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Epilepsy is characterized by recurrent, unprovoked seizures. Accurate prediction
of seizure occurrence has long been a clinical goal since this would allow to
optimize patient treatment, prevent injuries due to seizures, and alleviate the
patient burden of unpredictability. Advances in implantable
electroencephalographic (EEG) devices, allowing for long-term interictal EEG
recordings, have facilitated major progress in this field. Recently, it has been
discovered that interictal brain activity demonstrates circadian and multi-dien
cycles that are strongly aligned, or phase locked, with seizure risk. Thus, cyclical
brain activity patterns have been used to forecast seizures. However, in the effort
to develop a clinically useful EEG based seizure forecasting system, challenges
remain. Firstly, multiple EEG features demonstrate cyclical patterns, but it remains
unclear which feature is best suited for predicting seizures. Secondly, the
technology for long-term EEG recording is currently limited in both spatial
and temporal sampling resolution. In this study, we compare five established
EEG metrics:synchrony, spatial correlation, temporal correlation, signal variance
which have been motivated from critical dynamics theory, and interictal
epileptiform discharge (IED) which are a traditional marker of seizure
propensity. We assess their effectiveness in detecting 24-h and seizure cycles
as well as their robustness under spatial and temporal subsampling. Analyzing
intracranial EEG data from 23 patients, we report that all examined features
exhibit 24-h cycles. Spatial correlation, signal variance, and synchrony showed
the highest phase locking with seizures, while IED rates were the lowest. Notably,
spatial and temporal correlation were also found to be highly correlated to each
other, as were signal variance and IED—suggesting some features may reflect
similar aspects of cortical dynamics, whereas others provide complementary
information. All features proved robust under subsampling, indicating that the
dynamic properties of interictal activity evolve slowly and are not confined to
specific brain regions. Our results may aid future translational research by
assisting in design and testing of EEG based seizure forecasting systems.
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1 Introduction

Epilepsy is a disorder of the central nervous system (CNS)
characterized by the enduring predisposition to generate epileptic
seizures. Means of better understanding and characterizing the risk
of seizures, their onset, propagation and termination are therefore
desirable Mormann et al. (2007). Approaching epilepsy as a network
disorder in cortex has proven particularly promising in this regard
Spencer (2002). What are needed, are metrics to characterize the
evolving epileptic brain network on spatial and temporal scales.
Such network-based metrics are particularly relevant for tracking
changing seizure risk levels across 24-h and multi-day cycles where
they may provide important insights into pre-seizure dynamics as
well as success or failure of network-based seizure control and
prevention Zaveri et al. (2020) Meisel and Loddenkemper (2020)
Lehnertz et al. (2023).

Interictal epileptiform discharge (IEDs) are unique to
epileptogenic tissue, and have long been used to characterize
interictal activity clinically by helping localize seizure onset zones
and track seizure risk periods Hufnagel et al. (2000) Barkmeier et al.
(2012) Baud et al. (2018). Initially, IEDs were manually identified by
EEG clinicians. Subsequently, automated detection methods were
developed, which involved tracking the ratio between various band
powers derived from iEEG data or, more recently, using machine
learning methods. These approaches enabled continuous
monitoring of IED frequency over extended periods of time
Barkmeier et al. (2012) Gutierrez (2022) Quon et al. (2022).

