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The dynamics of synaptic interactions within spiking neuron networks play a
fundamental role in shaping emergent collective behavior. This paper studies a
finite-size network of quadratic integrate-and-fire neurons interconnected via a
general synaptic function that accounts for synaptic dynamics and time delays.
Through asymptotic analysis, we transform this integrate-and-fire network into
the Kuramoto-Sakaguchi model, whose parameters are explicitly expressed via
synaptic function characteristics. This reduction yields analytical conditions on
synaptic activation rates and time delays determining whether the synaptic
coupling is attractive or repulsive. Our analysis reveals alternating stability
regions for synchronous and partially synchronous firing, dependent on slow
synaptic activation and time delay. We also demonstrate that the reduced
microscopic model predicts the emergence of synchronization, weakly stable
cyclops states, and non-stationary regimes remarkably well in the original
integrate-and-fire network and its theta neuron counterpart. Our reduction
approach promises to open the door to rigorous analysis of rhythmogenesis
in networks with synaptic adaptation and plasticity.
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1 Introduction

Cooperative rhythms play a pivotal role in brain functioning. Fully or partially
synchronized oscillations, observed across various frequency bands, underlie
fundamental processes such as perception, cognition, and motor control Churchland
and Sejnowski, 1992; Mizuseki and Buzsaki, 2014; Kopell et al., 2000. Extensive
research has focused on the emergence of cooperative rhythms in networks of spiking
and bursting neurons, encompassing synchronization Kopell et al., 2000; Brunel, 2000;
Börgers and Kopell, 2003; Somers and Kopell, 1993; Izhikevich, 2007; Belykh et al., 2005;
Ermentrout and Terman, 2010, partial and cluster synchronization Achuthan and Canavier
2009; Shilnikov et al., 2008; Belykh and Hasler, 2011; Schöll, 2016; Berner et al., 2021a,
neural bumps Laing and Chow, 2001; Gutkin et al., 2001, and chimera states Olmi et al.,
2011; Omelchenko et al., 2013.

Networks of spiking neurons with fast synaptic connections are often modeled via
pulsatile on-off coupling, which sharply activates upon the arrival of a spike from a pre-
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synaptic cell. Such interactions are conveniently represented by
networks of quadratic integrate-and-fire (QIF) models
particularly suitable for large-scale simulations and analysis of
cooperative dynamics Gerstner and Kistler (2002). The
macroscopic dynamics of QIF networks have received extensive
attention through the reduction to low-dimensional model
descriptions, especially in the thermodynamic limit of infinite-
dimensional networks Montbrió et al., 2015; Pazó and Montbrió,
2016; Devalle et al., 2017; Esnaola-Acebes et al., 2017; Devalle et al.,
2018; Schmidt et al., 2018; Pietras et al., 2019; Montbrió and Pazó
2020; Lin et al., 2020; Gast et al., 2020; Taher et al., 2020; Byrne et al.,
2022; Clusella et al., 2022; Clusella and Montbrió 2024; Ratas and
Pyragas, 2018; Pyragas and Pyragas 2022, 2023; Coombes 2023;
Ferrara et al., 2023. Notably, Montbrió et al. (2015) derived exact
macroscopic equations for QIF networks, uncovering an effective
coupling between firing rate and mean membrane potential
governing network dynamics. Pietras et al. (2023) offered an
analytical description of QIF network macroscopic dynamics,
extending beyond the Ott-Antosen ansatz Ott and Antonsen
(2008) and exploring various fast synaptic pulse profile choices.
The impact of synaptic time delay on the collective dynamics of
integrate-and-fire networks with sharply activated synaptic
coupling, modeled by the Dirac delta function, was also
extensively explored (Ernst et al., 1995; Devalle et al., 2018; Ratas
and Pyragas, 2018; Pyragas and Pyragas 2022, 2023). In particular,
Devalle et al. (2018) reduced a QIFmodel with synaptic delay to a set
of firing rate equations to analyze the existence and stability of
partially synchronous states. Ratas and Pyragas (2018) employed a
Lorenzian ansatz to characterize macroscopic oscillations of a QIF
network with heterogeneous time-delayed delta function synapses.
However, there is a lack of analytical studies on the role of slower
synaptic activation, potentially in the presence of time delays, in
controlling critical phase transitions in QIF networks. Nevertheless,
since the seminal paper by Van Vreeswijk et al. (1994), it has been
recognized that slow inhibitory and excitatory synapses can reverse
their roles, with slow inhibition favoring synchronization Golomb
and Rinzel 1993; Terman et al., 1998; Elson et al., 2002. While
predicting the exact rates of synaptic activation inducing such
critical transitions in conductance-based spiking models may be
challenging, analytically tractable QIF networks offer promising
avenues for such exploration.

Toward this goal, this paper investigates a finite-size network of
QIF neurons globally connected via a general kernel function that
governs both synaptic activation and synaptic time delay. We
analytically illustrate how the shape of the kernel function
impacts neuron interaction, significantly altering the microscopic
and macroscopic behavior of QIF networks representing Type I
neuron populations. This is achieved by reducing QIF networks and
their phase analog, theta neuron networks, to the Kuramoto-
Sakaguchi (KS) model. Here, oscillator frequencies, coupling
strength, and the Sakaguchi phase lag parameter are determined
by the pulse profile’s first and second terms in the Fourier expansion.
We conduct this reduction under the weak coupling assumption,
utilizing the intermediate step of representing the QIF network as a
generalized Winfree model, subsequently reduced to the KS model.

In our recent study Munyayev et al. (2023), we elucidated the
qualitative connection between the dynamics of QIF networks
incorporating synaptic dynamics and neuronal refractoriness, and

the second-order Kuramoto model with high-order mode coupling.
Here, we use multi-scale analysis to derive exact relationships
between the QIF network with an arbitrary synaptic activation
function and the KS model. Specifically, we establish explicit
conditions on the parameters of the general kernel function that
lead to critical transitions, determining whether the coupling is
attractive or repulsive. Consequently, these conditions dictate the
emergence of stable synchronization or nonstationary
generalized splay states Berner et al. (2021b) and cyclops
states Munyayev et al. (2023). Our analysis reveals alternating
stability regions for network synchronization, dependent on both
the (slow) synaptic activation and time delay. With some
important caveats, this finding can be interpreted as an
analogous stability criterion for synchronization in time-
delayed phase oscillator networks Earl and Strogatz (2003).

