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The nervous system, especially the human brain, is characterized by its highly
complex network topology. The neurodevelopment of some of its features has
been described in terms of dynamic optimization rules. We discuss the principle
of adaptive rewiring, i.e., the dynamic reorganization of a network according to
the intensity of internal signal communication asmeasured by synchronization or
diffusion, and its recent generalization for applications in directed networks.
These have extended the principle of adaptive rewiring from highly oversimplified
networks to more neurally plausible ones. Adaptive rewiring captures all the key
features of the complex brain topology: it transforms initially random or regular
networks into networks with a modular small-world structure and a rich-club
core. This effect is specific in the sense that it can be tailored to computational
needs, robust in the sense that it does not depend on a critical regime, and flexible
in the sense that parametric variation generates a range of variant network
configurations. Extreme variant networks can be associated at macroscopic
level with disorders such as schizophrenia, autism, and dyslexia, and suggest a
relationship between dyslexia and creativity. Adaptive rewiring cooperates with
network growth and interacts constructively with spatial organization principles
in the formation of topographically distinct modules and structures such as
ganglia and chains. At the mesoscopic level, adaptive rewiring enables the
development of functional architectures, such as convergent-divergent units,
and sheds light on the early development of divergence and convergence in, for
example, the visual system. Finally, we discuss future prospects for the principle of
adaptive rewiring.

KEYWORDS

structural plasticity, brain development, generative modeling, network neuroscience,
spontaneous activity, network physiology

1 Introduction

After more than 30 years of major efforts since the beginning of the Decade of the Brain,
there is still no universally accepted understanding of how the brain works (Mullin, 2021).
However, there is some basic agreement on the characteristics of brain structure and
function as revealed by network neuroscience. In particular, network neuroscience has shed
light on the characteristics of brain complexity. After briefly reviewing these characteristics
and the tools needed to identify them, we will argue that they evolved to solve the brain’s
central problem of how to organize its internal communication. We then consider how this
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solution can be achieved in neurodevelopment in view of a
generative model based on a simple, generic Hebbian adaptation
principle known as adaptive rewiring.

Network neuroscience views the nervous system as a network of
interconnected units (Bassett and Sporns, 2017; Bullmore and
Sporns, 2009). Depending on the perspective, units can represent
brain regions or areas at the macro level, or circuits, neurons, or even
smaller components such as signaling molecules and ions at the
micro level (Betzel and Bassett, 2017; Kennedy et al., 2005).
Connections can accordingly be considered at different scales,
such as axonal fiber bundles (Toga et al., 2012), synapses
(Douglas et al., 1996), genes (Ben-Tabou de-Leon and Davidson,
2007), or microtubules (Sallee and Feldman, 2021). Connections can
be further distinguished into structural ones, representing
anatomical links, and functional ones, representing signaling
pathways, temporal correlations (Rubinov and Sporns, 2010), or
causal interactions (Friston, 2011). Network neuroscience has
adopted and actively pursues each of these perspectives to
advance our understanding of brain structure and function. It
naturally aligns with artificial neural networks, which assign to
each unit a highly dynamic activation value, and to each
connection an adaptive weight that can gradually change in
response to the way the activity of the network unit affects the
network’s output.

A major attraction of network neuroscience is that it comes with
a ready-made package of analytical tools provided by graph theory
(Sporns, 2018). Graph theory focuses on the topological properties
of connections (edges in graph terminology) between units (nodes
or vertices in graph terminology) and provides a variety of measures
to characterize network topologies, such as degree (number of edges
of a node), connectedness (existence of a path of edges between two
nodes), path length (number of edges on a path), and clustering
coefficient (the degree to which the nodes cluster together).
Applying these measures to the nervous system is a central part
of network neuroscience.

These measures can monitor the continuous changes in the
connectivity of the nervous system throughout its life cycle.
Neuronal units grow, differentiate, or die, while their connections
are subject to synaptic plasticity (Citri and Malenka, 2008), the
modification of connection strengths (weights) within a given
architecture, and structural plasticity (Butz et al., 2009), the
formation and pruning of connections (synapses, gap junctions,
or ephaptic couplings). Structural plasticity directly affects the
topology of the graph. This means that we must consider the
nervous system as an evolving network, in which not only
connection weights, but also units and connections can be added
or pruned over time.