Other network metrics to track epilepsy have been proposed
from theory. One such theory in the setting of epilepsy as a network
disorder relates to the notion that cortical network dynamics reside
near a critical state at a boundary between distinct types of dynamics
Meisel and Loddenkemper (2020). The transition to a seizure then
constitutes a transition to another type of dynamics. Based on this
framework, specific markers have been proposed to track cortex
excitability and seizure risk, i.e., the distance to a critical point Meisel
and Kuehn (2012)Meisel et al. (2015b)Maturana et al. (2020)Meisel
(2020). A general feature of systems near a critical phase transition is
critical slowing down Scheffer et al. (2009). Critical slowing down
occurs because of the repeatedly slower recovery from small
perturbations when a bifurcation or phase transition is
approached Wissel (1984) Meisel and Kuehn (2012) Meisel et al.
(2015a). Critical slowing down can be monitored by tracking a
signal’s variance and autocorrelation, which, consequently, have
been shown to contain information about a network’s state and
seizure risk Meisel (2020) Maturana et al. (2020). Similarly,
correlations in space are predicted by theory to peak at criticality,
and can be captured by quantification of the decay of the spatial
cross-correlation function Müller and Meisel (2023) or by
quantifying phase synchronization across cortical sites Meisel
et al. (2015b). Both spatial correlations measures have been
shown to capture information on the excitability levels of cortical
networks, such as under changing levels of antiseizure medication
Müller and Meisel (2023) Meisel et al. (2015b). More recently, the
study of seizure occurrence and interictal markers of seizure
propensity has shifted from the order of minutes to hours to the
order of days, months and even years, indicating the existence of
certain cycles Meisel et al. (2015b) Baud et al. (2021) Proix et al.
(2021) Maturana et al. (2020) Karoly et al. (2021). These changes

have been linked to bodily rhythms suggesting that during certain
phases of these cycles, the central nervous system is more susceptible
to epileptic seizures.

Therefore, while different measures have been proposed to track
the state of cortical networks and, specifically, seizure risk, it is not
completely understood whether these different metrics all measure
the same underlying dynamical changes. A better understanding of
how different measures proposed as markers of seizure propensity
are correlated, how strongly they exhibit cycles and how well these
cycles correspond to seizure occurrence is therefore crucial to
optimally tracking seizure risk. From a translational perspective,
it is furthermore important to also understand how robust these
metrics are under spatial and temporal subsampling. Implantable
devices, which aim to reduce seizures through focal stimulation,
often only have limited spatial electrode coverage and limitations in
the amount of data they can sample over time Gutierrez (2022) Baud
et al. (2018) Haneef et al. (2022). Therefore, the measures
characterizing interictal activity have to be robust in tracking the
cycles from shorter recordings, e.g., when the stimulation is turned
off, as well as from fewer electrodes.

Here we study five measures related to seizure propensity: IEDs
Hufnagel et al. (2000) Baud et al. (2018), variance and
autocorrelation Meisel (2020) Maturana et al. (2020), as well as
spatial correlationMüller andMeisel (2023) and network synchrony
Meisel et al. (2015b). First, we characterize these measures in how
strongly they exhibit cycles and how well these cycles align with
seizures. Second, we quantify how each of the measures performs
under systematic spatial and temporal subsampling. Third, we
determine how much these measures are correlated to one
another in order to better understand whether they capture the
same underlying phenomenon or not.

2 Methods

2.1 General overview

The methods section is organized as follows. First, the dataset is
described along with the inclusion and exclusion criteria that were
used to select the 23 patients from the Epilepsiae dataset Ihle et al.
(2012). Second, we describe the preprocessing of the data prior to
calculating the different metrics. Third, we systematically derive five
network metrics that have been proposed as markers of seizure
propensity (Table 1). We will describe these metrics in more detail,
the motivation on using them and how each of them are calculated.
These metrics are: Interictal Epileptiform Discharge Frequency
(IEDF), Variance Measure (VM), Temporal Correlation Measure
(TCM), Spatial Correlation Measure (SCM), Network Synchrony
(NS). Fourth, we describe how the metrics and their cyclical
occurrence are evaluated and compared against each other.

