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Introduction: For patients with drug-resistant epilepsy, successful localization
and surgical treatment of the epileptogenic zone (EZ) can bring seizure freedom.
However, surgical success rates vary widely because there are currently no
clinically validated biomarkers of the EZ. Highly epileptogenic regions often
display increased levels of cortical excitability, which can be probed using
single-pulse electrical stimulation (SPES), where brief pulses of electrical
current are delivered to brain tissue. It has been shown that high-amplitude
responses to SPES can localize EZ regions, indicating a decreased threshold of
excitability. However, performing extensive SPES in the epilepsy monitoring unit
(EMU) is time-consuming. Thus, we built patient-specific in silico dynamical
network models from interictal intracranial EEG (iEEG) to test whether virtual
stimulation could reveal information about the underlying network to identify
highly excitable brain regions similar to physical stimulation of the brain.

Methods: We performed virtual stimulation in 69 patients that were evaluated at
five centers and assessed for clinical outcome 1 year post surgery. We further
investigated differences in observed SPES iEEG responses of 14 patients stratified
by surgical outcome.

Results: Clinically-labeled EZ cortical regions exhibited higher excitability from
virtual stimulation than non-EZ regions with most significant differences in
successful patients and little difference in failure patients. These trends were
also observed in responses to extensive SPES performed in the EMU. Finally, when
excitability was used to predict whether a channel is in the EZ or not, the classifier
achieved an accuracy of 91%.
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Discussion: This study demonstrates how excitability determined via virtual
stimulation can capture valuable information about the EZ from interictal
intracranial EEG.

KEYWORDS
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Introduction

Medically refractory epilepsy (MRE), also known as drug-
resistant epilepsy or pharmacoresistant epilepsy, refers to a
condition where seizures persist despite treatment with
appropriate antiepileptic medications (Kwan and Brodie, 2010).
This condition affects 30 percent of individuals with epilepsy,
making it a challenging and often debilitating neurological
disorder (Kwan and Sander, 2004). For individuals with focal
epilepsy and identifiable Epileptogenic zones (EZs), surgical
resection may offer the potential for seizure freedom.
Comprehensive presurgical evaluation, including neuroimaging
studies, extensive EEG monitoring, and neuropsychological
assessment, is essential for identifying suitable candidates for
surgery and precisely localizing the EZ (Rosenow and Lüders, 2001).

Localization of the EZ is challenging and time-dependent
(Enatsu and Mikuni, 2016; Burneo et al., 2006). Neurologists
may never capture a seizure during scalp and even intracranial
EEG monitoring (Pondal-Sordo et al., 2007). Surgical success rates
vary from 30% to 70% because no clinically validated biomarker of
the EZ currently exists (Mohan et al., 2018; Jobst and Cascino, 2015).
It has been shown, however, that highly epileptogenic regions often
display increased levels of cortical excitability, which can be probed
using single-pulse electrical stimulation (SPES) by delivering brief
pulses of electrical current to the brain tissue (Hays et al., 2022;
Smith et al., 2022; Frauscher et al., 2023). Specifically, the resulting
cortico-cortical evoked potentials (CCEPs) display larger amplitudes
in epileptogenic regions (Iwasaki et al., 2010; Enatsu et al., 2012;
Matsumoto et al., 2017; Hays et al., 2022). These observations
suggest that performing extensive SPES across the brain with
intracranial EEG electrodes could aid in more accurately
localizing the EZ (Hays et al., 2022). However, performing SPES
is time consuming, and this creates a barrier to the implementation
of SPES in the clinic.

We hypothesize that EEG recording site pairs exhibiting strong
causal relationships are more prone to activation during seizures
(Smith et al., 2022; Gunnarsdottir et al., 2022; Li et al., 2019), and we

further believe this connection can be measured from baseline
interictal activity. Subsequently, we hypothesize that a metric of
cortical excitability derived from virtual stimulation of patient-
specific in silico models will provide information on the EZ
location, aiding in localizing areas to remove for seizure
control. To test this hypothesis, a dynamical network model
(DNM) is constructed from sequential 500 ms windows of
interictal intracranial EEG (iEEG), similar in duration to the
trials that occur in SPES (Hays et al., 2023; Hays et al., 2021). To
mimic SPES, a perturbation of a 1 ms pulse is applied to the DNM
to produce a simulated time series. Then, the norm is calculated
across each channel’s time series to quantify its “excitability.”
Excitability is compared between the clinically annotated EZ and
non-EZ brain regions. We found that the EZ channels responses
showed higher excitability than non-EZ regions regardless of
which brain region is virtually stimulated in patients with
successful surgical outcomes. Additionally, we found that this
trend diminishes with decreasing success in surgical outcome. A
similar pattern is found in true CCEPs that were recorded for a
subset of patients.