Our main focus here is to provide an overview of a perspective
that has developed over the last decades to capture the dynamics
of structural plasticity, known as adaptive rewiring. To this end,
we review the relevant background information, the components
of adaptive rewiring, and studies that have used them to generate
the complex network features that characterize biological brains.
In Section 2, we discuss these features and how they might
emerge from neurodevelopmental processes. In Section 3, we
discuss adaptive rewiring as the fundamental dynamic principle
driving these processes. In particular, we will discuss its basic
mechanisms for pruning and adding connections, i.e., rewiring.

In Section 4, we review some of the results of modeling adaptive
rewiring. Finally, in Section 5, we discuss future directions of
adaptive rewiring for applications in network neuroscience and
artificial neural networks.

2 Small worlds and other complexities

Nervous systems are typically sparsely connected networks.
For example, the human brain, with approximately 86 billion
neurons (Azevedo et al., 2009) has “only” 150 trillion connections
(Pakkenberg et al., 2003); to be fully connected, it would need
about 50 million times more. This means that the brain has an
internal communication problem. Among networks types of
similar sparsity, regular networks, i.e., networks with repeating
stereotyped patterns like regular lattices, have on average large
path lengths (number of edges in the shortest path between two
nodes) and are therefore very inefficient at long-range
communication. However, they do have a high degree of
clustering, which means that there is a high probability that
two nodes directly connected to a common node are also directly
connected to each other. This means that local communication
between these nodes is likely to be efficient. On the other hand, a
random network with the same sparsity has a path length that is
usually orders of magnitude smaller, but lacks the benefits of
clustering. The nervous system in a wide range of species is
generally connected in a non-random way, but requires efficient
and fast neural communication between neural units, for
example in situations where an organism needs to respond to
a threatening visual cue.

Watts and Strogatz (1998) showed in their seminal study that
there is a family of networks that is nonrandomly connected yet
has small path length. By rewiring randomly just a few
connections in a regular network, its average path length
decreases precipitously while the average clustering coefficient
remains almost the same. They called networks with both high
clustering coefficient and small path length “small-world
networks” and showed that the nervous system of the
nematode Caenorhabditis elegans is a small-world network.
Later studies revealed small-world structure in the mammalian
brain (macaque and mouse) in terms of interareal connections
(Hilgetag and Kaiser, 2004; Sporns and Zwi, 2004) and in
neuroimaging of the human brain (Bassett et al., 2006;
Salvador et al., 2005; Vaessen et al., 2010).

The way in which Watts and Strogatz (1998) rewired a regular
network to produce a small-world (by randomly reconnecting a
subset of the connections) was not intended as a biologically
plausible model for how brain networks are generated. Moreover,
small-world networks are a large and diverse family, and therefore
additional metrics are needed for a more meaningful
characterization. In addition to being small-world, brain
networks are modular (Sporns and Betzel, 2016) with a rich-club
core (van den Heuvel and Sporns, 2011). A modular network
consists of different pools of units (modules), with connectivity
within each pool being dense and between pools being sparse.
Different modules are typically connected through hubs, or high-
degree nodes, and these hubs preferentially connect to each other,
forming the rich club.
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2.1 Neurodevelopmental principles could
explain the complex topology of the brain

The complex network topology of a modular small world with a
rich-club core can be found in the brain at different scales (e.g., Bota
et al., 2015; Hamadjida et al., 2016; van den Heuvel and Sporns,
2011; Shih et al., 2015), suggesting that they are generated from a
common set of principles. From here on, we refer to complex
topologies of this kind as “brain-like” and reflect on what kind of
principles could have led to such topologies.