2.2 Patient data

This study involved the analysis of multi-day invasive
electroencephalographram (iEEG) recordings from 23 patients
(12 female; 28 ± 13 years) diagnosed with focal epilepsy who
were undergoing pre-surgical assessments at the Epilepsy Center
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of the University Hospital in Freiburg, Germany Ihle et al. (2012).
The number of implanted electrodes was in the range of 40–120,
iEEG data were recorded either at 256, 512, or 1024 Hz. Most of the
datasets contained continuous, non-overlapping hour-long
recordings over a period of 5–14 days for each patient. Few
recordings were interrupted and thus under an hour, and were
excluded from the analysis. Only a subsample of the entire
Epilepsiae dataset consisting of 23 patients were used, where only
the patients that varied in their anti-seizure medication (ASM) were
included in the analysis Müller and Meisel (2023). The dataset had
received ethics approval from the University of Freiburg’s ethics
committee Ihle et al. (2012). All patients provided written informed
consent, granting permission for their clinical data to be used and
published for research purposes. The present study had also received
approval from the local institutional review board (EK 92022019).

2.3 Preprocessing

The iEEG data was first notch filtered to remove power line
noise at 50 Hz. A high pass filter was applied to remove the effects
of slow drifts at 0.1 Hz, and a low pass filter removed the effects of
noise and signals above 95 Hz (zero phase-lag 4th order
butterworth). Next, since the iEEG recordings were all
collected at different sampling frequencies, signals were
downsampled to 256 Hz before the different metrics were
calculated (using mne.resample via fft). An exception of this
downsampling was for the preprocessing for the interictal
epileptiform discharge (IED) algorithm, where we used a
pretrained deep learning algorithm that required a sampling
frequency of 200 Hz. More detail is given in Methods section
2.4.3. All of the processing steps were implemented using the
MNE Python package that has been optimized for processing
EEG data Gramfort et al. (2013).

The original dataset contained surface electrodes in addition to
intracranial electrodes. However, the surface electrodes were
omitted from the analysis because their data collection was often
intermittent and did not cover the entire duration of the recordings.
This exclusion was necessary to maintain consistency in the number
of electrodes throughout the analysis period.

We also evaluated certain metrics individually for specific
EEG frequency bands. For this purpose, we applied a bandpass
filter at the following frequency ranges: 4–8 Hz (theta),
8–13 Hz (alpha), 13–30 Hz (beta), 55–95 Hz (gamma),

1–99 Hz (broadband). For our analyses, the broadband signal
delivered essentially identical results to the delta signal (1–4 Hz),
thus, to reduce redundant analyses, only results for the
broadband signal are presented. The lower end of the gamma
frequency range was truncated at 55 Hz, in order to further
reduce the effects of the line noise at 50 Hz. In addition to
quantifying metrics directly on the these frequency-filtered
signals, we also performed analyses on power fluctuation
timeseries in these frequency bands using eighth of a second
non-overlapping windows Müller and Meisel (2023). In the final
step of the preprocessing, we normalized the signal using sklearn
preprocessing package over the entire hour before the
subsequent analysis Pedregosa et al. (2011).

2.4 Evaluated metrics

All of the following metrics were first calculated on non-
overlapping 2-min windows. Time windows preceding and
following seizures, 5 minutes on either side, were excluded in the
analysis. This was done to reduce the effects of seizures on these
metrics as our goal was to track interictal activity. Seizure onset and
offset times were labeled by expert clinicians. After excluding
seizures, the metrics were averaged in time for each full hour,
and, for single-electrode measures, they were also averaged across
the electrodes in order to obtain a single value for each hour and
patient. Random subsampling across electrodes and time was
performed in order to generate the subsampled estimates to
determine robustness.

2.4.1 Temporal correlation measure
The TCM quantifies how quickly the information contained

in a signal decays over time. As such, it is a measure of critical
slowing down with maximal values near a critical point. For this
reason, temporal correlations have been studied with respect to
distance to seizure and have been shown to be a relevant measure
in tracking cyclical changes to interictal activity as well as
changes to ASM Maturana et al. (2020) Müller and Meisel
(2023) Meisel (2020). More details of this methodology are
provided in Müller and Meisel (2023). The TCM measure
is one of the univariate, i.e., single-electrode, measures that is
first calculated on each electrode separately. It is implemented
by first calculating the autocorrelation function (ACF) of a
signal: ACF(t) � f(n)+f(n + t), where the star denotes

TABLE 1 Table of preprocessing steps, metrics that are evaluated, and criteria used for evaluation. Abbreviations: IEDF - Interictal Epileptiform Discharge
Frequency, TCM - Temporal CorrelationMeasure, VM - VarianceMeasure, NS -Network Synchrony, SCM - Spatial CorrelationMeasure, PLV - Phase Locking
Value, iEEG - invasive EEG.