Methodology

Data collection: intracranial EEG recordings

Intracranial interictal EEG data [combination of
stereoelectroencephalography (sEEG) and electrocorticography
(ECoG)] was collected from 69 epilepsy patients that were
evaluated at five epilepsy centers (Johns Hopkins University, the
Cleveland Clinic, the University of Kansas Medical Center, the
National Institutes of Health, and the University of Pittsburgh
Medical Center) and assessed for clinical outcome 1 year after
surgery. The data were recorded with either a Nihon Kohden
(Nihon Kohden America, LLC, Irvine, CA, United States) or a
Natus (Natus Medical, Inc., Middleton, WI, United States)
recording system. Data were sampled between 500 and 2 kHz.

TABLE 1 Dataset demographic.

CC KUMC JHU NIH UPMC Total

Number of patients 31 9 15 9 5 69

Gender, male/female 15/16 4/5 5/10 7/2 3/2 34/35

Age, years 30.23 ± 11.98 39.67 ± 16.87 33.93 ± 12.52 33.11 ± 9.27 36.6 ± 11.99 33.10 ± 12.57

Surgical outcome, S/F 14/17 4/5 8/7 4/5 3/2 33/36

Duration of interictal recordings (sec) 238.63 ± 218.98 601.88 ± 2.23 849 ± 248.70 300 ± 0 308.96 ± 6.43 421.41 ± 311.52
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Data collection: patient population

The patient population is summarized in Tables 1 and 2.

Data collection: clinical annotations of
the EZ

At each epilepsy center, the clinical team independently
formulated an EZ hypothesis based on the data collected during
presurgical evaluation for each patient, which included both non-
invasive and invasive imaging techniques.

The centers utilize qualitative assessments of the iEEG to define
regions of seizure onset, which remains the gold standard. Clinicians at
the participating institutions employ a combination of non-invasive and
invasive techniques to localize the EZ. At all centers, a comprehensive
evaluation is performed and consensus is reached using imaging (MRI,
PET, SPECT, and MEG at most centers), semiology, scalp EEG, and
intracranial EEG, with common iEEG seizure onset patterns such as low
voltage fast activity and rhythmic sharp activity being critical (Perucca
et al., 2014). The spatial and temporal evolution include criteria of
evolving low frequency high amplitude periodic/rhythmic spikes,
rhythmic sharply contoured activity less than beta range, and
2–4 Hz spike and wave activity which shows evolution. These
patterns should occur before any clinical changes and are
foundational for localizing the epileptogenic zone. This encompasses
sEEG channels that show the earliest electrophysiological changes,
typically characterized by low voltage fast activity, at the onset of a
seizure event (i.e., channels corresponding to the seizure onset zone), as
well as channels involved in the early spread of the seizure. There were
no restrictions on seizure onset patterns. All of these methods are
reviewed in interdisciplinary meetings to ensure agreement on the
localization of the EZ.

The clinically annotated EZ (CA-EZ) refers to the specific
anatomical area(s) designated for treatment (such as resection,
ablation, or stimulation). The criteria for CA-EZ are
anatomoelectroclinical in nature. EZ channels were clinically
annotated in patients with both successful and failed surgical outcomes.

Clinical classification of surgical outcomes

Each epilepsy center’s epileptologists categorized surgical
outcomes according to the Engel Surgical Outcome Scale. An
Engel score (from 1 to 4) is assigned to each patient depending
on the clinical response to surgical treatment. Engel score of
1 indicates that seizure freedom is achieved while Engel score of
4 indicates no worthwhile improvement is observed (J, 1993).
Successful outcomes were defined as being free of disabling
seizures or rare occurrence (less than 3 seizure days per year) at

12 or more months post-operation (Engel class 1 and 2), while
failure outcomes indicated the persistence of disabling seizures
(Engel classes 3 and 4) (J, 1993). Out of 94 patients, 70 achieved
successful outcomes, while 24 continued to experience disabling
seizures after treatment.