Generally speaking, evolutionary selection pressures have been
translated in terms of economy and efficiency. For example,
Olshausen and Fields (1996) showed that a generative learning
model designed to encode natural images with as few neural units
as possible active at any given time eventually produces oriented
receptive fields that resemble those of V1. The efficiency constraint on
neural unit activity is crucial to this development. Without it, the
model does not produce those receptive fields. At the beginning of the
20th century, Ramón y Cajal (1899) proposed three principal
constraints in the construction of a biological nervous system:
minimization of the space occupied by the neural tissue,
minimization of the material, and minimization of the time of
communication between different neural units or regions (Ramón
y Cajal, 1899). These three principles could conflict with each other.
For example, the minimization of space andmaterial tends to produce
local connections while the minimization of time favors long-range
connections. The latter increases the speed and robustness of
communication between distant neural elements (Bullmore and
Sporns, 2012; Kaiser and Hilgetag, 2006). From this perspective,
small-worlds offer a suitable trade-off, as local signaling efficiency
benefits from the clustering and global signaling efficiency benefits
from the short path lengths (Latora and Marchiori, 2001).

Other principles beyond those proposed by Ramón y Cajal, (1899)
may additionally favor modularity and rich-club structures. As
evidenced by functional and anatomical studies, the brain appears to
decompose complex problems into more manageable subproblems,
each of which is processed by different brain regions (Bertolero et al.,
2015; Hagmann et al., 2008). These modules facilitate parallel
communication, as long as hubs in the network form robust
connections with each other (Meunier et al., 2010). Preferential
connections between hubs forms rich-clubs that allow rapid
switching of information flow between modules (Griffa and van den
Heuvel, 2018). Other features that facilitate neural communication
include network motifs that promote efficient neural computation
(Battaglia et al., 2012; Koyama and Pujala, 2018; Sporns and Kötter,
2004) as well as convergence of signals to neural hub units and
divergence from neural hubs (e.g., Jeanne and Wilson, 2015; Keller
et al., 2020; Négyessy et al., 2008).

Evolutionary optimization has been a basic assumption in
generations of models (e.g., Marr, 1970). But, unlike artificial systems,
evolution did not design the brain like an engineer from a preconceived
functional specification. As François Jacob (1977) puts it, natural selection
is more like “a tinkerer who does not know exactly what he is going to
produce but uses whatever he finds around him whether it be pieces of
string, fragments of wood, or old cardboards; in short it works like a
tinkerer who uses everything at his disposal to produce some kind of
workable object.” The nervous system is full of suboptimal tinkering
solutions. For example, in the human retina, retinal ganglion cells, the

output hubs of the retina, are positioned on top of the layer of
photoreceptor cells, so that their outgoing nerve bundle partially
occludes the photoreceptor cells, creating a blind spot on the retina.
For evolution, the mantram is: “good enough to survive.” Genetic
variation has limited material and already established structure to
work with, and operates on a hit or miss basis with no optimality
criterion in sight. Sometimes these conditions might eventually provide
optimal solutions, sometimes not. So, we should not jump to the
conclusion that the ubiquity of complex structure in the nervous
system is the product of a meticulous optimization plan. However, we
might assume that it provides mechanisms to improve on what it finds.

While the evolutionary history of larger and more complex
brains, such as those of mammals, as embedded in their genetic code
plays a role in shaping the connectivity structure of their nervous
system, it cannot instruct neuron by neuron how to assemble the
entire structure, as this is beyond the capacity of the genome (Zador,
2019). Instead, the genome merely sets the stage and provides the
general rules for neurodevelopmental processes that actively unfold
the complex connectivity structure of the brain network with the
environment also playing a vital role in shaping it (Hiesinger and
Hassan, 2018). As a schematic example, the brain would need one
rule, e.g., each neuron connects to its four neighbors, to form the
regular network in Watts and Strogatz (1998), and the environment
can further shape it into a small-world network by randomly
rewiring its connections with a small probability.

The process by which a network would gradually improve its
efficiency can be described in models of the generative type (Betzel
and Bassett, 2017). Generative models often take the form of an
algorithm that prescribes how to achieve a structure in incremental
steps. Such algorithms could provide versatile heuristics for
empirical hypotheses about how such structures could be
produced within physical constraints and those set by
development and evolution (Rubinov, 2023).

