequences on many aspects of
human physiology, cognitive performance, and emotional wellbeing. To
ensure undisturbed sleep monitoring, unobtrusive measurements such as
ballistocardiogram (BCG) are essential for sustained, real-world data
acquisition. Current analysis of BCG data during sleep remains challenging,
mainly due to low signal-to-noise ratio, physical movements, as well as high
inter- and intra-individual variability. To overcome these challenges, this work
proposes a novel approach to improve J-peak extraction from BCG
measurements using a supervised deep learning setup. The proposed
method consists of the modeling of the discrete reference heartbeat
events with a symmetric and continuous kernel-function, referred to as
surrogate signal. Deep learning models approximate this surrogate signal
from which the target heartbeats are detected. The proposed method with
various surrogate signals is compared and evaluated with state-of-the-art
methods from both signal processing and machine learning approaches. The
BCG dataset was collected over 17 nights using inertial measurement units
(IMUs) embedded in a mattress, together with an ECG for reference
heartbeats, for a total of 134 h. Moreover, we apply for the first time an
evaluation metric specialized for the comparison of event-based time series
to assess the quality of heartbeat detection. The results show that the
proposed approach demonstrates superior accuracy in heartbeat
estimation compared to existing approaches, with an MAE (mean absolute
error) of 1.1 s in 64-s windows and 1.38 s in 8-s windows. Furthermore, it is
shown that our novel approach outperforms current methods in detecting the
location of heartbeats across various evaluation metrics. To the best of our
knowledge, this is the first approach to encode temporal events using kernels
and the first systematic comparison of various event encodings for event
detection using a regression-based sequence-to-sequence model.
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1 Introduction

Sleep has a profound influence on the physical and mental
functioning of the following day, especially when it is lacking. Restful
sleep promotes physical regeneration (Jakowski et al., 2023) and the
performance of the immune system (Garbarino et al., 2021), as well
as cognitive performance (Brownlow et al., 2020), motor dexterity
(Craven et al., 2022) and emotional stability (Tomaso et al., 2021).
Disturbed sleep can lead to serious chronic health problems such as
cardiovascular disease, endocrinological dysregulation, and a range
of psychological impairments (Itani et al., 2017). To elucidate the
dynamics and interactions of sleep, a comprehensive understanding
of sleep patterns and stages is essential. The gold standard for
objectively measuring sleep is polysomnography (PSG), which
integrates electroencephalography, electromyography, and
electrooculography. However, PSG recordings are time-
consuming, the equipment is costly, and trained personnel are
required to ensure sufficient signal quality. These drawbacks limit
the sample sizes of PSG studies and render them unsuitable for
longitudinal studies. Recent trends in sleep research indicate that
high-accuracy estimations of sleep stage fluctuations can be derived
from variations in signals such as inter-beat interval (IBI) time-series
(kranzinger et al., 2023) or alterations in respiratory effort over time
when analyzed with machine learning models.

Today, IBI time-series can be accurately recorded using
inexpensive consumer devices, making inter-beat intervals a
promising signal for large-scale sleep studies aimed at gaining
new insights into sleep. State-of-the-art sensors for measuring
heartbeats can be categorized into on-body (wearables) and off-
body (contactless) solutions. On-body systems include devices
directly attached to the body, such as electrocardiography and
photoplethysmography to acquire electrocardiograms (ECG) and
photoplethysmograms (PPG). PPG wearables, typically mounted on
the wrist, arm, or earlobe, measure heartbeats by detecting periodic
changes in the optical reflection of emitted light caused by blood
pulses under the skin.

Contactless sensor systems mainly involve camera-based
systems as well as ballistocardiography. Camera-based systems
sense minor periodic changes in the skin color caused by blood
pulses. Ballistocardiography is a sensor system that measures subtle
accelerations of the human body, including cardiovascular and
respiratory activity, that are plotted in ballistocardiograms (BCG).
The heartbeat events in BCG are referred to as J-peaks and are
caused by the contraction of the heart which results in the ejection of
blood into the aortic arch where the direction of flow is changed,
creating a momentum (Giovangrandi et al., 2011). Therefore, the
systolic J-peak occurs after the electrical trigger, i.e. the R-peak, as
accessed from an ECG. These events also occur closer to the heart
and are sharper in their waveform than camera-based solutions or
PPG, where the monitored pulses are measured at the skin or wrist.

The delay between the electrical activation of the heartmuscle to the
greatest vertical force as measured by a BCG-system is referred to as RJ-
interval. A schematic ECG and BCG with their corresponding QRS-
and IJK-complexes are illustrated in Figure 1. According to the
literature, the RJ-intervals vary typically between 180 ms and
240 ms and change slowly over time (Casanella et al., 2012). J-peaks
in BCG occur closer to the heart and are sharper in its waveform than
PPG, which measures pulses at the skin or wrist.