Data preprocessing

Interictal data segments were clipped with starting times defined at
random at least 24 h prior to seizure. The clips were 5–10min long, and
included mostly wake, but some sleep periods. As described in our
earlier work (Gunnarsdottir et al., 2022), the iEEG data underwent
bandpass filtering between 0.5 and 300 Hz using a fourth order
Butterworth filter, and notch filtering at 60 Hz and its harmonics
with a stopband of 2 Hz. The applied bandpass filter included up to
300Hz, so gamma/high gamma activity was included in the signals that
we used to construct our models. We uniformly applied all data
preprocessing. We re-referenced the data to the common average to
eliminate common noise from the signals and visually removed
excessively artifactual channels. Electrode locations were determined
by combining information from co-registered post-implantation CT
and brain MRI scans (e.g., using BioImage Suite). The clinical team at
each center visually confirmed the electrode localizations for accuracy.
Subsequently, sEEG channels not recording from grey matter or
deemed “bad” by clinicians (e.g., located in white matter, broken,
excessively noisy, or artifactual) were excluded from each patient’s
dataset, resulting in an average of 102 ± 34 (mean ± SD) channels used
per patient in the analysis.

The sEEG recordings were segmented into non-overlapping
500 ms windows for modeling and feature extraction (details
below). All data processing and analysis were conducted using
MATLAB R2020b.

Virtual stimulation of a DNM

To virtually mimic SPES from interictal data, a patient-specific
DNM is constructed by approximating dynamics as linear behavior in
discrete, short time-intervals (Smith et al., 2022; Gunnarsdottir et al.,
2022; Li et al., 2019; Smith et al., 2020; Kamali et al., 2020) (Figure 1).
The DNM is a generative model capturing the dynamic influences of
each iEEG channel on the rest of the network as well as how each
channel is influenced by the other channels. Previous work
demonstrates how DNMs accurately reconstruct the iEEG data (Li
et al., 2017; Li et al., 2021). Thesemodels can then be virtually perturbed
to simulate how SPES perturbs the brain with electrical stimulation.

To do this, the data were first divided into non-overlapping
500 ms windows, and a linear time-invariant model of the form:

x t + 1( ) � Ax t( ) (1)
was constructed for each window (Gunnarsdottir et al., 2022). For a
given patient, let N be the number of iEEG channels. In this model,
A ∈ RNxN is the state transition matrix and x(t) ∈ RN represents the
iEEG channels (Eq. 1). The A matrix describes channel interaction
from the iEEG and these interactions’ evolution over time.
Specifically, the element Aij describes how the present activity of

TABLE 2 Engel scores.

Engel 1 Engel 2 Engel 3 Engel 4

All patients 32 21 9 7

Patients with CCEP Data 5 3 6 0
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channel j influences the future activity (next sample) of channel i.
Thus, the ith row generally contains information on the cumulative
effect of the entire network on the ith channel. The jth column
contains dynamics of how the jth channel influences other channels.

After the A matrices are estimated, an exogenous perturbation
was then added for each channel:

xstim t + 1( ) � Axstim t( ) + Δ t( ) (2)
where Δ is the discrete time signal pulse of width 1 ms applied
to the model in the first millisecond. Next, the network
response time series, xstim(t), was generated (Eq. 2) for
50 time steps with a zero initial condition (Figure 1). The
perturbation is applied at the beginning for each A matrix,
paralleling the clinical SPES trials which are often collected
with 1 Hz periodic stimulation. A pulse width of 1 ms and
simulation duration of 50 ms was chosen through an
optimization procedure (Supplementary Figure S1).

Quantifying channel excitability

Since xstim(t) is a multivariate time series of the predicted
response, we further derived a metric for quantifying channel
excitability. For each A matrix, we do the following:

1. Apply a pulse perturbation to one channel and generate the
response xstim(t).

2. Compute the 2-norm (also known as the Euclidean distance
and defined as the square root of the inner product of a vector
with itself) of the time series to quantify excitability for
each channel.