Many of these models focus on the growth of neuronal
connectivity (Akarca et al., 2021; Betzel et al., 2016; Liu et al.,
2024). For example, a generative network model of axonal growth,
i.e., the expansion and initial attachment of synapses, using a principle
of dynamic axon expansion based on attractive guidance cues produces
some hallmarks of brain-like architecture such as modular small-
worlds (but no rich club), in addition to lognormal distribution of
connection strengths and fiber bundling (Liu et al., 2024). Tunable
parameters allow for individual and/or regional variation, where gene
expression combined with systematic environmental variation and
stochastic fluctuations tune the parameters.

Axonal growth is a crucial first step in the development of neural
network complexity. However, it is unclear how it can provide a
system with the characteristic rich-club core that is present before
birth (Ball et al., 2014). Nor does it provide network motifs such as
convergence of inputs to a source or divergence of outputs from a
source (e.g., Jeanne and Wilson, 2015; Keller et al., 2020; Négyessy
et al., 2008). It appears that the growth principles, as we currently
understand them, are not sufficient to produce the functional
circuits required for efficient computation.

In addition to axonal growth, another important principle of
neural development is activity-dependent refinement (Pan and
Monje, 2020). Network structure has traditionally been assumed to
be shaped by learning, which encodes neural activity patterns induced
by external inputs into brain connectivity (e.g., Hubel and Wiesel,
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1970; Sengpiel et al., 1999). However, several functional neural circuits
are established even before birth (Kirkby et al., 2013). During early
development, cortical areas generate structured spontaneous activity
in the absence of sensory stimulation or motor behavior (Wu et al.,
2024; Yuste et al., 2024). The specific patterns of spontaneous activity
play an instructive role in the development of neural circuits (Kirkby
et al., 2013; Matsumoto et al., 2024).

We propose that throughout the nervous system, spontaneous
activity is the driving force that leads to its complex network structure.
The synergy between neural activity and network structure bootstraps
the formation of complex structural connectivity: while network
structure constrains neural activity, neural activity helps to
improve network structure for communication (Rubinov et al.,
2009a). Spontaneous activity of the nervous system is an often-
overlooked factor in generative models. As in the generative
models of connectivity growth, the emergence of brain complexity
via spontaneous activity-driven network restructuring is a matter of
self-organization, where genetic expression, along with systematic and
random and environmental factors control the parameters of
spontaneous activity and structural plasticity.

In brain development, we encounter specificity, robustness and
flexibility. The principle by which spontaneous activity guides
development must be specific, in the sense that the system can
be tailored for specific computational needs, and robust, in the sense
that it allows network complexity to emerge dynamically from a
range of genetic parameters and be resilient in the face of
perturbations (Hiesinger and Hassan, 2018). We will, at least for
the time being, classify sensory input as one of the perturbations, as
the emergent brain-like architecture persists through learning. On
the other hand, the principle must also be flexible, i.e., capable of
generating different network topologies activated by different
genetic parameters, and allow random variability of architectures
across brain areas and across individuals (Bauer et al., 2021).

In the remainder of this review, we document our contribution
to the development of generative models of brain functional
architecture. More than 20 years ago, a series of modeling studies
were initiated (Gong and van Leeuwen, 2003; Gong and van
Leeuwen, 2004; van den Berg and van Leeuwen, 2004) that drew
attention to the principle of adaptive rewiring as a key mechanism of
how spontaneous activity shapes the brain network architecture.
Adaptive rewiring is a general rule of structural plasticity in the spirit
of the Hebbian principle: “What fires together wires together.” These
and subsequent studies have shown how successive adaptive
rewiring of initially random networks generates complex, brain-
like structures. Such structures can be tuned to specific needs,
emerge robustly under perturbations, and parametric or random
variation leads to a variety of architectures. Adaptive rewiring thus
satisfies the criteria of specificity, robustness and flexibility, and may
serve as a principle for the nervous system to dynamically evolve into
an efficient information propagation and integration system.

