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We present two cases with focal seizures where scalp electroencephalography
(EEG) had prominent features of a developmental and epileptic encephalopathy
(DEE): Case 1: a 17-year-old male with complex motor seizures whose EEG
demonstrated a slow spike-and-wave pattern and generalized paroxysmal fast
activity (GPFA). Case 2: a 12-year-old male with startle-induced asymmetric
tonic seizures whose EEG also had a slow spike-and-wave pattern. Both patients
had intracranial EEG assessment, and focal cortical resections resulted in long-
term seizure freedom and resolution of generalized findings. These cases
exemplify patients with focal epilepsy with networks that share similarities to
generalized epilepsies, and importantly, these features did not preclude curative
epilepsy surgery.
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1 Introduction

Two decades ago, Spencer published seminal works proposing the “network theory” of
epilepsy (Spencer, 2002). The network theory put forward that focal epilepsies are not so
focal but rather result from the activation of broader networks of varying scales (Spencer,
2002). This theory expanded the historical Lüders’ definition of the epileptogenic zone as
“the minimum amount of the cortex that must be resected to produce seizure freedom”

(Luders et al., 2006). Spencer et al. argued that “the network as a whole is responsible for the
clinical and electrographic phenomena that we associate with human seizures” (Spencer,
2002). This shift in concept paved the way for now routine components of the pre-surgical
evaluation for patients with drug-resistant epilepsy (DRE), including the utilization of
functional imaging to further define epilepsy networks. With this more global view in mind,
certain nodes or connections may still be more epileptogenic than others. Bartolomei et al.
(2017) defined this hierarchical organization of focal epilepsy in their model, differentiating
between “epileptogenic zone networks,” “propagation zone networks,” and non-involved
networks. It has since been established that how distributed an epilepsy network is for a
given patient is a determinant of successful epilepsy surgery, with more restricted networks
that are slow to recruit distant regions doing better than those that rapidly recruit distant or
bilateral nodes (Andrews et al., 2019).
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A rare phenomenon is the early recruitment of distant and
bilateral structures by a focal epilepsy, giving the electroclinical
appearance of an apparent generalized epilepsy syndrome. This
paper highlights two such cases and discusses the conceptual
mechanism underlying such findings while exploring factors that
prompted intracranial EEG assessment and successful
epilepsy surgery.

2 Case studies

2.1 Case 1

Case 1 was a 17-year-old, left-handed male patient with normal
development who was diagnosed with epilepsy at the age of 13 years.
He presented with focal seizures with impaired awareness (FIA),
with a preceding aura of a warm sensation in his back which might
cause him to perspire. This was followed by loss of responsiveness
and rapid, repeated semi-purposeful upper limbmovements, such as
clapping, tapping, leg-slapping, scratching, and grabbing. There was
a change in facial expression with an asymmetric grimace, and the
head and eyes would turn in a non-forced fashion to the right. The
left upper limb would occasionally posture, but this was not clearly
dystonic, and at no time would he develop clonic jerking of the arm.
Each discrete seizure was short (often 5–15 s); however, he often
developed seizure clusters where he could have many over a 20-min
period. He was immediately responsive in between seizures but
experienced tiredness after seizure clusters. He had developed a
second seizure type 3 years into his condition, with frequent brief
tonic seizures during sleep. He did not have a history of febrile
seizures during childhood or a family history of epilepsy. His
neurological examination was normal. Prolonged seizure clusters
occurred several times a month despite combination treatment with
carbamazepine, lamotrigine, and clobazam. He had previously failed
multiple medication trials including sodium valproate,
levetiracetam, and topiramate.