The inter-subject variability is caused by different causes such as
body mass, heart size, body placement relative to the fixed sensor
position, body alignment, and also the physiological state of the
subject. Additionally, the BCG also depends on the used sensor type
and setup Sadek and Abdulrazak (2021). Some activities, such as
paced respiration, can induce hemodynamic changes that affect the
RJ-interval by 150 ms–300 ms (Casanella et al., 2012; Gomez-
Clapers et al., 2014).

Ballistocardiogram can be implemented using different sensor
technologies. The most commonly used are inertial measurement
units (IMU) (Cathelain et al., 2020), electromechanical films (Sadek
and Abdulrazak, 2021), or piezoelectric (Zhou et al., 2021; Liu et al.,
2022), hydraulic- (Heise and Skubic, 2010) or pneumatic- (Pröll
et al., 2019) pressure sensors. In each case, the sensor is integrated
into the mattress, pillow, mat or chair underneath the person,
allowing for an unobtrusive measurement. This type of
unobtrusive measurement in particular offers a seamless
recording of sleep data over several weeks at home without the
need for a sleep laboratory, as no sensors or wearables need to be
actively applied or activated. Data acquisition is activated simply by
lying in bed.

Off-body measurement systems therefore offer a more elegant
and unobtrusive means of recording physiological information over
extended periods, as they typically require minimal interaction with
the recording device, thereby reducing distress and potential user
resistance associated with long-term use of wearables. However, as
the indirect measurement leads to a decreased signal-to-noise ratio,
detecting individual heartbeats from contactless sensors is
significantly more challenging compared to wearables. This
limitation of contactless devices is critical, as the accuracy of
automatic sleep stage classification based on IBI time-series
depends on the temporal precision of the captured IBIs.
Therefore, advancements in heartbeat extraction from BCG
are crucial.

FIGURE 1
Single beat of an ECG (top) and BCG (bottom) with their
annotated main waves and RJ-interval (Gomez-Clapers et al., 2014).
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Given the suitability of ballistocardiography for unobtrusive
long-term sleep measurement, and the availability of improved
machine learning algorithms and computational resources, there
is an increasing amount of research focused on heartbeat extraction
from BCG. Research has shown that J-peaks can be used to predict
the subject’s sleep stages and therefore sleep quality (Kranzinger
et al., 2023). This work proposes a novel approach to model
heartbeat events as a continuous signal, thereby improving the
accuracy of heartbeat extraction within a supervised deep
learning framework. The primary objective is to evaluate various
heartbeat event representations in combination with different deep
learning network architectures for J-peak detection in BCG signals
and to compare them with existing methods.

Section 2 introduces the state-of-the-art methods and reasons
why machine learning approaches might offer advantages in
overcoming existing limitations of current contact-less methods.
Section 3 provides a formal introduction to the problem from a
theoretical perspective, and Section 4 presents the proposed method
and evaluation of the methods. In Section 5 the results of the method
comparison are presented. Finally, the findings are discussed in
Section 6 and concluded in Section 7.

2 Related work

The classical approach for the detection of heartbeats in
ballistocardiogram (BCG) is the Pan-Tompkins algorithm (Pan
and Tompkins, 1985). This algorithm was initially developed for
ECG and is based on classical signal processing techniques, such as
low and high-pass filtering, derivates, functional mappings, and
averaging. Using the thereby processed signal, a peak detection
algorithm is applied to detect the characteristic R-peak of the ECG.
However, the low signal-to-noise ratio of BCG data limits the
detection of heartbeats using the same approach. Hence, the Pan-
Tompkins algorithm was adapted for the application on BCG data.
Most solutions employ a bandpass filter as the initial processing step,
with a recommended system bandwidth ranging from 1.5 Hz to
22.5 Hz. This frequency band encompasses all relevant
cardiovascular signals while filtering out respiratory activity and
movements (Gomez-Clapers et al., 2014). For instance, Pröll et al.
(2019), applied the following sequential processing steps: bandpass
filter, cubic function, low-pass filter, second order derivate, absolute
value function, and low-pass filter (Pröll et al., 2019). This
processing pipeline transforms the raw BCG signal into a signal
that exhibits the characteristic J-peak of the BCG more significantly.
A subsequent peak detection identifies the IJK-complex that is
analogous to the QRS-complex in ECG.

Other classical signal processing approaches apply wavelet
transformations, template matching, or signal envelopes (Pino
et al., 2017; Sadek and Abdulrazak, 2021). Additionally, some
approaches apply methods in the frequency domain (Brüser
et al., 2011). Analogously, classical signal processing approaches
for R-peak extraction in noisy ECG and PPG measurements are
based on a similar combination of algorithms (Nguyen et al., 2019;
Yun et al., (2022)).