3. Normalize each channels’ 2-norm to a range from 0 to 1.
4. Repeat steps 1–3 for all channels to produce an excitability

matrix (E) where the rows represent the channel in which the
simulated response is quantified, and the columns represent
the stimulated channel.

Subsequently, each E matrix element is identified as one of four
categories depending on the stimulated and responding channel:
stimulated in CA-EZ and response in CA-EZ (EZ:EZ), stimulated in
CA-EZ and response in non-CA-EZ (EZ:non-EZ), stimulated in
non-CA-EZ and response in CA-EZ (non-EZ:EZ), stimulated in
non-CA-EZ and response in non-CA-EZ (non-EZ:non-EZ). For
each category of stimulation and response type outlined above, we
calculate the average of all elements in the category. Finally,
excitability of the EZ is computed as the average of the values
from EZ:EZ and non-EZ:EZ. Excitability of the non-EZ is calculated
by taking the average of the values from EZ:non-EZ and non-EZ:
non-EZ.

FIGURE 1
Analysis pipeline from iEEG data, modeling responses of simulated perturbations to the DNM constructed from interictal iEEG data of
individual patients.
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Thus, each patient had two values that define the excitability of
EZ and non-EZ regions, regardless of the stimulation location.
Patients were categorized as success or failure patients, defined as

Engel Scores of 1 and 2 vs. 3 and 4, respectively. The EZ and non-EZ
excitabilities were first Figures 2C, D compared in Engel 1 patients,
where it is most likely that the EZ was localized correctly. Then, the

FIGURE 2
Two patients with surgical outcomes of Engel score 1 (top row) and Engel score 4 (bottom row), respectively. (A) Raw interictal iEEG data collected
for the patients (B) Time series data from the first 500ms of the raw interictal iEEG fromwhich the first A matrix is estimated (C) The simulated time series
from the first trial, where the first A matrix is perturbed with unit pulse in the first channel (D) The average of the time series from all trials after each time
point is normalized to the maximum value.

FIGURE 3
(A) Boxplots of excitabilities of EZ and non-EZ regions for Engel 1 patients. Excitability in CA-EZ is higher than non-CA-EZ regardless of the origin of
stimulation. Filled in dots indicate the Engel 1 patients for which CCEP data was recorded. (B) RMS of responses is marginally greater in CCEPs for EZ
regions in success outcome patients and not in non-EZ.
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difference was compared between success and failure patients as well
as between individual Engel scores. Significance was determined by
the Wilcoxon rank-sum test.

SPES response analysis

In a subset of patients undergoing intracranial EEG
monitoring at Johns Hopkins Hospital, SPES was performed
as part of a research protocol. Bipolar stimulation was
administered in adjacent pairs of contacts at a 0.5 Hz
stimulation frequency. The stimulation current ranged from
3 to 7 mA with a 300 us pulse width. Stimulation was applied
to all channels that were localized in brain tissue. During post-
processing, stimulation artifact was removed by assessing
the value of the signal 2 ms before stimulation and 6 ms
after stimulation and creating a linear vector in between the
two points (Smith et al., 2022). As the N1 amplitude was
calculated between 10 and 60 ms after the stimulus, we
found that there was often negligible residual artifact in this
time frame.

The excitability distributions across EZ and non-EZ
channels were compared to excitabilities computed from true
CCEPs recorded during SPES as the objective is to assess
whether virtual stimulation provides similar clinical
information from interictal data as SPES. The average
response waveform for each channel over a 2 s window
where the stimulus starts 0.5 s is calculated. Then, the RMS
of the CCEPs were calculated and normalized over the
maximum RMS. Similar to the virtual stimulation paradigm,
responses were separated into EZ vs. non-EZ responses and
stratified between success or failure patients. Since the SPES was
performed in electrode pairs, if either electrode that was
stimulated was located in the CA-EZ, then it was considered
to be stimulated in the EZ.