Our approach serves as a connecting link between two
alternative methodologies for describing macroscopic dynamics:
QIF networks and theta neurons, and Winfree-type models Pazó
and Montbrió, 2014; Gallego et al., 2017; Montbrió and Pazó, 2018;
Pazó et al., 2019; Pazó and Gallego 2020; Manoranjani et al., 2021;
Bick et al., 2020. Our KS model reduction of the generalizedWinfree
model with a general synaptic activation function can be seen as an
extension of the work Montbrió and Pazó (2018), where a two-
population Kuramoto model was derived from a network ofWinfree
oscillators featuring a feedback loop between fast excitation and slow
inhibition.

The structure of this paper is outlined as follows. Section 2
presents the QIF network model, its theta neuron equivalent, and
the general synaptic activation function. Section 3 details
transforming the theta neuron model into the generalized
Winfree model. We expand the pulse profile as a Fourier series
and further simplify the model to the KS model using weak
coupling-enabled averaging techniques. Section 4 focuses on a
specific example of synaptic activation, presenting a class of kernel
functions. We establish exact conditions determining whether the
synaptic coupling is attractive, promoting synchronization, or
repulsive, favoring splay and cyclops states. Section 5 offers
numerical validation of the derived conditions and presents a
comparison between the dynamics of the QIF network, the
theta neuron model, and the reduced KS model. We
demonstrate that the KS model accurately predicts firing rates
and times, capturing the emergence of synchronization, weakly
stable cyclops states, and non-stationary regimes. Section 6
contains concluding remarks and discussions.

2 The general QIF network and its theta
neuron representation

Physiologically, excitable neurons are commonly categorized
into two types. We focus here on Type I neurons, a group
encompassing cortical excitatory pyramidal neurons. When
subjected to a sufficiently large input stimulus, these neurons
exhibit action potentials at an arbitrarily low rate, signaling the
disappearance of a resting state through a saddle-node bifurcation.
The canonical model used to describe Type I neurons is the QIF
neuron model, which characterizes neurons’ dynamics near the
spiking threshold Izhikevich (2007).
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This study investigates a globally coupled network of N QIF
neurons interacting through chemical synapses. Each neuron’s
microscopic state is characterized by its individual membrane
potential vn, governed by the following ordinary differential
equation Izhikevich (2007):

_vn � v2n + ηn + ϰS t( ) if vn < vth,
vn � vr if vn ≥ vth.

(1)

Here, ηn, n � 1, 2, . . . , N represents external constant currents
applied to neurons, ϰ is a common synaptic weight controlling
the total strength of synaptic inputs, and S(t) is a time-varying input
drive. When the membrane potential vn of the nth neuron reaches
the threshold value vth, the neuron generates a spike, and its voltage
resets to vr. In the absence of the input drive (S(t) � 0), the intrinsic
applied current ηn � 0 places the corresponding nth neuron at a
saddle-node bifurcation, marking the onset of periodic firing. Thus,
if ηn < 0, the neuron is in the excitable regime, while if ηn > 0, it is in
the oscillatory regime.

The last term on the right-hand side of (Eq. 1) represents
synaptic interactions characterized by the coupling strength ϰ of
the global synaptic drive. In general, the mean population
synaptic activity S(t) can be expressed by the following
recurrent input equation:

S t( ) � 1
N

∑N
n′�1

∑
m\tm

n′ < t
∫
t

−∞
d~t G t − ~t( ) τ/( )δ ~t − tmn′( ). (2)

This equation accounts for relaxation processes and describes a
specific type of neuron activation and its sensitivity to stimuli from

other cells, including signal duration and post-spike latency. Here,
tmn′ denotes the time of the mth spike of the n′th neuron, δ(t)
represents the Dirac delta function, and G(t/τ) is the normalized
synaptic activation caused by a single presynaptic spike with a time
scale τ. Notably, the integral transformation with the kernel G(t/τ)
acts as a low-pass filter.

The QIF-neuron model (Eq. 1) describes the membrane
potential vn and operates as a hybrid dynamical system,
incorporating instantaneous resets to a base value vr upon spike
emission. While this formulation provides a direct physical
interpretation, discontinuities can pose challenges for certain
applications. Fortunately, a smooth change of coordinates exists,
transforming the QIF-neuron dynamics into a space where the
membrane potential vn is represented by a phase variable θn on
the unit circle. This representation captures nonlinear spike-
generating mechanisms of Type I neurons, ensuring smooth
solutions within a compact domain. In the limit vth � −vr → ∞,
the transformation vn(t) � tan(θn(t)/2) Ermentrout and Kopell
(1986) converts the membrane potential description of the QIF-
neuron model (Eq. 1) into a canonical theta neuron model of a
population of Type I neurons coupled by an excitatory or inhibitory
synaptic drive. In this case, each neuron’s dynamics is governed by
the following equation:

dθn
dt

� 1 − cos θn( ) + ηn 1 + cos θn( ) + ϰ 1 + cos θn( )S t( ), (3)

where n � 1, . . . , N represents the index of the nth neuron, and its
state is characterized by the phase angle θn. We assume that the
constant excitability parameters ηn, akin to fixed input currents,

FIGURE 1
Synaptic dynamics S(t), defined by (Eq. 4), induced by presynaptic spikes p(t), taking the form of (A,B) P∞(t) as defined by (Eq. 6) and (C,D) P](t) as
defined by (Eq. 5) with ] � 40 and linearly increasing phase θ1(t) � t (N � 1). The parameter τ � 0.18 is used for all cases.
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have slightly different values across the network elements.
Moreover, we consider ηn > 0, placing each neuron in an
oscillatory regime indicative of periodic spiking. A neuron is
deemed to spike or produce an action potential when θn crosses π
while increasing. Consequently, in addition to a common
external input ηn, each cell receives stimulation from other
cells. Thus, the neurons are recurrently coupled via synaptic
current S(t).