As pointed out in Section 1, the substantial inter- and
intrasubject variability of BCG as well as the low signal-to-noise
ratio remain major challenges of the J-peak extraction in BCG

measurements. In order to address these challenges, neural
networks can be used that are effective in capturing the
variability of BCG within a data-driven supervised machine
learning setting. Pröll et al. (2021); Sadek and Abdulrazak (2021)
demonstrated that their deep learning approach, using a
combination of convolutional neural networks (CNN) and
recurrent network layers (LSTM and GRU) of different sizes, has
improved the accuracy of estimating the mean heart rate within 8 s
epochs by more than 50% in terms of MAE compared to five state-
of-the-art digital signal processing approaches (from 4.24 to 2.07).
This approach estimates the heart rate from a BCG signal and
compares it with a reference heart rate as accessed from an ECG.
Other approaches apply deep learning models to approximate a
signal with characteristic J-peaks. For example, Cathelain et al.
(2020); Zhou et al. (2021) have applied the U-net architecture
and (Liu et al., 2022) a combination of Residual Networks
(ResNet) and long-short term memory (LSTM). Most of these
methods, both based on traditional digital signal processing and
neural networks, have in common that they process the input BCG
data to emphasize the J-peaks. Moreover, for all deep learning
models found in literature review, the discrete J-peak-events are
represented as a time-series encoded with a binary masking. This
binary masking, however, may lead to inaccurate peak detection, as
further discussed in Section 3.

In this work, a method based on deep learning is proposed,
which transforms a BCG measurement into a one-dimensional
time-series, from which the discrete heartbeat events can be
detected more precisely. The objective of the work is to compare
the effect of different heartbeat encodings on J-peak detection
accuracy using a fixed neural network architecture, and to
compare the proposed method against state-of-the-art
approaches. Thereby, we investigate improved encodings of
heartbeat events in order to facilitate an optimized J-peak detection.

3 Problem formulation

The objective of J-peak detection in BCG is to estimate the
timestamps of heartbeat events P in time-series data X.
Consequently, a J-peak detector implements an algorithm that
maps X to P. The input BCG are single- or multichannel
measurements, which are represented as X ∈ Rn×k with k being
the number of channels and n the number of equidistantly
sampled measurement points. In order to detect heartbeats
present in X, each deep learning approach for J-peak
detection mentioned in Section 2 models the J-peaks, a set of
event timestamps P � {p ∈ R}, with a binary event-hot encoding
in the corresponding target time-series y ∈ Rn. Additionally, a
small area of interest around the peak with a width of τ may also
be encoded with one. In the context of this work, y is referred to
as surrogate signal. The majority of machine learning models M
employed for this task are implemented as sequence-to-sequence
models, which learn the following mapping Eq. 1:

M: X ↦ y (1)
Given that an ideal model M is unlikely to exist, the

approximation of the target surrogate signal y is defined as
ŷ ≔ M(X). Subsequent to model inference, the estimated time-

Frontiers in Network Physiology frontiersin.org03

Schranz et al. 10.3389/fnetp.2024.1425871

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2024.1425871


series ŷ is frequently subjected to post-processing in order to
enhance the clarity and centering of the characteristic peak. This
can be achieved by utilizing a low-pass filter or a moving average.

Finally, a classical peak detection algorithm is applied, with
temporal and magnitude thresholds that have been optimized
for the purpose of extracting heartbeats. Furthermore, the
algorithm may also employ adaptive thresholds. Formally, the
set of J-peaks P̂ � {p ∈ R} is extracted from the approximated
surrogate signal ŷ using a peak detection algorithm. The
individual timestamps of the heartbeats, denoted by p,
constitute the elements of the set.

We hypothesize that the state-of-the-art method of binary
event-hot encoding of heartbeats may not be optimal for J-peak
detection, resulting in imprecise event detection. The surrogate
approximation ŷ may be skewed after the low-pass post-
processing, which could lead to inaccurate peak detection.
Consequently, it is postulated that the encoding of heartbeats,
designated as “kernels” in this paper, exerts a significant
influence on the efficacy of subsequent J-peak detection.

To the best of our knowledge, no existing literature addresses the
optimal kernel for the encoding of J-peaks with the aim of improving
the precision of J-peak detection. A more general literature review,
not limited to BCG data, revealed a single similar approach to event
extraction from time-series data using deep learning (Azib et al.,
2023). This work provides a theoretical framework for event
detection in time-series for interval-based events, which was

validated on fraud events. In this paper, we propose multiple
encodings of heartbeats for generating the surrogate signal and
empirically evaluate them with the aim of optimizing the J-peak
detection P̂ by aiding the model to learn M: X ↦ ŷ. The method
will be introduced in detail in Section 4.2.