Video electroencephalography (VEEG) demonstrated frequent
interictal generalized paroxysmal fast activity (GPFA) and
generalized slow spike/poly-spike-and-wave discharges but with a
consistent right fronto-central predominance (Figure 1). Multiple
seizures were recorded, during which the rapid hyperkinetic
movements correlated with 20–24 Hz GPFA, similar to the
expected EEG pattern of tonic seizures in patients with
Lennox–Gastaut syndrome (LGS) (Markand, 2003). Brain
magnetic resonance imaging (MRI) and fludeoxyglucose (FDG)-
PET were normal. Despite all the scalp EEG findings being
suggestive of generalized epilepsy with normal imaging, there was
a high suspicion for a focal epilepsy syndrome given the consistent
aura. He proceeded to an intracranial EEG implantation via stereo-
EEG (SEEG) at age 16 years to explore the right frontal region and
particularly the mesial frontal region, cingulate, and insula. Both
ictal recordings and intracranial stimulation confirmed that his
seizures were focal and arose from the right cingulate gyrus
(Figure 1), characterized by low-voltage fast activity first
developing in the right cingulate contacts before spread to the
remainder of the frontal networks occurring between 1 and
2 seconds into the seizure. He proceeded to right mesial frontal
surgical resection, which showed focal cortical dysplasia (FCD) type

1a. He has remained seizure-free at 8 years of follow-up (Engel-Ia),
although he remains on reduced anti-seizure medication (ASM). His
EEG at 6 months after surgery demonstrated marked improvement
with only occasional right fronto-temporal sharp waves with some
associated fast activity but complete resolution of the GPFA and
generalized slow spike-and-wave.

2.2 Case 2

Case 2 was a 12-year-old, right-handed male patient with a
history of reflex epilepsy from age 6 years. He hadmild delay in gross
motor and social milestones prior to the onset of seizures but had
clear regression in behavior and learning following the development
of epilepsy. There was no history of perinatal insult or febrile
convulsion. Although his seizures were predominantly nocturnal,
when awake, they would be triggered by loud noises, surprise, or
fright. FIA would start with a grimace or odd facial expression,
followed by asymmetric stiffening of the trunk and limbs
(particularly the right leg) and truncal rocking lasting 15–45 s.
He occasionally reported an aura of “fireworks” or a “booming”
body sensation prior to a seizure. Seizures remained at least once
every 2 weeks on a combination of topiramate, carbamazepine,
and clobazam.

Like Case 1, VEEG demonstrated generalized slow spike-and-
wave discharges with a right frontal predominance (Figure 2). The
scalp EEG correlate to the seizures described above was also electro-
decrement with evolving low-voltage fast activity for 10–15 s
followed by aftercoming irregular delta slowing. MRI brain was
non-lesional. FDG-PET demonstrated mild hypometabolism of the
right mesial superior frontal gyrus (Figure 2). Again, given the focal
seizure semiology with an aura, as well as consistently lateralized
right leg dystonic posturing, he proceeded to SEEG of the right
frontal region, also including cingulate and insula. Several habitual
asymmetric tonic seizures were recorded. The SEEG onset was
broad, but there was a consistent lead with fast activity over-
riding direct current (DC) shift at several contacts in the mesial
prefrontal region. High-frequency oscillations were present in that
region and also in the orbitofrontal gyrus. Seizure stimulation across
the posterior dorsolateral superior frontal gyrus and pre-
supplementary motor area (pre-SMA) reproduced his typical
electroclinical seizures. He proceeded to a mesial prefrontal
resection of the superior frontal gyrus up to the precentral
sulcus, which showed neuronal loss and gliosis in keeping with
distant infarction. He has remained seizure-free at 10-year follow-up
(Engel Ia), and his EEG repeated at 8 months following surgery
was normal.

3 Discussion

These two cases highlight patients with focal epilepsy presenting
with EEG features of generalized epilepsy syndromes. Both patients
developed clinical features that are more common in generalized
epilepsy, such as tonic seizures in Case 1 or a prominent reflex
component in Case 2. The MRI of both patients was non-lesional.
Both patients had mesial frontal epilepsy confirmed with SEEG
(Case 1: cingulate; Case 2: pre-SMA). This has potential relevance to
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the likelihood of networks with shared similarities to those with
generalized epilepsy; however, such recruitment did not seem to
preclude the possibility of successful epilepsy surgery.