Logistic regression prediction of EZ
channels in Engel 1 patients

To assess whether there is congruence between our most excitable
channels as identified through virtual stimulation and the clinically
annotated EZ, we wanted to focus on Engel 1 patients where the ground
truth of the EZ is likely close to the clinically annotated EZ (this ensures
we use the most reliable labels for the regression). We tested whether
cortical excitabilities derived from virtual stimulation could predict
which nodes belonged to the CA-EZ. For Engel 1 patients, the virtual
stimulation excitabilities were randomly split into training and
validation sets at a 75:25 ratio for 10-fold validation. A logistic
regression model was fit to the training set and used to predict EZ
and non-EZ channels in the test set. Accuracy and AUC of the
predictions were calculated. The average and variance of the
accuracy and AUC were determined, and ROC curves were generated.

Results

Regions exhibiting high cortical excitability
during virtual stimulation correspond to CA-
EZ in patients with successful surgeries

For each patient, the raw EEG data (Figure 2A) is segmented in
500ms windows (Figure 2B) to build a DNM. A response is produced
for each perterbation of each A matrix. The perturbation-elicited
response can be visualized in the format of a heat map (Figures 2C,
D). Each row is the response of an electrode to the perturbation.
Simulations of the response were generated for 50 ms (Supplementary
Figure S1). In the representative patients, the CA-EZ correlates to the
channels with visibly greater excitability values in the surgical success
(top row) than the surgical failure (bottom row) (Figure 2). For both
patients, the CA-EZ correlated with channels that have greater values
for the average across all trials of the normalized time series (Figure 2D).

FIGURE 4
The stratification of excitability between EZ and non-EZ regions is greater for patients withmore successful outcomes. Engel 1 has the unique results
that show that CA-EZ excitability is higher regardless of what channels/regions are being stimulated. This is seen by comparing the red and purple box
plots to the blue and green box plots within each class. With poorer outcome classes, the excitability of the CA-EZ excitability remains high when
stimulating from CA-EZ regions, but is comparable to non-CA-EZ excitability when stimulating from non-CA-EZ.
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Higher cortical excitability of EZ compared
to non-EZ in Engel 1 patients

We found that regions that were labeled as the CA-EZ by the
respective clinical team displayed high levels of cortical excitability
when compared to regions outside the CA-EZ (p < 0.05, Wilcoxon
rank-sum test) in patients that were Engel 1 (Figure 3A). The higher
excitability in CA-EZ regions occurs for both stimulation from CA-
EZ regions and stimulation from non-CA-EZ regions. The subset of
patients labeled Engel 1 that were also evaluated with SPES are
indicated with filled dots (Figure 3).

Greater difference in CA-EZ excitability in
successful patient outcomes

We found that stratification of excitability between CA-EZ and
non-CA-EZ increased with better treatment outcomes (Figure 4). The
more successful the outcomewas, the larger the difference in excitability
values of the CA-EZ and non-CA-EZ channels. Engel 1 patients
demonstrated the most significant difference in excitability of EZ
versus non-EZ channels (Wilcoxon rank sum, p < 0.05) (Figure 4).
Thus, evoked responses have increased amplitude when the response
node is in an epileptogenic region. It is noted that for all four Engel
scores, there is elevated excitability in the CA-EZ when the CA-EZ is
stimulated. However, the excitability of CA-EZ regions from
stimulation of non-CA-EZ channels is not significantly different
from non-CA-EZ excitability for patients with failed outcomes
(Wilcoxon rank sum test, p > 0.05).

It is noted that Engel class 3 EZ responses have a higher
distribution than for Engel class 1 when virtually stimulated from
EZ channels. However, the EZ responses of Engel class 3 when

stimulated from non-EZ channels are not higher than that of Engel
class 1 and 2 (Figure 4). This may imply that a defining characteristic
of EZ channels is the high response after virtual stimulation from
non-EZ channels in addition to other EZ nodes.

CCEPs demonstrate similar trend to virtual
stimulation excitabilities

A similar trend of cortical excitability, as measured by the RMS
of the CCEP evoked potential, occurred in the CCEP responses, with
successful patients exhibiting a slightly greater mean response in
CA-EZ channels compared to non-CA-EZ channels (Figure 3B).
The patients with Engel scores 3 and 4, in contrast, did not exhibit
significant differences in responses (Wilcoxon rank sum, p > 0.05). It
is noted that the mean normalized RMS values of failure patients,
whether CA-EZ or non-CA-EZ responses, are significantly lower
than those of success patients (Figure 3).