4 Materials and methods

4.1 Data acquisition

The dataset comprises both the BCG and ECG, which were
collected from 11 participants over a period of approximately 8 h
during 17 nights of sleep. The data were collected as part of the
Virtual Sleep Lab project, as detailed in Kranzinger et al. (2023). The
electrocardiogram (ECG) was recorded using the BrainAmp
Standard Amplifier (Brain Products GmbH, Germany), a
laboratory-standard device known for high-quality recordings.
The BCG was measured using an inertial measurement unit
(IMU) with a 16-bit resolution (0.06 mg/LSB), and was mounted
within the mattress centrally underneath the expected position of
the subjects’ chests. The accelerations in three dimensions were
sampled at a rate of 1,000 Hz. Subsequently, the signal was
interpolated with a cubic spline and resampled at 64 Hz. In total,
more than 140 h were measured, with an average interbeat interval
(IBI) of 0.92 s.

FIGURE 2
Complete processing pipeline of the proposed method, including synchronization with ground truth heartbeats accessed from the ECG,
preprocessing, neural networks as well as post-processing to extract the J-peaks from the approximated surrogate signal.
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4.2 Proposed method

For BCG, no ground truth J-peaks annotations exist. Therefore,
the reference heartbeats from the simultaneous ECG measurement
are accessed. The evaluated event detectors are quantified by
comparing the estimated J-peaks with the related reference
R-peaks using multiple evaluation metrics. Figure 2 depicts the
complete processing pipeline of the proposed method. Within this
section, each part of the pipeline, from high-precision data
synchronization to the final extraction of the estimated J-peaks,
is explained in detail.

4.2.1 High-precision data synchronization
A supervised machine learning setting requires ground truth

heartbeat events that can be detected from ECG or the less accurate
photoplethysmogram (PPG). According to the literature, the RJ-
intervals, i.e., the time delay between R-peak and J-peak, vary
typically between 180 ms and 240 ms. They may depend on
certain factors, such as respiration, however, their changes are
slow (Casanella et al., 2012).

In supervised machine learning setups for the J-peak detection
utilizing R-peaks extracted from a synchronized ECG as target
events, this would lead to varying RJ-intervals along the
measurement. A practical approach would be to assume a
constant RJ-interval per measurement as correct time-delay.
However, the variation of 60 ms of the RJ-interval might lead to
a suboptimal heart peak detection precision.

In this work, this issue is addressed by applying a non-linear
time-delay synchronization for event-based time-series data
(Schranz et al., 2024) between J-peaks and their corresponding
R-peaks such that the slowly varying RJ-intervals can be
approximated to zero for all J-peaks across the measurement.

As a first preprocessing step, a highly accurate time delay
estimation between ECG and BCG is performed using the
nearest-advocate package (Schranz et al., 2024). As this algorithm
requires event-based time series data, the R-peaks were extracted
from the ECG and the J-peaks from the BCG using a digital signal
processing approach (Pröll et al., 2019). This algorithm was used
because signal processing methods tend to be more robust on a new
dataset, although there are likely to be more precise methods. The
nearest-advocate package was also used to reduce non-linearities
caused by non-linear clock drifts in the measurement systems and
physiological variations that cause changes in RJ intervals.

The resulting dataset therefore has a three-dimensional BCG
and corresponding R-peak events that are temporally aligned with
the target J-peaks. This initial preprocessing step will make
subsequent machine learning models more invariant to changing
RJ intervals.

4.2.2 Preprocessing
Windows with a duration of 64-s are sampled from the subjects.

Each BCG consists of three channels representing the x, y, and z-axis
of the IMU. A bandpass filter with cutoff frequencies of 4.0 Hz and
25 Hz was applied to each of the three dimensions of the raw BCG
signal. According to the standardization approach of (Gomez-
Clapers et al., 2014), the high-pass cutoff-frequency should be
lower, such as 1.5 Hz, but our hyperparameter optimization has
shown that the pipeline yield improved results if signals below

4.0 Hz are omitted. The bandpass-filtered signal is then normalized
using the interquartile range, which is less sensitive to outliers than
standard z-score normalization.

The nearest-advocate time-delay estimation was then applied
again within the range of −2 to +2 s to ensure a proper signal quality
and synchronicity for BCG and ECG. Windows with a time-delay of
0.1 s or more between R-peaks and preliminary J-peaks were
omitted from the training dataset. Although this discarded
approximately 32% of the windows, no systematic bias was
introduced because the synchronization between ECG and BCG
is independent of signal quality and only the latter affects the quality
of subsequent model training. All windows were used for the
validation dataset.

4.2.3 Heartbeat encoding of the target R-peak
The core of the proposed approach is the special encoding of

heartbeats by a surrogate signal, which is depicted in Figure 3. The
reference heartbeats as extracted from an ECG are illustrated in red
vertical lines, with four surrogate signals with different encodings.
The surrogate signal is the target function that is learned by the
neural network. The purpose of the surrogate signal is that the
subsequent peak detection is more accurate on the surrogate
approximation of the deep learning model.