Preprocessing Robustness Evaluation criteria

Power band iEEG band Temporal sampling Spatial sampling Cycle PLV

IEDF N/A N/A yes yes yes yes

TCM yes 5 bands yes yes yes yes

VM yes 5 bands yes yes yes yes

NS yes 5 bands yes no yes yes

SCM yes 5 bands yes no yes yes
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the correlation function. In our case, this is calculated from the
power fluctuations over a window that is 2 minutes long.

Following previous work Meisel (2020) Müller and Meisel
(2023), for each iEEG channel, the time series of broadband
gamma power fluctuations were obtained by calculating the
power every 125 ms (Welch’s method, Hanning window) and
applying the logarithm with base 10 to the timeseries. The signal
is shifted once for each sample which determines the lower limit of
the ACF resolution (0.125 s). Once the ACF is approximated, we
estimate the time period it takes for the ACF to decrease to half the
width at the maximum, also known as full-width-at-half maximum.
This time period is then averaged spatially (i.e., across all electrodes)
and temporally (i.e., across all 2-min windows in each hour) to
obtain one value for the hourly period.

2.4.2 Variance measure
A signal’s variance is similarly a measure of critical slowing

down. As such it has also been suggested and studied with respect to
seizure propensity Maturana et al. (2020) Meisel and Kuehn (2012).
The VM is also a univariate measure that is calculated separately for
each electrode. After preprocessing the signal, the variance is
calculated independently for each 2-min interval: σ2 � ∑(xi−�x)2

n−1 .
Once the variance is estimated for each electrode and for each 2-
min segment, the average is obtained over the hourly interval and
across all electrodes for each patient. To subsample, a random subset
of either the electrodes or the intervals were included in
the averaging.

2.4.3 Interictal epileptiform discharge frequency
We used an openly available, validated deep learning software

for automated IED detection Quon et al. (2022). The algorithm first
identifies candidate IEDs using a triangle convolution and
thresholding. Around these candidate IEDs, a spectrogram is
calculated and is fed into a classifier to determine if the segment
contains an IED or not. After applying the detection algorithm, we
determined the number of IEDs per channel and minute in each 2-
min interval by dividing the total number of IEDs during that
interval in all electrodes by the number of electrodes. Only channels
that were in the seizure onset zone were considered, as other
channels had few or no IEDs. The seizure onset zones were
predetermined by clinicians.

2.4.4 Network synchrony
Insights into cortical activity from computational modeling,

rodent and human EEG have pointed to the ability of global
synchronization measures to characterize physiological cortical
dynamics Meisel and Kuehn (2012) Meisel et al. (2015b) Meisel
(2016). It has been shown that phase synchronization of ongoing
cortical activity can been linked to the stability of the neural
cortex. NS is a multivariate network measure, and is calculated
across all electrodes simultaneously. We utilize the methodology
described in detail in Meisel et al. (2015b) to estimate the NS
across electrodes. In short, to quantify the NS, we first calculate
the Hilbert transform to derive the instantaneous phase of the
signal in each electrode. We then average across all the phases
across all electrodes E in the complex domain:
NS � Re(1E∑∀E

θe
ei*θe ). If all phases are aligned then the NS is

equal to 1, and for a completely asynchronous process the NS

would be 0. The NS is calculated for each time point within a 2-
min interval and then averaged across the interval to produce an
estimate of NS for the 2-min window. We then average across all
or a subsample of all 2-min periods over the hour to estimate the
hourly rate and the subsampled hourly rate.