3 Adaptive rewiring

The principle of adaptive rewiring is simple, and reminiscent of
the Hebbian principle: it adds connections between nodes with
high, but indirect, interaction and cuts connections between nodes
with low interaction (Figure 1). The type of interaction depends on

how the dynamics of activity in the network are modeled. One
approach is to consider the oscillatory nature of neuronal activity,
i.e., up/down states for single neurons (Wilson, 2008) and the
oscillatory local potential fields in neuronal populations
(Schnitzler and Gross, 2005). Early studies of adaptive rewiring
models used logistic maps as nodes to mimic oscillatory neural
activity (Box 1; Gong and van Leeuwen, 2003; Gong and van
Leeuwen, 2004; Haqiqatkhah and van Leeuwen, 2022; Hellrigel
et al., 2019; Rubinov et al., 2009a; van den Berg et al., 2012; van den
Berg and van Leeuwen, 2004). For an isolated node, its activity can
be modeled according to a logistic map, typically in the chaotic
regime. A uniform coupling strength parameter reflects the extent
to which the activity of a node is influenced by that of its neighbors
(Ito and Kaneko, 2001). When coupled with other logistic maps,
the chaotic dynamics are moderated by the net input from
neighboring nodes, which acts as noise that dampens the
oscillator. At the same time, as the coupled units become
synchronized due to the coupling, chaos returns, pushing
against the synchrony. As a result, the network enters a regime
of intermittent dynamic synchrony with traveling and standing
waves, interspersed with periods of irregular activity, a regime
characteristic of spontaneous brain activity (Ito et al., 2005).

In this simple model, connections are undirected and
unweighted. In a later study, the model was extended to include
edge weights (Box 1; Hellrigel et al., 2019), which control the
relative influence of a node’s neighbors on the node’s dynamics. In
parallel, adaptive rewiring through synchrony has been studied in a
spiking neuron model (Kwok et al., 2007). This model also has
unweighted, directed connections. In both cases, synchrony
between nodes is used as the measure of interaction strength
(Fries, 2015; Palmigiano et al., 2017), defined as the absolute
difference between node states for coupled logistic maps and
the number of spike coincidences for spiking neural networks.
Neuronal activity was assumed to operate on a shorter time scale
than adaptive rewiring. Thus, network activity was allowed to
evolve for a period of time prior to each rewiring step. We refer to
the resulting adaptive rewiring scenario as synchrony-based
adaptive rewiring.

Box 1 Network of logistic maps.

Let x(t) be the node state at time t. The logistic map is

f x t( )( ) � 1 − ax t( )2

where a is the oscillatory amplitude that determines the asymptotic
behavior of the logistic map.

In an undirected, unweighted network, the network dynamics follows

xi t + 1( ) � 1 − ϵ( )f xi t( )( ) + ϵ
Ni| | ∑

j∈Ni

f xj t( )( )

where ϵ is the coupling strength, Ni is the neighbors of node i, i.e., nodes
directly connecting to node i, and |Ni| is the number of node i’s neighbors.

In an undirected, weighted network, the network dynamics follows

xi t + 1( ) � 1 − ϵ( )f xi t( )( ) + ϵ
∑
j∈Ni

wij
∑
j∈Ni

wijf xj t( )( )

where wij is the weight of the edge between node i and j.
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The dynamics of individual nodes in coupled logistic maps
and spiking neural networks are explicitly defined. Modeling
traffic on a network directly avoids making specific
assumptions about the dynamics and interaction strengths are
represented by the flows between nodes. For undirected
networks, network traffic is modeled by diffusion (Box 2;
Calvo Tapia et al., 2020; Jarman et al., 2017; Rentzeperis and
van Leeuwen, 2020), which assumes there is signal
propagation between two connected nodes whenever there is
a difference in their state, i.e., concentration (Kondor and
Lafferty, 2002). This choice may be justified by studies
showing that network diffusion has the highest
explanatory power for the correlation between structural
connectivity and brain activity, compared to other
assumptions of signal propagation in networks (e.g.,
Abdelnour et al., 2014; Seguin et al., 2023). It allows for a
closed-form specification of node states; a linear map
quantifies the flow between nodes during a set elapsed time.
By creating shortcut connections in regions of high traffic and
pruning where traffic is low, adaptive rewiring optimizes the
network flow. We refer to this way of modeling adaptive
rewiring as diffusion-based.