Therefore, within the scope of the paper, three different kernel
shapes, i.e., quadratic, triangular and rectangular, will be empirically
evaluated with the aim of finding the most suited kernel for aiding
the model to learn ŷ. All of these kernels share the properties of
being symmetric around the reference heartbeat in the center at a
maximum. Note that the rectangular encoding reflects the binary
masking of the heartbeat with additional area of interest.
Additionally, the distance-time encoding as proposed by
(Vijayarangan et al., 2020) for the similar field of R-peak
detection in ECG was evaluated. A surrogate signal generated by
distance-time encoding has the property, that for any timestamp in
y the value represents the distance to the closest heartbeat.

4.2.4 Deep learning models
Two network architectures are evaluated, both implementing a

sequence-to-sequence approach, that estimates an equidistant time-
series y referred to as surrogate signal.

4.2.4.1 Convolutional neural network
To approximate the surrogate signal, a convolutional neural

network (CNN) with three layers of 64, 128, and one channel each is
used. The kernels of 5, 65, and 129 are set to become increasingly
wider. The model uses the ReLU activation function as a nonlinear
mapping between layers and a batch size of 32. The training uses the
Adam optimizer with a learning rate of 0.0001 for 40 epochs.

4.2.4.2 Residual Network
Additionally, a Residual Network (ResNet) is applied, as several

works in the literature have used a variant of the related ResNet or
U-Net architectures (Cathelain et al., 2020; Zhou et al., 2021; Liu
et al., 2022). To do this, the initial convolutional layer has 8 channels
with a kernel width of 5. Then a ResNet with two convolutional and
two deconvolutional residual blocks, each with a step size of 2 was
applied. Batch normalization and a 40% dropout were applied
between each residual block. Finally, a single-channel
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convolutional layer with a kernel width of 5 was applied. All other
properties are the same as for the CNN.

4.2.5 Post-processing
Since the output of the network is an approximation of the

surrogate signal ŷ, post-processing is necessary. For this purpose,
the model output was smoothed with a second-order low-pass filter
with a cut-off frequency of 7.5 Hz. Finally, a peak detection was
performed using the scipy-package, with the following parameters:
distance = 20, height = 0.01, and prominence = 0.1.

4.3 Evaluation

The comprehensive method evaluations in (Pröll et al., 2021)
only target the accuracy of estimated mean heart rates within 8-s
windows. However, the implicit aggregation of heartbeats to mean
heart rate limits the applicability for further analyses. For example,
the calculation of heart rate variability metrics relies on interbeat
intervals (IBI) and reflects a person’s physiological state and health
(Shaffer and Ginsberg, 2017). In addition, most sleep stage
classification algorithms rely on IBIs as input, i.e., interpolation
of the temporal differences between successive heartbeats
(Kranzinger et al., 2023).

Since the temporal detection of heartbeats is also important for
the subsequent analysis of heartbeats, the detected J-peaks are
evaluated using complementary criteria. The following metrics
are used for comparison:

1. HR MAE: The estimation of heart rates within the full 64-s
windows, with deviations reported as mean absolute
error (MAE).

2. HR MAE 8 s: Estimation of heart rates within a reduced
window of 8 s to establish comparability to the proposed
methods in of Pröll et al. (2021).

3. NAd_sym (ms): The Nearest-Advocate criterion (Schranz
et al., 2024). This quantity is designed to measure the
synchronicity between a pair of event-based time series. The
resulting value after time-delay correction reflects the average
distance between each detected J-peak, and its nearest
reference R-peak. The algorithm is applied symmetrically
and results are provided in milliseconds (ms). This measure
considers only the temporal deviation of detected heart peaks.

4. IBI MAE (ms): MAE between the interbeat interval (IBI) of
the detected J-peaks and the reference IBI. Since the precision
of the detection is high, the results are given in
milliseconds (ms).

In the cross-validation procedure, the individual windows were
grouped by subject in order to obtain an unbiased estimator for new
subjects. The hyperparameters of the pre-processing, the model, the
kernel width, and the post-processing were optimized using a grid
search approach.

5 Results

Figure 4 shows the intermediate and final results of the proposed
J-peak detection pipeline for an exemplary 10-s window. The 3-
channel BCG measured by an acceleration sensor from which the
heartbeats are to be detected is shown in the lower plot. In both plots,
the surrogate signal is illustrated in gray. The heart beats are encoded
with triangular kernels, with a center at the exact temporal position
of the peak. Heartbeats that are closer together than the kernel width
cause interference with super-position, as shown around second
11 in the plot.