2.4.5 Spatial correlation measure
The hallmark of a dynamical system in the critical regime is

the presence of long-range correlations which, in spatial systems,
decay as a function of distance Müller and Meisel (2023). In
Müller and Meisel (2023) spatial correlations were shown to be
sensitive to changes of ASM levels as well as to track circadian
rhythms. For this measure, we follow the methodology described
in Müller and Meisel (2023), where the correlation between each
pairs of electrodes is first computed over a 2-min window. To
measure how spatially correlated all the signals are from each
other, we take the average the correlation of all electrodes that are
between 10 and 80 mm from each other. The interval was chosen
as most of the patients had electrodes within these distances.
Once the measure has been estimated for each 2-min segment,
the values are all averaged together or subsampled to produce an
estimate of the hourly rate.

2.4.6 Null model
In addition to the five metrics described, we also constructed a

null model exhibiting a simple 24-h cycle modelled by a simple
cosine function. This was used to evaluate if the metrics contained
more information than just using an hourly clock to quantify
interictal activity without using iEEG data. We utilized this null
model to also correlate against all the other signals to see how well
they track 24-h rhythms. We refer to this model as the Cosine Daily
Function (CDF).

2.5 Evaluation criteria

Our goal was to determine whether and how the five metrics of
seizure propensity are related to each other, whether they exhibit 24-
h cycles, and to determine the effects of spatial and temporal
subsampling on these measures.

2.5.1 Periodogram
The periodogram from hourly timeseries in each patient was

used to assess the power of cycles, and 24-h cycles in particular. The
hourly timeseries were first interpolated in case of missing hours,
removed from outliers that were greater than three standard
deviations from the mean, and then converted into periodograms
using the Welch’s method Baud et al. (2018). In order to test if the
peak at 24 h was significant, we calculated the average periodogram
across all patients, and fitted a red noise spectrum 1

fα that matched
the average frequency distribution. By determining the variance
from the average frequency distribution, we then simulated
10,000 periodograms by adding the mean and variance, and
measured how many times the randomly generated signal would
result in a peak larger than the peak measured at 24 h. From this we
estimated the p-value and significance at the 24-h peak in each
patient. We then determined how many significant 24-h cycles were
detected across our cohort.
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2.5.2 Phase locking value
The Phase Locking Value (PLV) was used to evaluate how

well seizures aligned with the interictal measures. The PLV is
calculated by averaging the phases when the seizures occur in the
complex plane. In previous publications, this value was
determined by using a wavelet transform on the metric
timeseries and decomposing the activity to daily, weekly,
monthly and even yearly cycles and then averaging the phase
for each of these cycles individually Baud et al. (2018) Karoly
et al. (2021), Stirling et al. (2021). Since our recordings are at
most 18 days and we were mostly interested in the 24-h rhythm,
we filtered the timeseries using a bandpass filter between 2 and
30 h using a zero-phase lag filter of a single order. We
subsequently performed a Hilbert transform to estimate the

instantaneous phase of the signal over time and calculated the
PLV by summing the phases at which the seizures S occurred:
PLV � Re(1S∑∀S

θs
ei*θs ). The PLV is a measure between 0 and

1 where the closer to 1 means the more the phases at which
seizures occur are similar.

3 Results

3.1 Tracking cycles

We first characterized the five metrics with respect to
exhibiting cycles and how well these cycles aligned with
seizures. Figure 1 shows the timeseries of a single metric