There is a great overlap between the seizure networks
described in frontal lobe epilepsy and that of generalized
epilepsy. In frontal lobe epilepsy, typically complex motor or
hyperkinetic seizures are associated with the engagement of
wide-spread networks through both hemispheres (Chauvel and

McGonigal, 2014), compared to seizures with elementary or even
autonomic signs having highly specific cortical localization that
can be reliably reproduced with cortical stimulation (McGonigal
et al., 2021). Case 1 had seizures arising from the cingulate gyrus,
with rapid goal-directed behaviors subsequently described as
being typical of the anterior mid-cingulate region (Pelliccia
et al., 2022), and Case 2 had pre-SMA onsets. In each case,
there was broad activation through frontal networks, and these

FIGURE 1
(A) Scalp EEG demonstrating interictal slow spike-and-wave with an internal frequency of 1.5 Hz and (B)GPFA thoughwith increased amplitude over
the right frontal region. (C) Ictal scalp EEG showing evolving low-amplitude fast activity at the onset of the complex motor seizure. (D) Intracranial depth
electrode monitoring placement map showing overall implantation strategy as well as locations of mesial-frontal contacts. (E) Ictal stereo-EEG
confirming a focal onset at the right cingulate gyrus with the patient’s typical seizure, occurring 1 s before broad network involvement. mF1, mesial
superior frontal gyrus; PFC ant, anterior prefrontal cortex; CG genu, pregenual cingulate gyrus; rF2, rostral middle frontal gyrus; dmPFC, dorsomedial
prefrontal cortex; rCMA, rostral cingulate motor area; cF2, caudal middle frontal gyrus; FEF, frontal eye field; cCMA, caudal cingulate motor area; cF1,
caudal superior frontal gyrus.
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recruitments often occurred between 1 and 2 seconds following
seizure onset.

These findings can be related to the current understanding of the
traditional generalized epilepsies. For patients with idiopathic
generalized epilepsy (IGE), EEG-functional MRI (EEG-fMRI) studies
have implicated bilateral cortico-subcortical networks, consisting ofmid-
frontal regions, thalami, caudate, and cerebellum (Aghakhani et al., 2004;
Hamandi et al., 2008). When assessed with magnetoencephalography
(MEG), generalized epileptiform discharges were derived from bilateral
mesial-frontal regions (Li et al., 2018). For patients with DEEs,
particularly those with LGS, an EEG-fMRI study showed that the
network activation was different for the generation of slow spike-
and-wave versus GPFA (Pillay et al., 2013). Both involved diffuse

bilateral networks; however, the activations during GPFA were
almost exclusively positive, affecting broad cortical “association” areas
in frontal, parietal, occipital, and temporal lobes but not the primary
cortices (Pillay et al., 2013). In addition, there were synchronous
increases in the thalamus, caudate-basal ganglia, and brainstem
(Pillay et al., 2013). Conversely, slow spike-and-wave generated a
mixture of positive and negative blood oxygen level-dependent
(BOLD) signal changes in the brain regions discussed and was
overall much more variable between patients (Pillay et al., 2013).

Overall, the consistent feature with these studies was that the
generalized epilepsy network had broad involvement of prefrontal and
mesial-frontal regions (excluding primary motor cortex),
when—typically for focal networks—seizure activity remains

FIGURE 2
(A) T1 MRI-brain overlaid with FDG-PET demonstrating right mesial superior frontal gyrus hypometabolism. (B) Interictal scalp EEG showing
apparent generalized slow spike-and-wave discharges with a right frontal predominance. (C) Ictal scalp EEG during a habitual asymmetric tonic seizure
showing evolving low-amplitude fast activity with aftercoming slowing.
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confined to a smaller cluster or subnetwork of the larger global brain
network (Woldman et al., 2020). However, there is clearly a dynamic
component, given that the same structures operate interictally during
normal function (Richardson, 2012). In addition, the pathophysiology
of widespread synchronization is still elusive. Instead of being “non-
focal,” the apparent synchronous character of generalized discharges
in a genetic rat model of absence seizures arises from extremely fast
cortical spread of seizure activity from a localized cortical focus, which
also drives initial rhythmicity (Meeren et al., 2002). Focal lesions may
also persistently engage with these networks over time, leading to
global network instability rather than driving each individual
discharge (Archer et al., 2014). Given the network overlaps, frontal
lobe epilepsy tends to involve existing widespread brain networks
(Bancaud et al., 1974; Kakisaka et al., 2011). This contrasts with
temporal lobe epilepsy with few examples of generalized network
recruitment in the literature; if generalized EEG changes are present,
they often occur in the context of co-existent focal and generalized
epilepsy (Khaing et al., 2014). Though there are no clear predictors for
such network involvement, lesions arising in anatomical brain regions
that are already richly bilaterally connected (e.g., frontal and cingulate
regions) appear to be more vulnerable (Tukel and Jasper, 1952;
Blumenfeld et al., 2009; Chen et al., 2016). Abnormal connectivity
also changes over time and is influenced by other factors such as age,
duration of epilepsy, and seizure frequency (Javidi et al., 2024).