The approximation of the surrogate signal (orange) is very
similar to the target for clean BCG signals. For noisy episodes in
BCG, the approximation remains higher for areas between heart
beats, indicating a higher uncertainty of the deep learning

FIGURE 3
Encoding of the reference heartbeat events in (vertical red lines) with multiple surrogate signals with different encodings.
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estimation. However, even in the noisy area between the 10th and
13th second, the proposed method is able to accurately detect the
heart beats.

Table 1 summarizes the results of the experiments. The four
measures provided per method are described in Section 4.3. We
evaluated our proposed methods against several existing methods,

FIGURE 4
(A) The triangular signal (gray) with its approximation by the neural network (orange) and detected heartbeats using peak detection. (B) 3-axis BCG
with indicated triangular surrogate signal (gray) and the J-peaks as detected by (Pröll et al., 2019) (blue) and with the proposed method and CNN-
architecture (red).

TABLE 1 Results for each method, with reported mean and standard deviation across subjects. For each evaluation metric, the best result is indicated in
bold.

Method/Model HR MAE HR MAE 8 s NAd_sym (ms) IBI MAE (ms)

Pino et al. (2017) 3.01± 2.3 3.83± 2.5 65.6± 18 57.6± 29

Choe and Cho (2017) 4.81± 3.9 5.74± 4.2 69.6± 21 101± 66

Brüser et al. (2011) 20.6± 4.7 22.5± 4.7 95.3± 15 215± 73

Pröll et al. (2019) 2.32± 1.5 3.18± 1.6 79± 15 78.9± 22

Pröll et al. (2021) — 3.18± 0.54 — —

CNN rectangular kernel 1.46± 0.83 2.00± 0.89 57.6± 7.7 44.2± 7.5

CNN triangular kernel 1.1± 0.71 1.52± 0.77 52.4± 10 40± 8.2

CNN quadratic kernel 1.31± 0.74 1.74± 0.81 53.8± 10 39.8± 8.9

CNN Distance Time 1.31± 0.88 1.73± 0.89 53± 9.7 41.4± 8.5

ResNet triangular kernel 1.22± 0.63 1.38± 0.64 48.8± 8 27.9± 7
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including a state-of-the-art deep learning method of (Pröll et al.,
2021). The classical digital signal processing methods were used as
implemented in (Pröll et al., 2019) and with default parameters, to
facilitate comparability. For Pröll et al. (2021), the best-performing
model architecture on their dataset, the Modified CNN-GRUx2, was
used and trained on our dataset for 75 epochs. Since this model
estimates the mean heartbeat within 8-second windows, only this
measure was reported. As this model estimates the mean heartbeat
within 8-s windows, only this measure was reported.

The proposed method with a CNN has been evaluated with
various kernels (rectangular, triangular, quadratic) as well as the
distance-time encoding as proposed by (Vijayarangan et al.,
2020) for generating a surrogate signal for ECG. In addition,
the most suitable kernel was also evaluated with a ResNet
architecture.

The results in Table 1 show the high performance of the proposed
method for both for the heart rate estimation [HR MAE and HR MAE
8s) as well as the precision of the heart peak detection (NAd_sym (ms)
and IBI MAE (ms)]. In particular, the triangular kernel yielded excellent
results, with the quadratic kernel and the distance timemodelling of the
heart peak events being on par.

Figure 5 shows a Bland-Altman analysis for four selected
algorithms in subplots a) to d), with their 95%-limit of
agreement (LoA) in red (Pino et al., 2017). (a), accurately
estimates heart rates for a high percentage of windows, as
indicated by scatters close to zero (Pröll et al., 2021). (b) is the
only method where the quantification of errors resulting from an
integer number of heartbeats being incorrectly detected is not
visible. This is because this method estimates heart rates directly
as a regression task. The proposed methods on the right side (c and
d) show very similar distributions, with more outliers for the ResNet
(d). This results in a wider LoA, although the MAE of heart rates is

lower. For both proposed methods, it can be seen, that multiple
outliers are caused by false positives (not detected) events for heart
rates around 50 bpm and false negatives (missed events) for higher
heart rates.

6 Discussion

6.1 Method comparison

For each method, the accuracy of heartbeat estimation is better
for the full 64-s window than for the reduced 8-s window. The
difference of the respective estimations is small, given a reduced
interval, by a factor of 8. This can be explained by the implications of
falsely detected peaks: Any false positive or false negative peak
detection will result in an incorrect number of events within the time
range. As the estimated heart rate is calculated as the mean interval
between beats, a wider interval is more robust against a missing or
incorrectly detected beats. However, the wider interval increases the
likelihood of one or more false peaks. Therefore, the difference
between HR MAE and HR MAE 8s is quite small.