FIGURE 1
Cycles in interictal iEEG markers and their relationship to seizures. (A), Average IEDF timeseries tracked over the span of multiple days for a sample
patient. The vertical red lines represent seizures. (B), IEDF plotted on a 24-h clock with the mean (black dashed) and variance (width) estimated for each
hour separately for a sample patient. The seizures (shown in red dashed line) and high IEDF coincide during the hours after midnight. (C), IEDF phase
timeseries for a sample patient. (D), The alignment of the phase of each seizure (purple) as well as the PLV across all seizures for the sample patient
(black). (E), Periodograms for each individual patient (grey) and the group mean (black). The best fitted red noise is plotted in red, significant peaks were
found at 12 and 24 h for the mean plot. (F), The PLVs for individual patients as well as mean for the group. Abbreviations: IEDF - Interictal Epileptiform
Discharge Frequency; PLV - Phase Locking Value.
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(interictal epileptiform discharge frequency, IEDF) over the
course of the whole monitoring period. The respective
versions for the other four metrics are plotted in
Supplementary Figures S4–7. The IEDF exhibited a 24-h
pattern in this patient, as captured by the clock plot and the
periodogram (Figures 1B, E). For this particular patient, seizures
preferentially occurred during the increasing phase in IEDF
during the first few hours after midnight. This relationship
was captured by the phase locking of seizures to a certain
phase of IEDF where the seizures mostly occur close to zero
degrees (Figure 1D).

Following previous work, we were primarily interested in
TCM and SCM obtained from the gamma power timeseries
Meisel (2020) Müller and Meisel (2023), NS from the filtered
gamma signal Meisel et al. (2015b) Meisel (2016), and VM
calculated from the broadband signal. Under full spatial and
temporal sampling of the data, we observed that 15 of 23 patients
exhibited significant 24-h cycles in IEDF (65%), 18 in TCM
(78%), 19 in VM (74%), 19 in SCM (83%) and 18 in NS (78%).
Thus, all five metrics exhibited a strong 24-h cycle in the
majority of patients, with the lowest number of patients with
cycles in IEDF. Next, we evaluated how well each metric was

FIGURE 2
Robustness under spatial and temporal subsampling with regards to detection of 24-h cycles and phase locking to seizures. (A), IEDF cycle detection
under spatial (left) and temporal subsampling (right). (B), IEDF PLV under subsampling. (C, D), VM under subsampling. (E, F), TCM under subsampling.
(G–J), cycle detection and PLV for SCM (purple) and NS (red) under temporal subsampling. These two multi-electrode measures were only subsampled
temporally. The small “s” represents a single electrode or a single 2 min segment. *p< 0.05, **p< 0.01, and ***p< 0.001, measured against
100 percent for the PLV and 70 percent for the cycle detection. Abbreviations: IEDF - Interictal Epileptiform Discharge Frequency, TCM - Temporal
Correlation Measure, VM - Variance Measure, NS - Network Synchrony, SCM - Spatial Correlation Measure.
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phase locked to seizures by calculating the group PLV. Besides
exhibiting 24-h cycles in the most patients, the metrics SCM, NS
and VM also exhibited the highest PLV values (0.34 ± 0.24,
0.38 ± 0.24 and 0.37 ± 0.21, respectively). IEDF and TCM
exhibited overall smaller PLV values (0.29 ± 0.18 and 0.26 ±
0.23, respectively). As a control, CDF provided a PLV
of 0.18 ± 0.21.

3.2 Robustness under subsampling

Next, we investigated how strongly these measures exhibited
cycles with relationship to seizures under spatial and temporal
subsampling. This analysis was motivated by the fact that
implantable neurorecorders are often constrained in their
ability to record spatially and temporally. For the
single-electrode metrics (IEDF, TCM, VM) both the spatial
and temporal subsampling were performed, while for the
multi-electrode metrics (SCM and NS) only the temporal
subsampling was estimated. In Figure 2 the left
half represents the number of significant cycles detected while
the right half represents PLVs under subsampling. The small
“s” in the Figure denote a single electrode or a single
2 min interval.

Most measures were highly robust under subsampling as
indicated by few significant differences between using the full
spatial and temporal interval vs. just using just 10 percent of the
original total electrodes/time. Even if the differences were
significant, they were not large in terms of absolute change. The
univariate metrics, in particular VM and TCM, were especially
robust, and even performed robustly for a single electrode. One
of the few exceptions was the spatial subsampling of the IEDF which
performed significantly worse for the PLV measure. This is likely
because of the omission of electrodes in the seizure onset zone that
contained the most IED under subsampling. The results for the
different EEG bands, δ, θ, α, β, γ and preprocessing methods are
given in Supplementary Figure S8 for the metrics described
in Table 1.