The last term on the right-hand side of (Eq. 3) accounts for
chemical interactions among neurons. The coupling strength ϰ is
assumed to be uniform across all neurons. We model the
synaptic activity S(t) acting on a neuron with the following
expression:

S t( ) �∫
t

−∞
d~t G t − ~t( ) τ/( ) 1

N
∑N
n�1

P] θn ~t( )( )⎡⎣ ⎤⎦, (4)

where the function

P] θn( ) � p] 1 − cos θn( )], ] ∈ N (5)

determines the shape of the pulsatile chemical synapse. The positive
integer parameter ] controls the sharpness of P](θn), with higher
values yielding sharper peaks. Note that as ] → ∞, the smooth
profile P](θn) converges to P∞(θn), effectively representing
δ-pulses so that

P] θn( )






→] → ∞ P∞ θn( ) � 2 C2π θn − π( ) � 2 ∑+∞
k�−∞

δ θn − π − 2πk( ), (6)

where CT(·) denotes the Dirac comb with period T. In this limit and
under the assumption vth � −vr → ∞, the theta neuron model (Eqs
3, 4) fully aligns with the QIF-neuron model (Eqs 1, 2). It is
noteworthy that these models exhibit an unconventional
characteristic: in contrast to conductance-based models,
inhibitory δ-pulse coupling (ϰ< 0) promotes synchronization,
thus being considered attractive, while excitatory δ-pulse
coupling (ϰ> 0) is repulsive Izhikevich (2007).

Note that the limiting δ-pulse case with P∞(θn) offers a
convenient framework in which function G(t) controls synaptic
activation and deactivation after the instantaneous occurrence
of a presynaptic action potential. The use of P∞(θn) simplifies
the analytical expressions in the KS model to be more explicit
and manageable (see next section). However, the general Eqs 4,
5 for synaptic input S(t) provide a more comprehensive and
accurate description that captures the nuances of synaptic
transmission processes. The release of neurotransmitters
from the presynaptic neuron that induces a chemically
activated synaptic current is non-instantaneous. Thus, the
general function P](θn) more adequately describes this
gradual neurotransmitter release that takes place as the
presynaptic neuron state approaches a spike
activation threshold.

In this work, we primarily focus on the pulse shape defined by
(Eq. 5), originally proposed in Ariaratnam and Strogatz (2001) and
widely adopted in recent studies of pulse-coupled phase oscillators
O’Keeffe and Strogatz 2016; Pazó and Montbrió, 2014; Gallego et al.,
2017; Pazó et al., 2019; Bick et al., 2020 and populations of theta
neurons Luke et al., 2013; So et al., 2014; Laing 2014, Laing 2015;
Montbrió et al., 2015; Pazó and Montbrió, 2016; Chandra et al.,
2017; Goel and Ermentrout 2002; Bick et al., 2020; Pietras et al.,
2023. However, our approach is directly applicable to alternative
pulse shapes satisfying common properties such as unimodality,
normalization, symmetry, and localization around θn � π and
considered in previous studies Gallego et al., 2017;
Pietras et al., 2023.

In the following, we explore how the shape of the kernel
function G(t/τ), governing synaptic activation, impacts the
network’s collective behavior. To tackle this analytically, we
will demonstrate that the model (Eqs 3, 4) consideration can be
reduced to a more analytically-tractable KS model. The
process involves several key steps: firstly, leveraging the
assumption ηn > 0, we introduce an alternative
phase representation for (Eqs 3, 4). Subsequently, we will
derive the KS model of phase oscillators by employing
multiple time scale analyses in weak chemical synaptic
coupling scenarios.

FIGURE 2
Characteristics of the synaptic dynamic profile for S(t) (Eq. 4) as a
function of q. (A) Peak latency, tm , (B)maximum value, Sm , and (C) full
width at half maximum (FWHM), induced by spikes P](t) with τ � 0.1
and different ] (cyan markers – ] � 10, red markers – ] � 100,
orange markers – ] � 1000).
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3 Deriving the KSmodel from the theta-
neuron model: an asymptotic analysis

We begin by assuming that each neuron operates within an
oscillatory regime in the absence of interaction, i.e., ηn > 0. Hence,
we can use a dynamical variable transformation:

2 tan θn 2/( ) � Ω tan φn 2/( ), (7)
whereΩ is an unknown parameter to be determined subsequently. It
is notable that Ω is close to 2

����
〈ηn〉

√
, where 〈ηn〉 denotes the mean

value of the distributed external constant currents ηn. However, a
more precise determination of Ω is feasible for finite-size networks,
as will be shown later in this section.

The transformation (Eq. 7) transitions the model (Eqs 3, 4) to an
alternative phase representation:

dφn

dt
� Ω + 2ϰ

Ω 1 + cosφn( ) ηn − Ω2/4
ϰ + S t( )( ), (8)

S t( ) �∫
t

−∞
d~t G t − ~t( ) τ/( ) 1

N
∑N
n�1

Q] φn
~t( )( )⎡⎣ ⎤⎦, (9)

where

Q] φn( ) � P] 2 arctan Ω tan φn 2/[ ] /2( )( ). (10)
This representation remains consistent with the original description;
notably,φn ∈ [−π, π], and the occurrence of spikes for the nth neuron is

FIGURE 3
Regions of attractive (blue) and repulsive (red) coupling in the theta neuron model (Eqs 3, 4), corresponding to the KS model regions defined by (Eq.
29). The colors represent the coupling strength K sign as a function of the synaptic time constant τ and the common external input θ for a fixed q. (A) q � 2,
(B) q � 4, and (C) q � 12. Other parameters: ϰ � −0.2π, ] � 20, η1 � η2 � / � ηN � η. The yellow points A, B,C, andD indicate the parameter values used for
numerical simulations of Figures 6–9.

FIGURE 4
Coupling strength K (A) and Sakaguchi parameter α (B) as functions of synaptic adaptation/delay (parameter q) and the finite pulse width (parameter
]). The dependencies are calculated analytically via (Eq. 21) and (Eq. 27) for τ � 0.15, ϰ � −0.2π, �η � 2. The coupling strength K increases as the pulse width
decreases (via increasing ]) and decreases as synaptic adaptation slows down and experiences larger time delays (via increasing q). The Sakaguchi
parameter α is highly sensitive to q and only weakly dependent on ].
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still defined by φn crossing π. However, given that in the model (Eqs 3,
4), all cells receive constant external inputs ηn > 0, and all units operate
within the oscillatory regime, each phase φn uniformly rotates in the
absence of network interaction. Hence, the representation (Eqs 8, 9)
proves more convenient for subsequent analysis. Thus, we derive the
governing equation for the introduced dynamical variables φn that may
be viewed as the generalized Winfree model, which, in turn, can be
reduced to the KS model. Further elaboration on this approach’s
derivation and technical intricacies are presented below.