For the existing approaches (Pröll et al., 2019; Pröll et al., 2021),
the accuracy in terms of heart rates is equivalent. Since Pröll et al.
(2021) estimate heart rates for an 8-second window, only this
measure can be reported. This method is characterized by a very
small standard deviation across subjects, which may indicate an
advantage of direct estimation of the target measure. The significant
advantage of Pröll’s deep learning method (Pröll et al. 2021) over his
classical digital signal processing method, as reported in Pröll et al.
(2019), could not be replicated on this dataset within these
experiments. This could be explained by an insufficient number
of training samples or a more challenging raw BCG signal. There

FIGURE 5
Bland-Altman analysis comparing ground truth heart rates (accessed from ECG) and the methods of (Pino et al., 2017) (A) (Pröll et al., 2021), (B) and
the proposed CNN (C) and ResNet (D)with triangular kernel each within 8-s windows. The y-axis shows the residual of the estimate hrECG − hrB̂CG in beats
per minute (bpm), with limits of agreement (LoA) measuring their deviation.
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could be explained by a too small number of training samples or a
more challenging raw BCG signal.

In contrast, Pino et al. (2017) provides themost accurate detection of
J-peaks in terms of NAd_sym (ms) and IBI MAE (ms), but has a higher
standard deviation andhigher error in heart rate estimation. This suggests
that the preprocessing method of Pino et al. (2017) may allow for more
accurate event detection, but carries a higher risk of false positives or
negatives. Furthermore, the transferability to other subjects may be
more limited.

The method of Brüser et al. (2011) did not produce the expected
results with an MAE of heart rates greater than 20 bpm. We believe
that the default parameters were not successful for the given data set.
The Bland-Altman analysis (not reported in this work) suggests a
plausible range of deviations for heart rates of 50pm, increasing for
higher heart rates.

The proposed methods excel for each metric. Regarding the
evaluation of heartbeat encodings, the triangular kernel was the
most successful for each metric. This indicates a more accurate
heartbeat estimation as well as a higher precision of heart peak
detection. The hyperparameter optimization suggests a kernel-width
of 0.8 s for the triangular kernel and 1.2 s for the quadratic kernel.
Furthermore, the inter-subject standard deviation is significantly lower,
except for Pröll et al. (2021) concerning the HR MAE 8s measure. As
expected, the rectangular (binary) encoding of heartbeats yielded solid,
but inferior results in comparison to continuous surrogate signals with
a single optimum at the heartbeat timestamp.

The evaluation of the more complex ResNet resulted in a higher
precision for the J-peak detection, with a mean precision of less than
50 ms. It has been reported in the literature that the subsequent use
of a recurrent network such as a GRU or LSTM (long short-term
memory) improves the results. Developing the network architecture
with a recurrent network or multi-head attention layer is a point for
further development.

6.2 Kernel evaluation

The results demonstrate that the quality of heartbeat estimation
depends significantly on the kernel type utilized to generate the
surrogate signal. Therefore, the surrogate signal should be easily
learnable by the sequence-to-sequence model and facilitate a precise
subsequent peak detection during post-processing. It is
hypothesized that the surrogate signal should be continuous and
exhibit distinct, well-defined peaks in order to accommodate both
properties. Empirical validation has demonstrated that the binary
(rectangular) kernel, which yields non-continuous surrogate signal
encodings without distinct maxima, is inferior for peak detection
compared to other approaches. A visual comparison of the kernels is
shown in Figure 3.

Furthermore, the authors hypothesize that the width of the
kernel is of importance: On one hand, the width of the kernels
should be broad enough to support the target heartbeats also under
imprecise measurement or an imperfect dataset. In particular, if the
R-peaks are utilized as ground truth heartbeat events, the kernel
width must cover also varying RJ-intervals. On the other hand, the
width of the kernels, i.e., the support within the surrogate signal,
should be constrained, such that points in time not close to peaks
have a default value such as zero. This is not the case for Distance

Time encoding, where each value represents the time difference to
the nearest peak. Moreover, another hypothesis is that the kernel
shape should be symmetric in order to improve the learning of the
corresponding peak within the signal. However, this was not directly
evaluated, rather than indirectly by inference provided by larger
kernel width.

Additionally, interferences of two adjacent kernels occur, if
the respective peaks are closer together than the kernel width.
This issue was particularly evident with the quadratic kernel,
which showed optimal performance with a kernel width of 1.2 s,
which is greater than the average interbeat interval. Note that the
peak of the quadratic kernel is twice as sharp as that of the
triangular kernel of the same width in terms of the first
derivation. It is still not completely clear why the triangular
kernel is superior to the quadratic kernel. The authors
hypothesize that there is a trade-off in the kernel width
between precision of the peak and inference with adjacent
kernel shapes. This does not only involve the already
optimized kernel width, but also its shape. It is acknowledged
that further research is required to evaluate this trade-off
systematically in order to identify the optimal kernel shape for
heartbeat encoding.