The factors of patient gender, patient age, numbers of electrodes,
and previous surgery status were assessed by comparing
corresponding excitabilities (EZ:EZ, EZ:non-EZ, non-EZ:EZ, non-
EZ:non-EZ) between the various categories, and no difference in
excitabilities were found associated with these factors
(Supplementary Figure S2).

Logistic regression differentiates EZ and
non-EZ channels from virtual stimulation
excitabilities in Engel 1 patients

Excitability from virtual stimulation in each channel in CA-EZ
and non-CA-EZ regions were calculated. Across 10 iterations,

FIGURE 5
(A) ROC curves describing the 10-fold cross validation of logistic regression models to predict EZ nodes. (B) Boxplot of probabilities from models
predicting EZ and non-EZ channels.
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training a logistic regression model of randomly selected 75% of all
the channels across the Engel 1 patients yielded a mean accuracy of
91.4243% with variance 0.2155% when applied on the remaining
25% of channels (Figure 5). The ROC curve demonstrates that the
model accurately identifies channels in the EZ utilizing two
excitability values, one from stimulating EZ regions and one
from stimulating non-EZ regions. The mean AUC was
0.95047 with variance 5.8292e-05 (Figure 5). Thus, the
excitability of a specific channel from stimulating the EZ vs. non-
EZ can predict whether the channel is in the EZ or not.

Discussion

Clinical relevance

The increased response of labeled EZ regions in patients with
successful outcomes makes excitability a promising metric for EZ
localization. The differences in excitability of the EZ and non-EZ
labeled regions indicates that the interictal iEEG may provide
revealing information of epileptic cortical network dynamics to
help effectively pinpoint locations that should be removed to
control seizures. While EZ channels demonstrate elevated
excitability from virtual stimulation of EZ channels across all
Engel scores, the virtual stimulation of non-EZ channels results
in greater excitability for patients with good surgical outcomes. On
the contrary, poor outcome cases do not have greater excitability of
EZ channels from virtual stimulation of non-EZ channels. Thus, a
defining characteristic of EZ channels may be the greater sensitivity
to virtual stimulation from non-EZ channels.

Virtual perturbation may be revealing information on the
underlying network dynamics that complement the clinical
information captured in CCEPs from SPES. Additionally, the
stratification by outcome demonstrates that this metric aligns
with current methods of successful localization since the labels by
clinicians from continuous monitoring in patients with successful
outcomes are significantly more excitable than the channels that are
labeled as non-EZ. It is important to note there are only 14 patients
with CCEP data.

We did not expect CCEPs responses to necessarily resemble
virtual responses because in CCEPs many more brain regions
outside implantation or coverage may influence the responses (Li
et al., 2019; Li et al., 2017). Thus, we hypothesized that patients with
fewer channels and/or coverage of perhaps the most involved
regions would show more correspondence between virtual and
CCEPs responses (Supplementary Figure S3).

Furthermore, determining excitability is supportive of previous
hypotheses proposed of source-sink connectivity for fingerprinting
the EZ (Gunnarsdottir et al., 2022). While the mechanism for onset
of seizure is unclear, a virtual stimulation may result in propagation
to areas that are highly excitable and reactive. These highly excitable
regions are likely the EZ.

Our results aligned well with clinicians’ labeling of EZ regions in
patients with successful outcomes and less so in unsuccessful
patients. This may be indicative that EZ regions were
unidentified or inaccurate in the localization for patients of Engel
score 3 and 4 (Figure 4). However, we note there were some high
values of excitabilities in EZ channels in the failed outcome patients

(Figure 4). This result suggests the clinicians may be localizing some
or all of the EZ spread accurately, even in patients with poor surgical
outcomes. Failure may be due to unmeasured larger network
activation or not being able to treat the identified regions if they
are in eloquent cortex.

Calculating excitability from clips of interictal data is fast and
efficient compared to continuous monitoring which is the current
method of EZ localization (Enatsu and Mikuni, 2016; Burneo et al.,
2006). Our results show that based on the interictal data utilized by
the model, we can to some extent replicate the identification of EZ
contacts done by clinicians through extensive monitoring which
includes both ictal and interictal iEEG, seizure semiology, and
preoperative imaging. This tool can be used to inform
neurologists how to pinpoint the EZ. In the future, this may be
utilized to reduce reliance on capturing seizures in the hospital and
ultimately improve surgical outcomes.