For further analysis, it is convenient to expand the symmetric
pulseQ](φn) into a Fourier series with respect to φn. This expansion
takes the following form:

Q] φn( ) � ∑+∞
ℓ�−∞

Q]ℓ e
iℓφn , Q]ℓ � 1

2π
∫
+π

−π
dφ e−iℓφ Q] φ( ),

Q],−ℓ � Q]ℓ ∈ R. (11)
The coefficients Q]ℓ in this series can be expressed analytically
as follows:

Q]ℓ � p]2
]

π
∑ℓ
m�0

−1( )mC2m
2ℓ

Ω| |
2

( )2 ℓ−m( )+1Γ ] +m + 1
2

( )Γ ℓ −m + 1
2

( )
Γ ] + ℓ + 1( )

× 2F1 ℓ + 1, ℓ −m + 1
2
; ] + ℓ + 1; 1 − Ω2

4
( ),

where C2m
2ℓ represents combinations, Γ(·) denotes the gamma

function, and 2F1(·, ·; ·; ·) is the hypergeometric function.
Specifically, for the first two Fourier series coefficients Q∞0 and
Q∞1 of the symmetric pulse Q∞(φn) in (Eq. 10), we obtain:

Q]0 � Ω| |
2π 2

F1 1,
1
2
; ] + 1; 1 − Ω2

4
( ), (12)

Q]1 � Ω| |
4π ] + 1( )[Ω

2

4 2
F1 2,

3
2
; ] + 2; 1 − Ω2

4
( )

− 2] + 1( )2F1 2,
1
2
; ] + 2; 1 − Ω2

4
( )].

(13)

FIGURE 5
Dynamical equivalence between the theta neuron (Eqs 3, 4) and KS models (Eq. 20), demonstrated via the onset of full synchronization. (A) The
evolution of the first |R1| (solid curves) and second |R2| (dashed curves) order parameters for the theta neuron (green curves) and KS model (red curves),
including the transient period. Initial phases θn , n � 1, . . . ,N � 21 are uniformly distributed over the interval [−π; π]. (B) The colors depict the phase
differences θn − θ21 in the theta neuronmodel converging to imperfect full synchronization, subject tomismatched parameters ηn that are uniformly
distributed on the segment [�η − δη/2; �η + δη/2], �η � 2.0, δη � 6 × 10−3. (C) Comparison between the dynamics of the phase differences θn − θ21 for n �
n1 � 17 (thick red curve) and n � n2 � 20 (thick blue curve) in the theta neuronmodel and θn − θ21 recalculated from phases φn using the relation (Eq. 7) for
n � n1 � 17 (thin cyan curve) and n � n2 � 20 (thin red curve) in the KS model. Note the perfect alignment of the phase-difference dynamics in the two
models. Parameters: q � 2, ϰ � −0.2π, τ � 0.5, ] � 20, �η � 2.0 correspond to point A on Figure 3.
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Noteworthy, in the limit ] → ∞, i.e., for Q∞(φn), all coefficients in
the Fourier series (Eq. 11) converge to the same value Q∞ℓ �
(−1)ℓ|Ω|/2π.

We proceed by assuming that the synaptic coupling is
weak, allowing us to express it as 2ϰ/Ω � εκ, where ε ≪ 1 is
a small parameter. Similarly, we assume that the deviations of
external inputs ηn from the value Ω2/4 are small,
i.e., ηn − Ω2/4 � εΩσn/2.

These assumptions enable a multiple-time scale analysis.
To facilitate this analysis, we introduce a separation of
time scales:

tk � εkt, k � 0, 1, . . . ,∞ (14)
and represent each phase variable, φn(t), as an asymptotic series
with respect to the small parameter ε:

φn t( ) � ∑∞
k�0

εkφ k( )
n t0, t1, t2, . . .( ). (15)

Substituting the series (Eq. 15) with times (Eq. 14) and (Eq.
11) into (Eqs 8, 9), and considering the zeroth order in ε, we
obtain for φ(0)

n (t0, t1, t2, . . .):

φ 0( )
n t0, t1, t2, . . .( ) � Ωt0 + ϕn t1, t2, . . .( ) (16)

and, taking into account (Eq. 16), for S(t0, t1, t2, . . .) we arrive at

S t0, t1, t2, . . .( ) � τ ∫
+∞

0

dξ G ξ( )

× 1
N

∑N
n′�1

Q] Ωt0−Ωτξ+ϕn′ t1−ετξ, t2−ε2τξ, . . .( )(⎡⎢⎣
+ εφ 1( )

n′ t0−τξ, t1−ετξ, . . .( ) +/ ) ≈
1
N

∑N
n′�1

×⎤⎥⎦
∑+∞

ℓ�−∞
Gℓ Q]ℓ e

iℓΩt0+iℓϕn′ t1 ,t2 ,...( ), (17)

FIGURE 6
Dynamical equivalence between the theta neuron (Eqs 3, 4) and KSmodels (Eq. 20), demonstrated via the onset of non-stationary generalized splay
state with an oscillating |R1|≈ 0. Notations are as in Figure 5. (A) The evolution of the first |R1| (solid curves) and second |R2 | (dashed curves) order
parameters for the theta neuron (green curves) and KS model (red curves), including the transient period. (B) The colors depict the phase differences
θn–θ21 in the theta neuronmodel. (C)Comparison between the dynamics of the phase differences θn–θ21 for n = n1 = 17 (thick red curve) and n = n1 =
20 (thick blue curve) in the theta neuron model and θn–θ21 for n = n1 = 17 (thin cyan curve) and n = n1 = 20 (thin red curve) in the KS model. Mismatch
parameters ηn are chosen from a uniform distribution [�η − δη/2; �η + δη/2], �η � 2.0, δη � 10−3. Other parameters:N � 21, q � 2, ϰ � −0.2π, τ � 0.8, and ] � 20
correspond to point B on Figure 3 and yield the frequency parameter Ω ≈ 2.639, calculated from (Eq. 22) [not shown].
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where each corresponding complex coefficient Gℓ is determined
as follows:

Gℓ � τ ∫
+∞

0

dξ G ξ( ) e−iℓΩτξ . (18)

In (Eq. 16), the first term Ωt0 describes the fast, free-running
rotation of period 2π/Ω, while the slow phase drifts induced by
synaptic interaction are characterized by the set of slow variables
ϕn(t1, t2, . . .). Hence, ϕn(t1, t2, . . .) can be considered constant over
time scales comparable to the period of the corresponding fast
rotation. Consequently, the standard averaging method can be
applied to derive the KS model corresponding to (Eqs 3, 4). Notably,
in this case, the Sakaguchi phase shift emerges naturally due to the
complex nature of the coefficient Gℓ determined in (Eq. 18).

In accordance with the averaging procedure after substituting
expression (Eq. 17) into (Eq. 8), the next step of our asymptotic
approach involves considering all terms that are o(ε) and, in the first
order in ε, we obtain a set of equations for φ(1)

n (t0, t1, . . .).
To eliminate the secular terms that grow without bounds as

t0 → ∞, we impose the conditions

∂ϕn

∂t1
� σn + κQ]0 + κ|G1|Q]1

N
∑N
n′�1

cos ϕn′ − ϕn + arg G1( )( ). (19)

This yields a solution for φ(1)
n (t0, t1, . . .) without the secular

terms. Note that (Eq. 19) measures the rate of change of

ϕn(t1, t2, . . .) with respect to the slow time scale t1. Finally,
taking into account the relation dϕn/dt ≈ ε∂ϕn/∂t1, we find that
the dynamics of the slow phases ϕn(t) is approximately described by
the KS model:

dϕn

dt
� ωn + K

N
∑N
n′�1

sin ϕn′ − ϕn − α( ), (20)

where

ωn � εσn + εκQ]0 � 2 ηn −Ω2 4/ + ϰQ]0( )Ω/ , (21a)
K � εκ|G1|Q]1 � 2ϰ|G1|Q]1 Ω/ , (21b)

α � −arg G1( ) − π 2/ . (21c)

To determine the unknown parameter Ω, we set the mean value
of the intrinsic frequencies ωn in the KS model (Eq. 20) to zero.
Hence, the value of Ω can be found by solving the nonlinear
algebraic equation:

〈ηn〉 − Ω2 4/ + ϰQ]0 Ω( ) � 0. (22)
This choice of the optimal value of parameter Ω yields a better
quantitative match between the numerical simulation results of the
theta neuron model (Eqs 3, 4) and the KS model (Eq. 20), compared
to the conventional choice of 2

����
〈ηn〉

√
. In the limiting case ] → +∞,

where the shape of the pulsatile chemical synapse P∞(θn)
is determined by Eq. 6, the first two Fourier series coefficients
Q∞0 and Q∞1 in (Eqs 12, 13) of the symmetric pulse Q∞(φn) in

FIGURE 7
Large-size networks. Dynamical equivalence between the theta neuron (Eqs 3, 4) and KS models (Eq. 20), demonstrated via the onset of full
synchronization (A,B) and non-stationary generalized splay state with an oscillating |R1|≈ 0 (C,D) forN � 100 (A,C) andN � 1,000 (B,D). Notations are as in
Figures 5, 6. Parameters: q � 2, ϰ � −0.2π, τ � 0.5, ] � 20, �η � 2.0 (A,B); q � 2, ϰ � −0.2π, τ � 0.8, and ] � 20 (C,D).
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Eqs 8, 9 converge toQ∞0 � −Q∞1 � |Ω|/2π and, hence, Eq. 22 forΩ
can be solved analytically. This yields the simpler expressions for the
parameters ωn, K and α of the KS model (Eq. 20) with coefficients
(Eqs 21a, 21b, 21c):

ωn � 2π ηn − 〈ηn〉( )
ϰ + �����������

4π2〈ηn〉 + ϰ2
√ , (23a)

K � −ϰ G1| |/π, (23b)
α � −arg G1( ) − π 2/ , (23c)

where the complex coefficient G1 is determined as follows:

G1 � τ ∫
+∞

0

dξ G ξ( ) e−i ϰ+
�������
4π2〈ηn〉+ϰ2

√( )τξ/π . (24)

Note that oscillator frequencies ωn, coupling strength K,
and the Sakaguchi phase lag parameter α in the KS model (Eq.
20) are explicitly defined through by the pulse profile’s first and
second Fourier series terms Q]0 and Q]1. In particular, the
expressions (Eq. 23) clearly indicate that for the δ-pulses, the

sign of the coupling strength K in the KS model is solely
determined by and is opposite to the sign of the coupling κ

in the original QIF model. The following section will show that
this property carries over to the general finite-width pulses
defined by (Eq. 5). For a specific class of the activation function
G(t/τ), we will also demonstrate that increasing the pulse width
decreases the coupling strength K and practically does not
affect the Sakachichi phase lag parameter α. The direct
dependence on the properties of synaptic activation enables
a straightforward assessment of the role of synaptic interactions
in critical phase transitions and dynamics. Specifically, the
coupling strength K and Sakachichi parameter α directly
reflect the impact of synaptic activation on critical phase
transitions and the synchronization behavior of the neuron
population. In particular, determining whether the coupling in
the theta neuron model (Eqs 3, 4) is attractive or repulsive
presents a challenge due to the complexity of the system,
whereas the KS model (Eq. 20) makes this process
straightforward. In the subsequent section, we delve into this
process, focusing on a particular synaptic activation profile.