6.3 Intra-subject variability

In the literature, both inter- and intra-subject variability are
cited as a major challenge in the analysis of BCG signals (Choe and
Cho, 2017; Sadek and Abdulrazak, 2021). In all the results above, the
cross-validation was grouped by participants to access the inter-
subject variability.

To analyze the within-subject variability only, the effects of
classical cross-validation without grouping by subject were analyzed.
It was found that the validation error is only about 10% (instead of
80%) higher than the training error. This indicates that the
extraction of R-peaks is subject to high interpersonal variability
and could be generalized very well across time intervals from the
same subject. It is therefore expected that an increase in the number
of subjects from the current 11 (with a total of 17 nights) will
significantly improve the quality of the model. Alternatively, this
work can support the development of data augmentationmethods to
improve model performance in an original measurement without
additional subjects.

6.4 Limitations and further work

A limitation of this work is that the limitation of the dataset that
was acquired from only eleven participants and over 17 nights.
Section 6.3 suggests a much very high intra-subject generalization,
however, the inter-subject generalization is significantly lower. In
future work, a more comprehensive as well as open dataset will be
utilized to get more robust results and to establish a more rigorous
method comparison. Furthermore, data augmentation will be
employed with the aim to improve the inter-subject
generalization. Regarding the dataset, the anthropometries of the
subjects should be critically reviewed, especially considering
diversity and fit to potential target user groups.
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Another limitation of the used dataset was the need for non-
linear time synchronization due to temporal issues in the
ballistocardiogram data acquisition. To solve this issue, a non-
linear time synchronization as suggested in Schranz et al. (2024)
was conducted between R-peaks from ECG and preliminarily
extracted J-peaks from BCG using the method of Pröll et al.
(2019). As the RJ-interval is non-zero and changing slowly
(Casanella et al., 2012), the non-linear time synchronization may
have compensated the varying time-delay between R-peak and
subsequent J-peak. Therefore, this preprocessing step that was
employed with the intention to compensate a measurement issue
might have improved the suitability of using R-peaks as ground
truth events for training a supervised neural network for J-peak
extraction. The varying RJ-intervals are typically considered as
constant in current literature, or this property is noted as open
issue. In order to answer this research question, a very precisely
synchronized dataset is required, which further increases the interest
in continuing the current work on a larger and open dataset with a
dedicated research focus on the preprocessing of BCG data.

Another discussion point for future research is the superiority of
the triangular kernel over the quadratic kernel. Here, more
experiments should be conducted to systematically evaluate the
trade-off mentioned in section 6.2, in order to identify the
optimal kernel shape for heartbeat encoding.

7 Conclusion

In this work, a method for improved heartbeat detection in BCG
is proposed. This method uses various kernel shapes to generate
surrogate signals that encode the discrete heartbeat events. Using
deep learning models in a sequence-to-sequence setting, this
surrogate signal is approximated, allowing a more precise J-peaks
extraction in the subsequent peak detection. To the best of our
knowledge, this is the first time temporal events are encoded with
kernels to enable an improved event detection using a regression-
based sequence-to-sequence model. Moreover, this work conducted
the first comparison of various event encodings for event detection
using deep learning.

The evaluation of different kernel shapes showed, that the
simple triangular kernel provided the best surrogate signal to
extract J-Peaks with a high precision. Using the proposed
method, the MAE of the estimated heart rate was 1.1 s within
64-s and 1.52 s for an 8-s window, halving the precision of the best
evaluated existing approach. Compared to a CNN architecture,
ResNet architecture improved the accuracy of heartbeat
detection, with a mean accuracy of less than 50 ms.

The findings may provide a foundation for enhanced health
monitoring during sleep, including comprehensive heart rate
variability analysis and sleep stage classification. This research
further substantiates the potential of ballistocardiogram sensor
technology for unobtrusive and cost-effective health
monitoring.

There are several options for future development of the proposed
method. Bland-Altman analysis provides quantified estimates.
Optimizing the mean HR as an additional target measure with a
hybrid loss in the deep learning model training could further
improve the heart rate estimation. The overall estimation accuracy

could be further improved by adding a recurrent layer after the CNN
respectively ResNet architecture layers. A larger or openly available
dataset could be used to perform a rigorous comparison of methods,
including additional deep learning approaches. This could reduce the
high inter-subject variability of the current evaluation. Furthermore, the
use of data augmentation methods is well suited to address both intra-
and inter-subject variability.

In conclusion, the proposed triangular and quadratic kernels
for generating a surrogate signal to be approximated is a novelty
and showed significant improvements for J-peak detection in
BCG compared to existing solutions. This undermines our initial
hypothesis that the design of the surrogate signals for target
measures has a significant impact on the quality of the output.
This approach can also provide a general solution for applying
deep learning models, especially in the sequence-to-sequence
setting, for event detection in univariate or multivariate time
series data.
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