The utility of this approach lies in its ability to enhance EZ
localization during intracranial iEEG monitoring. By capturing a
short clip of interictal data, a linear time-varying model can be
constructed, enabling virtual stimulation to identify the most
excitable channels. These identified channels can then be
compared to clinical annotations. If there is congruence between
the most excitable channels and the clinically annotated EZ, then
virtual stimulation can bolster confidence in the localization of the
EZ. Conversely, if the most excitable channels do not align with the
clinically annotated EZ, clinicians can re-evaluate the iEEG data at
these excitable channels, which were not initially considered regions
of interest. This new information could potentially improve surgical
outcomes. Virtual stimulation may be an independent predictive
biomarker in the future, but this would need to be confirmed in a
comprehensive surgical outcome study.

Limitations and future direction

The information about the EZ that can be gleaned from virtual
stimulation as well as SPES relies on the electrode coverage in each
patient. The implantation map varies for each patient and electrodes
are placed in different cortical areas. It is possible that there is a
greater possibility of connectivity and heightened response if two
electrodes are closer geographically. Applying a perturbation to an
area of electrodes close in geographical proximity can be utilized to
understand if perturbations to subsets of electrodes result in changed
excitabilities. Future work entails incorporating spatial information
between electrodes to inform excitability. Finally, understanding
how clinical factors, such as variability in workflow, anti-epileptic
medication doses, and resources across clinics, affect both CCEP
responses and overall outcomes could improve how electrical
stimulation is used in the epilepsy clinic.

Since our method does not consider spatial information, but
rather captures dynamic functional connections, we have eliminated
the potential confound of localized stimulation artifact. CCEPs
within a close range of the stimulation location frequently have
to be disregarded due to stimulation artifact leakage (often within
1 cm of stimulation location). The virtual stimulation method does
not need to remove close local connections because no stimulation
artifact exists. The benefit of having no stimulation artifact is a facet
of this project that we would like to further quantify in future work.
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Furthermore, the functional connections are likely to show similar
inverse relationships as stimulation-evoked effective connections
(Crocker et al., 2021; Paulk et al., 2022), which could be examined in
future work.

In this study, we concentrated on interictal periods when
patients were not taking anti-seizure medications (ASMs). Should
we utilize interictal iEEG data from periods during which clinicians
adjusted ASMs in the initial days of the epilepsy monitoring unit
(EMU) stay, we could incorporate the effects of these medications
into the model as an “exogenous” input. This consideration is
reserved for future research.

Since there are different synchrony dynamics in wakefulness
compared to sleep, it will also be of interest to determine if findings
vary between wake and sleep samples. The sleep/wake labels for our
data were not readily available as some of the clinicians have left
their original institution and this is a secondary analysis of data from
another study (Gunnarsdottir et al., 2022). Since sleep/wake criteria
were not specified as criteria across all centers, our data likely
includes clips from both wakefulness and sleep, which is a
limitation of our study. More work is necessary to compare
virtual stimulation of wake versus sleep dynamics.

In future surgical outcome studies, we will investigate if the
findings are consistent between subpopulations of epilepsy types. A
higher diagnostic resolution with more detailed clinical information
will allow us to determine whether the methods have increased
accuracy for mesial temporal compared to neocortical or
extratemporal sites.

Conclusion

Epileptic cortical network dynamics can be investigated with less
invasive and time-consuming methods by utilizing virtual stimulation
of dynamic network models constructed from interictal iEEG. The
excitability of a simulated perturbation to the epileptogenic networkwas
greatest for patients with successful surgical outcomes and diminished
for patients with failed outcomes. Complementary clinical information
was found for virtual stimulation evoked responses as true
corticocortical evoked potentials from SPES.

Thus, an in silico model of SPES built from interictal iEEG data
provides a complementary view to traditional SPES and provides
insight into local cortical excitability. Our results closely aligned with
the clinicians’ labeling of EZ regions, with large differences in
excitability between the EZ and non-EZ regions in surgical
success patients.
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