3.3 Comparison of correlations
between metrics

Finally, we determined how the metrics were correlated to one
another. Figure 3 A, B show the summary for all metrics in terms of
exhibiting 24-h cycles and seizure alignment with these cycles. The
average Pearson correlation between pairs of metrics is displayed in
Figure 3C. Apart from the control (CDF), two pairs of metrics
exhibited notable positive correlations: SCM and TCM (Pearson
correlation of 0.52) as well as VM and IEDF (Pearson correlation of
0.41). TCM and SCM both measure long-range correlations in time
and space, respectively. Within the framework of critical transitions
a close correlation between the two is expected Müller and Meisel
(2023). The correlation between IEDF and VM and their ability to
track seizures is in line with observations from previous studies
Maturana et al. (2020). Conversely, IEDF was weakly anticorrelated
to both TCM and SCM.

4 Discussion

Several iEEG metrics have been proposed and shown to track
evolving epileptic brain networks and the changing seizure risk
levels. Such metrics have important implications for seizure risk
assessment and forecasting methods. However, it is currently not
fully understood whether these different metrics measure the same
underlying dynamical changes and how they perform under spatial
and temporal subsampling. Our results show that most of these
measures appear to change gradually in time and are robust to
temporal and spatial subsampling. The univariate metrics, in
particular VM and TCM, were especially robust, and even
performed robustly for a single electrode. While all five measures
exhibited 24-h cycles in the majority of patients, the strength of such
cycles varied between measures with the least pronounced 24-h
cycles exhibited in IEDF. Based on evaluations on 24-h cycles, SCM,
NS and VM exhibited the highest phase locking with seizures while
IEDF exhibited lowest PLV values. While it remains to be
determined whether these observations also hold for longer,

FIGURE 3
Comparison of correlations between metrics. (A), Cycle detection across metrics, i.e., how many significant 24-h cycles were detected across
23 patients for each metric. (B), Phase locking value across metrics. (C), Relationship between pairs of metrics. The Pearson correlation calculated from
hourly timeseries between pairs of metrics is displayed. In addition, the metrics are compared to how much they correlate to the CDF. *p< 0.05, **p<
0.01, ***p< 0.001. Abbreviations: IEDF - Interictal EpileptiformDischarge Frequency, TCM - Temporal CorrelationMeasure, VM - VarianceMeasure,
NS - Network Synchrony, SCM - Spatial Correlation Measure, PLV - Phase Locking Value, CDF - Cosine Daily Function.
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multi-dien cycles, our results provide some mechanistic insights on
seizure propensity dynamics and may guide the choice of
appropriate metrics for long-term prediction of seizure risk periods.

4.1 Robustness under subsampling

All of the metrics were calculated using 2 minute intervals and
exhibited gradual change over the course of days and over 24-h
cycles. Systematic temporal subsampling demonstrated that most
metrics only really needed a snapshot of the hour to robustly track
the changes to interictal activity. For example, subsampling to
2 minutes per hour reduced the number of cycles detected to
ninety percent of the original cycles detected over the entire
60 min period for most metrics. For IEDF this number even
remained unchanged.

The metrics were also relatively invariant to which region from
the brain they were sampled from. A particular exception was IEDF.
IEDs are more prevalent in the seizure onset zone and therefore
performed worse when spatially subsampled, which naturally
limited sampling from the seizure onset zone. The other metrics
were less affected by spatial subsampling, with TCM not having any
significant difference if being calculated using all electrodes or a
single electrode.

Collectively, these observations suggest that the intrinsic
properties of the neural system can be efficiently tracked with
interictal cycles also under subsampling. Thus, for future
implanted devices, especially those that have fewer electrodes,
tracking interictal cycles with respect to seizure risk periods may
still be feasible Haneef et al. (2022).