There are two highly relevant clinical pearls when it comes to
these cases: 1. patients with focal lesions can develop clinical
manifestations of generalized epilepsy with recruitment of other
structures in an individual’s broader epilepsy network; 2. a patient’s
overall pathologic network activation can be disrupted if a crucial
driving “node” in that network is removed.

Case 1 subsequently developed tonic seizures. Tonic seizures with
an ictal pattern of GPFA is one of the electroclinical hallmarks of LGS
but can develop in patients with focal epilepsies, especially those without
the pre-requisite developmental encephalopathy (Dupont et al., 2017).
In focal cases, the PFA tended to have a bi-frontal predominance
(regardless of the location of the lesion), but it was asymmetrical with
higher voltage over the implicated hemisphere (Mohammadi et al.,
2015). Our two cases are particularly striking. Both patients had clearly
focal seizures, but the electrographic correlate to these seizures was
evolving low-amplitude fast activity with aftercoming slowing (the EEG
signature of tonic seizures). Case 2 had a prominent reflex component
and regression in learning and behavior after the development of
epilepsy. Startle-induced seizures with bilateral asymmetric tonic
features are thought to involve several brain regions in the mesial-
frontal and parietal lobes, with a common final pathway to the
supplementary motor area (Job et al., 2014). Functional
neuroimaging suggests that these could be generated by a
frontal–parietal network located over the mesial surface of the brain,
involving the precuneus, supplementary motor area, cingulate gyrus,
and precentral regions (Fernandez et al., 2011). The theme continues:
the brain regions involved in our patients had a great overlap with the
generalized network and those implicated in startle-induced seizures (a
clinical feature more common in the DEEs).

In the pre-surgical assessment for epilepsy surgery, clinical
features usually attributed to generalized epilepsy such as tonic
seizures (to a lesser extent reflex or startle-induced seizures) or
EEG features such as GPFA and slow spike-and-wave have often
precluded further invasive workup. It is true that in patients with

focal epilepsy, the presence of generalized EEG features negatively
impacts the likelihood of successful epilepsy surgery (Janszky et al.,
2000); however, as shown by our two patients, these features do not
guarantee failure at all.

In both cases, the seizure semiology showed focal features, which
provided the greatest support for a focal “node” in a broader epilepsy
network (even though all other non-invasive pre-surgical data were
generalized). Both patients had diffuse pathologies upon resection,
namely, FCD type 1a in Case 1 and gliosis suggestive of old
infarction in Case 2. Resection in both cases resulted in
prolonged seizure freedom (Engel Ia). Importantly, this also
meant free of all seizures including those that subsequently
developed (i.e., tonic seizures in Case 1). In addition to this, all
of the EEG features of generalized epilepsy completely resolved
following epilepsy surgery, proving the greatest evidence that
normalization can occur if the focal driving force in a patient’s
broader epilepsy network is subsequently removed (Archer et al.,
2014). Findings from our cases are not, however, generalizable to
most focal epilepsies: in fact, diffuse pathologies such as FCD type
1 tend to be associated with both secondary bilateral synchrony and
surgical failure (Krsek et al., 2008), with additional factors such as
older age at epilepsy surgery and multi-lobar extent of
pathology modulating likelihood of seizure freedom (Fauser
et al., 2008).

4 Conclusion

These two cases highlight that focal epilepsy with broad bilateral
networks even representing those seen in generalized epilepsy is still
amenable to curative epilepsy surgery. Each case was assessed with
stereo-EEG, and focal resections resulted in complete seizure
freedom (of all types of seizures) and containment of bilateral
network activation. They form the framework to discuss
generalized network recruitment and emphasize that with careful
patient selection, good clinical outcomes are still possible.
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