FIGURE 8
Onset of full synchronization in the QIF (Eq. 1) and KS models (Eq. 20). (A) Firing rate and (B) firing times of QIF neurons (cyan curves and round
markers) and oscillators of the KS model (black curves and cross markers) with the firing times recorded at θn(tf ) � π. Each row in (B) represents the firing
times of a neuron/oscillator. Inset (C) zooms-in on the firing time pattern from (B). Initial conditions are as in Figure 5. Parameters:N � 21, q � 4, τ � 0.15,
ϰ � −0.2π, vth � −vr � 105, �η � 2, δη � 6 × 10−3, ] � 105 correspond to pointC in Figure 3. The firing rate was calculatedwithin a sliding timewindow of
δt � 5 × 10−2.
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4 The role of synaptic profile: a
combined effect of activation,
deactivation, and time delays

To demonstrate the important effects arising from the specific
selection of the shape of a “low-pass filter” in synaptic activation, we
examine the following class of kernel functions:

G t τ/( ) � t τ/( )q e−t/τ
q! τ

H t τ/( ), (25)

where H(t/τ) is the Heaviside step function and q represents an
integer parameter pivotal to the network dynamics, as will become
evident subsequently. The chosen kernel corresponds to the Green’s
function for a non-homogeneous linear differential equation of
order (q + 1). In this case, the equation for the mean synaptic
activity S(t) is generated by the (q + 1)th order linear differential
operator L̂ � (τ d/dt + 1)q+1 and contains an external signal that
represents an average profile of spike pulses:

τ
d

dt
+ 1( )q+1

S t( ) �

1
N

∑N
n′�1

∑
m\tm

n′ < t
δ t − tmn′( ),

1
N

∑N
n′�1

P] θn′ t( )( ),

1
N

∑N
n′�1

Q] φn′ t( )( ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

The source term on the right-hand side of (Eq. 26) is presented in
three interchangeable forms corresponding to the QIF model (Eqs 1,
2), theta neuron (Eqs 3, 4), and their averaged representation
through the KS model (Eq. 20). This term can be interpreted as
the population firing rate, which induces a post-synaptic current in
response to the arrival of spikes. In the limit τ → 0, one might

assume that the interaction between neurons becomes
instantaneous. However, if the characteristic time scale τ of a
post-synaptic response is not negligibly small, it becomes
imperative to take into account the individual adaptation
dynamics of the synaptic variable S(t), encompassing its
activation, deactivation, and time delay.

To describe the adaption dynamics of S(t), it is common to
assume that the synaptic variable S(t) follows the first-order Devalle
et al., 2017; Bick et al., 2020; Afifurrahman et al., 2020; Afifurrahman
et al., 2021; Pietras et al., 2023 or second-order ordinary differential
equationMohanty and Politi 2006; Zillmer et al., 2007; Bolotov et al.,
2016; Chen et al., 2017, corresponding to q � 0 and q � 1 in (Eq. 26),
respectively.

In the case q � 0, the mean population synaptic activity S(t)
is governed by the standard relaxation rule. Here, when the n′th
neuron fires at time tmn′, generating the mth spike in the form of
the Dirac delta function, the mean activity S(t) instantaneously
changes and subsequently decays exponentially in the absence
of further firings. The parameter τ acts as a synaptic
time constant.

For q � 1, when the n′th neuron fires at time tmn′ and the mth
Dirac delta pulse is generated, the variable S(t) is augmented by the
function G((t − tmn′)/τ)/N defined by (Eq. 25) with q � 1, coinciding
with the so-called alpha-function pulse Mohanty and Politi 2006;
Zillmer et al., 2007; Bolotov et al., 2016; Chen et al., 2017. For this
alpha-pulse created by a spiking neuron, τ determines both the
signal’s width and the time at which it attains its maximum
value (Figure 1).

We extend the argument to arbitrary q and τ that make the
model of synaptic adaptation (Eq. 26) encompass a broad spectrum
of realistic biophysical scenarios, ranging from fast non-delayed to
slow delayed activation. These scenarios include neurotransmitter
release in the synaptic cleft and the opening/closing of postsynaptic
ion channels, characterized by distinct time scales such as latency

FIGURE 9
Diagram similar to Figure 8 showing a nearly perfect match for asynchronous firing rate (A) and firing times (B) in the QIF network (cyan curves and
round markers) and the KS model (black curves and cross markers). Parameters: N � 21, q � 4, τ � 0.41, ϰ � −0.2π, vth � −vr � 105, �η � 2, δη � 6 × 10−3,
] � 105 correspond to point D in Figure 3. Other notations and settings are as in Figure 8.
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(time delay), rise, and decay times, as reflected in the kernel
function (Eq. 25).

Our choice of the kernel function G(t/τ) for synaptic activation
aligns with the gamma distribution Zwillinger (1992), a continuous
probability distribution characterized by two parameters: τ > 0, the
scale parameter, and q> 0, the shape parameter. This distribution
reaches its maximum value at tmax � qτ, with mean value
tmean � (q + 1)τ, variance σ2t � (q + 1)τ2, and skewness
γt � 2/

����
q + 1

√
. The skewness, reflecting the symmetry of the

distribution about its mean, is maximal for the exponential case q �
0 and diminishes for larger values of q, indicating increased
symmetry. While both q and τ influence synaptic dynamics, q
has a more significant impact on synaptic time delay than τ,
whereas τ predominantly shapes the synaptic activation profile.
Figures 1, 2 demonstrate how the parameters τ and q determine the
time profile of the post-synaptic response and its characteristics.

Towards our objective of deriving explicit conditions for the
attractiveness or repulsiveness of synaptic coupling governed by (Eq.
24) with the kernel function (Eq. 25), we calculate the complex
coefficient G1 and its modulus and argument from (Eq. 24)
as follows:

G1 � 1

1 + iΩτ( )q+1, G1| | � 1

1 + Ωτ( )2( ) q+1( )/2,

arg G1( ) � − q + 1( )arctan Ωτ( ), (27)

where Ω is determined from (Eq. 22). While the hypergeometric
function Q]1, a factor defining the coupling strength K in the KS
model (Eq. 20) with coefficients (Eq. 27), cannot be expressed via
elementary functions (except for the liming δ-pulse case with
] → ∞), it is evident that Q]1 ≤ 0 for ]≥ 0. Consequently, the
coupling strength K � 2ϰ|G1|Q]1/Ω in the KS model (Eq. 20) for
Ω> 0 and the coupling strength κ in the QIF model (Eq. 1) have
opposite signs. Therefore, for ϰ< 0, a positive coupling strength K
corresponds to attractive coupling, provided that the Sakaguchi
phase lag parameter α< π/2. According to (Eq. 21), cos α> 0 if

sin q + 1( )arctan τΩ( )[ ]> 0. (28)