4.2 Relationship between cycles
and seizures

Interictal cycles of iEEG metrics have been linked to seizure
occurrence Baud et al. (2018) Stirling et al. (2021) Maturana et al.
(2020). While different metrics may exhibit cycles, we here aimed to
evaluate how strongly exactly different metrics were locked to
seizure occurrence. Based on evaluations over 24-h cycles, SCM,
NS, and VM demonstrated the strongest clustering with seizures. In
contrast, IEDF, commonly used for cycle detection, showed the
lowest phase locking value (PLV). These observations suggest
further testing to determine if these measures also correlate
strongly with seizures in longer-term recordings and across
multi-dien cycles. VM has already been tested in this context
demonstrating strong capability to track and forecast seizure risk
Maturana et al. (2020). The further investigation of metrics like
SCM, NS and VM is furthermore supported by our observation that
these metrics also exhibited stronger 24-h cycles in more patients
that compared to IEDF.

4.3 Comparison of correlation
between metrics

For the understanding of seizure dynamics and choice of metrics to
monitor it is an important question whether all metrics measured the

same underlying dynamical phenomenon or whether they were (at least
partially) complementary to each other. All of the metrics’ hourly
timeseries exhibited high correlation with the CDF indicating that they
measure some 24-h rhythmicity. However, they also seem to have
unique information that is specific to each metric. Notably, the CDF
performed significantly worse in PLV than to other measures,
suggesting that it is not simply the time of day that is informative
to track cycles.

Measures derived from criticality theory (NS, SCM, TCM, VM)
generally exhibited stronger phase locking to seizures than IEDF or
the control CDF. Albeit only indirect, these observations provide
further support that critical dynamics and critical slowing downmay
potentially be a useful framework to characterize the state of cortical
networks, including their transition to seizures Meisel and Kuehn
(2012) Meisel et al. (2015b) Meisel (2016) Maturana et al. (2020)
Meisel and Loddenkemper (2020) Müller and Meisel (2023). The
relationship between metrics is also consistent with previous
understanding of these processes. SCM and TCM, the spatial and
temporal correlation metrics, have a very large positive correlation
Müller and Meisel (2023). This is a phenomenon that occurs closer
to criticality prior to the system transitioning to a more unstable
regime Meisel and Loddenkemper (2020) Scheffer et al. (2009). The
VM and the IEDFmeasure also seem to be related which is similar to
what has been shown when comparing these metrics for epileptic
cycles Maturana et al. (2020). The two network measures such as
SCM are the closest measure to circadian rhythms, potentially
suggesting that they are the most sensitive to changes between
sleep and awake EEG recordings.

5 Limitations

The main limitation of this work is that recordings analyzed were
over a relatively short time frame of only several days. Cycles that are on
order of days or the much longer multi-dien cycles on the order of
weeks/months could naturally not be analyzed. However, our results
point to specific metrics that could consequently be investigated on
longer recordings in future work. Furthermore, when comparing our
PLVs and the number of 24-h cycles detected, our results seem to be
comparable to results from other recent studies. Specifically, the mean
value of the PLV for NS (slightly less than 0.4), is comparable to those of
previous literature, while the other metrics have a mean PLV similar to
what was previously published Baud et al. (2018) Stirling et al. (2021)
Maturana et al. (2020). For the 24-h cycles we were able to detect them
in about 83 percent of the patients. This is also comparable to previous
estimates of cycle detection that was around 70 percent Baud
et al. (2018).

6 Conclusion

In this paper we have shown that interictal cycle detection and
its relationship to seizure risk periods are quite robust under spatial
and temporal subsampling. While some of the measures are similar
to each other, they also appear to capture (at least partially)
complementary information. Measures derived from criticality
show stronger capability to capture cycles locked to seizures in
comparison to more traditional markers such as IEDF. Future

Frontiers in Network Physiology frontiersin.org08

Kashyap et al. 10.3389/fnetp.2024.1420217

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2024.1420217


research is needed to validate these results on longer data. Our
results may help to better choose appropriate metrics for
implantable devices to detect cycles and forecast seizures in
the future.
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