Solving the inequality (Eq. 28), we obtain the following �q/2� + 1
intervals of parameters that correspond to the attractive coupling in
the KS model (Eq. 20) and therefore in the QIF (Eqs 1, 2) and theta-
neuron models (Eqs 3, 4) with κ< 0:

FIGURE 10
Firing rate (A) and firing times (B) of a three-cluster cyclops state in the QIF network (cyan curves and roundmarkers) and the KSmodel (black curves
and crossmarkers). (C) Snapshots of the cyclops state phase distributions φn in the KSmodel at two time instants. The oscillators’ coloring represents their
phase. The cyclops states is formed by a solitary oscillator (red) and two coherent clusters, each composed of 10 oscillators (orange and blue). The initial
phases are chosen near a cyclops state. Parameters: N � 21, q � 2, τ � 0.8, ϰ � −0.2π, vth � −vr � 105, �η � 2, δη � 0, ] � 105. Other notations and
settings are as in Figure 8.
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τΩ ∈ D0 ∪ tan
q/2⌊ ⌋
q + 1

π( ),+∞( ), for even ⌊q/2⌋,
τΩ ∈ −∞,−tan q/2⌊ ⌋

q + 1
π( )( ) ∪ D0, for odd ⌊q/2⌋, (29)

where D0 � [ ⋃
�(q−2)/4�

n�−�q/4�
(tan( 2n

q+1 π), tan(2n+1q+1 π))].

Figure 3 displays the regions, as defined by (Eq. 29), where the
coupling in the KS model is attractive (blue) or repulsive (red).
These regions exhibit an alternating pattern as functions of the
synaptic time constant τ and the common external input θ for a
fixed q. Increasing the parameter q, which primarily controls the
time delay, makes the synaptic coupling more sensitive and

FIGURE 11
Firing rate (A) and firing times (B) in the QIF network demonstrating the transition to full synchronization starting from random initial conditions.
Parameters N � 1,000, q � 4, τ � 0.15, ϰ � −0.2π, vth � −vr � 100, �η � 2, and δη � 6 × 10−3correspond to point C in Figure 3. The simulations use the
algorithm from Pazó and Montbrió (2016), which accounts for the neurons’ refractory time. The mean synaptic activation was calculated within a sliding
time window of δt � 5 × 10−2.

FIGURE 12
Firing rate (A) and firing times (B) in the QIF network accompanying the transition from synchronous to asynchronous dynamics. Parameters
N � 1,000, q � 4, τ � 0.41, ϰ � −0.2π, vth � −vr � 100, �η � 2, and δη � 6 × 10−3correspond to point D in Figure 3. Other notations and settings are as in
Figure 11.
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results in more alternating zones. This alternating pattern of
attractive and repulsive coupling resembles the
stability criterion for synchronization in time-delayed phase
oscillator networks, where the time delay controls the sign of
the derivative of the periodic coupling function Earl and
Strogatz (2003).

Figure 4 provides further insight into how the synchronization
properties of the KS model, critically controlled by the coupling
strength K and Sakaguchi parameter α, depend on the original
parameters of the QIF model. Notably, both K and α exhibit a weak
dependence on ], suggesting that the pulse width has minimal
impact on synchronization dynamics, except for the case of
biologically irrelevant wide pulses where ] approaches 0, making
the coupling strengthK significantly weaker. In contrast, bothK and
α are highly sensitive to variations in q, with the latter producing the
alternating regions of attractive and repulsive coupling, as illustrated
in Figure 3.

In the following, we offer additional evidence supporting the
predictive power of the derived KSmodel.We show numerically that
it effectively captures the emergence of robust dynamical regimes
like synchronization and more intricate partially synchronized
dynamics such as weakly stable cyclops states and non-stationary
generalized splay states in both the QIF and theta neuron models.

5Dynamical equivalence of themodels:
numerical validation

We conduct numerical computations using a widely accepted
fifth-order Runge–Kutta method with a fixed time step of 0.01,
providing additional validation for our analytical findings and
predictions.

To characterize the dynamical regimes, we utilize both
microscopic measures (pairwise phase differences and firing times)
and macroscopic indicators such as the first- and second-order
complex Kuramoto parameters Daido 1992; Skardal et al., 2011:

Rℓ t( ) � 1
N

∑N
n′�1

eiℓφn′ � rℓe
iψ

ℓ , (30)

where rℓ and ψ
ℓ
, l � 1, 2 define the magnitude and the phase of the

ℓth moment Kuramoto order parameter Rℓ(t), respectively. The
first-order scalar parameter r1 � |R1| characterizes the degree of
phase synchrony with r1 � 1 corresponding to full phase synchrony.
The second-order scalar parameter r2 � |R2| determines the degree
of cluster synchrony, where r2 � 0 corresponds to generalized splay
states Berner et al. (2021b) and their particular case of cyclops states
Munyayev et al. (2023). We will also use the firing rate, which
measures the average rate at which neurons emit spikes, as another
important macroscopic observable to characterize dynamical
regimes. We will use the following formula Pietras et al. (2023)
in simulations later in the section:

ρ t( ) � 1
N

∑N
n′�1

∑
m\tm

n′ < t

1
Δt ∫

t

t−Δt
d~t δ ~t − tmn′( ). (31)

To identify the time steps corresponding to neuron spike events
in both the QIF-neuron model and the theta neuron model, we

monitored the sign changes of vn(t) − vth and (θn(t)mod 2π) − π,
along with their time derivative signs. Subsequently, we determined
the spike moment tmn using linear interpolation within
each time step.

Figures 5, 6 illustrate the perfect correspondence between the
emergence of full synchronization and non-stationary generalized
splay states in the theta neuron model (Eqs 3, 4) and the KS model
(Eq. 20) within the range of attractive coupling (point A in Figure 3)
and repulsive coupling (point B in Figure 3), respectively. In the case
of full synchronization (Figure 5), the first-order and second-order
scalar parameters (Eq. 30), |R1| and |R2|, converge to unity but
cannot reach 1 due to intrinsic parameter mismatch in ηn. Likewise,
the first-order scalar parameter, |R1|, associated with the non-
stationary generalized splay state oscillates closely around 0
(Figure 6). Figure 7 demonstrates that the KS model maintains
its excellent predictive power for the emergence of full
synchronization and non-stationary generalized splay states in
large networks of 100 and 1,000 theta neurons.

Figures 8–10 illustrate the remarkable agreement between
cooperative dynamics in the QIF and KS models. Specifically,
Figure 8 depicts the onset of full synchronization, as evidenced
by synchronized firing rates and times determined via (Eq. 31). The
slight discrepancy in the firing times between the QIF and KS
models may stem from various sources, such as accumulated
numerical errors and the approximate calculation of the
frequency parameter Ω derived from (Eq. 22) for selecting the
KS model parameters. Figure 9 provides evidence for the
capability of the KS model to perfectly predict even non-
stationary, asynchronous firing in the QIF model. Figure 10
illustrates the predictive power of the derived KS model in
discerning stable complex cluster patterns like cyclops states in
the QIF model. Introduced in Munyayev et al. (2023), cyclops states
are formed by two distinct, coherent clusters, and a solitary oscillator
reminiscent of the Cyclops’ eye. While detecting stable cyclops states
can be challenging in the QIF model, the KS model provides a more
convenient and constructive approach.

In the numerical calculations of relatively small-size networks of
QIF neurons presented in Figures 8–10, we employed the
fourth–order Runge–Kutta method using the procedure for
identifying the spike events described above. To ensure better
consistency between the QIF-neuron model and the theta neuron
model, we used sufficiently large values of vth and vr, specifically
vth � −vr � 105. We did not account for the time interval required
for the membrane potential to reach ± ∞. However, this approach
becomes computationally expensive for simulating large networks of
QIF neurons. Therefore, in the numerical calculations presented in
Figures 11, 12, we employed the algorithm described in Pazó and
Montbrió (2016). This algorithm, based on the Euler method,
accounts for the time it takes for the dynamic variable associated
with the membrane potential to pass through the singularity ±∞
after exceeding vth and reach the final value vr. A detailed
description of the algorithm and its parameters is available in the
Supplemental Material for Pazó andMontbrió (2016). Figures 11, 12
confirm that the main analytical predictions for the dynamics of the
QIF model remain valid for large network sizes and regardless of the
calculation scheme used. Specifically, Figure 11 validates the
prediction of coupling attractiveness at point C in Figure 3 and
demonstrates the onset of full synchronization in the QIF network of
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1,000 neurons. Similarly, Figure 12 confirms the coupling
repulsiveness at point D in Figure 3 and illustrates the
emergence of asynchronous dynamics. Notably, the asynchronous
firing rate in the 21-node QIF network shown in Figure 9,
corresponding to point D, may resemble weak coherence
patterns. In contrast, its 1,000-node counterpart in Figure 12,
with parameters also corresponding to point D, exhibits nearly
perfect asynchronous dynamics. Our numerous additional
simulations of 1,000-node QIF networks for a large set of
parameters, including those near the boundary of the alternating
regions of attractive and repulsive coupling in Figure 3, further
validated the consistency of the predictions for cooperative
dynamics and the critical transitions in the QIF networks
[not shown].

6 Conclusions

Understanding the influence of synaptic dynamics, including
activation rates, deactivation processes, and latency, on collective
dynamics in neuronal networks is of significant importance.
Considerable advancements have been made in analyzing the role
of fast or time-delayed synapses in integrate-and-fire neuron
networks. However, there remains a scarcity of analytical studies
exploring the influence of slower synaptic dynamics, potentially in
the presence of time delays, on controlling critical phase transitions
in neuronal networks.

In this paper, we have made substantial contributions to
advancing analytical methods in this field. We studied a finite-
size network of QIF neurons globally interconnected via a
generalized kernel function governing both synaptic activation
and time delay. Our analytical exploration demonstrated how the
shape of the kernel function profoundly affects neuron interaction,
thereby significantly modifying the microscopic and macroscopic
behavior of QIF networks. To achieve this, we reduced the QIF and
theta neuron network models to the Kuramoto–Sakaguchi model. In
this model, oscillator frequencies, coupling strength, and the
Sakaguchi phase lag parameter are determined by the Fourier
terms of the pulse profile series expansion.

We established exact conditions determining whether synaptic
coupling is attractive, fostering synchronization, or repulsive,
promoting splay and cyclops states. Furthermore, we
demonstrated a remarkable correspondence between the
dynamics of the derived KS model and the original QIF and
theta neuron models. Specifically, the KS model accurately
predicted firing rates and times, capturing the emergence of
synchronization, weakly stable cyclops states, and non-
stationary regimes in the QIF model. Our reduction approach
complements the work by Ratas and Pyragas (2018), which
assumed a Lorentzian distribution of the input currents and
employed the thermodynamic limit to reduce the QIF model
with time-delayed coupling to macroscopic equations that
characterize the mean membrane potential, the spiking rate,
and the mean synaptic current. The bifurcation analysis of
these macroscopic equations, performed in Ratas and Pyragas
(2018), revealed alternating parameter regions where the QIF
network exhibits macroscopic self-oscillations as a function of
input current heterogeneity and time-delayed coupling. While

sharing some similarities and goals, our approach is
fundamentally different. It reduces finite-size QIF networks
with an arbitrary current distribution and arbitrary synaptic
activation function G(t/τ) to the finite-size microscopic KS
model. This allows for characterizing fine dynamical patterns,
including cluster and cyclops states, which might be out of
reach for a macroscopic description. In light of this, our
reduction approach to an analytically tractable Kuramoto model
holds promise in facilitating constructive analysis of
rhythmogenesis in QIF networks. By utilizing the reduced KS
model, a variety of methods and analytical machinery can be
applied to the analysis of collective dynamics in QIF models,
including the constructive selection of complex patterns, such
as chimeras, whose existence and emergence might be easier to
deduce from the reduced Kuramoto model description.
Furthermore, the reduction approach holds the potential for
extensions to incorporate synaptic adaptation, Hebbian
learning, and a complex network structure by employing node-
degree block approximation.
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