Note that in these undirected networks, the interactions
between nodes are symmetric, a simplification that does not
account for the interactions between neurons with
chemical synapses. A generalization that is a more realistic
account of neuronal interactions uses directed networks (Li
et al., 2024; Luna et al., 2024; Rentzeperis et al., 2022) and
replaces diffusion with consensus (Ren et al., 2007) and
advection (Chapman, 2015) as the measure of incoming and
outgoing flows respectively (Box 2). Consensus dynamics
naturally extends the diffusion equation by only
considering incoming-links of nodes, i.e., a node will adjust
its state according to its incoming neighbors’ states. In
contrast, advection dynamics assumes links transporting a
substance, the amount of which is measured by node
states, along with their directions. In the special case when
the connections between nodes are bilateral and equally
weighted, consensus-advection dynamics reduces to the
diffusion dynamics.

Box 2 Models of information flows on networks.

The diffusion process on an undirected network could be described by the
following equation:

_xi t( ) � ∑
j∈Ni

wij xj t( ) − xi t( )( )

LetA be the adjacency matrix of the network and x(t) � (x1(t), . . . , xn(t))
be the vector of node states (concentrations) at time t. The sum of edge weights
of a node i, ∑j∈Ni

wij , is node i’s strength. The graph Laplacian matrix, L, is
defined asD − A, whereD is a diagonal matrix with node strengths as diagonal
entries. Then the matrix form of the diffusion equation is

_x t( ) � −Lx t( )
with its closed-form solution:

x t( ) � e−Ltx 0( )
The (i, j) entry of the linear map e−Lt measures the flow between node i and

j during the period of time t.
Consensus dynamics naturally extend the diffusion equation by only

considering incoming-links of nodes,

_xi t( ) � ∑
j: j→i{ }

wij xj t( ) − xi t( )( )

i.e., a node will adjust its state according to its incoming neighbors’ states.
In contrast, advection dynamics assumes links transporting a substance, the
amount of which is measured by node states, along with their directions.

_xi t( ) � ∑
j: j→i{ }

wijxj t( ) − ∑
k: i→k{ }

wkixi t( )

The in- and out-strength of node i is the total weight of its incoming-links
and outgoing-links respectively. Let the in-Laplacian matrix Lin be Din − A,
whereDin is a diagonal matrix with the in-strengths as diagonal entries, and the
out-Laplacian matrix Lout beDout − A, whereDout is a diagonal matrix with the
out-strengths as diagonal entries. Analogously to the undirected case, the
closed-form solution of consensus dynamics is

x t( ) � e−Lintx 0( )
The closed-form solution of advection dynamics is

x t( ) � e−Louttx 0( )
We use the (i, j) entry of e−Lint to measure the incoming flow to node i from

node j and the (i, j) entry of e−Lout t to measure the outgoing flow from node j
and i during the period of time t.

FIGURE 1
Schema of adaptive rewiring. In each step, a random node (green) is selected and its communication intensity with other nodes are computed,
represented by the colors of nodes. The connection to the least interactive node is cut and added to the highest interactive but indirectly linked one.
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At least until now, the process of adaptive rewiring typically
started from randomly connected, sparse networks. This assumption
is made for simplicity and generality. It is complementary to the
growth and initial connection assumptions. Regardless of the
measure used for the interaction between nodes, the basic
procedure of the adaptive rewiring algorithm is outlined below.
At each step, a node is randomly selected and its interaction with
other nodes is measured. A new edge is then established from the
selected node to the node with the highest interaction strength
among those not directly connected to the selected node. The edge
connected to the node with the lowest interaction strength among
the neighbors of the selected node is pruned. The principle also
works on regular architectures (Rubinov et al., 2009b) and can
transform networks that already have small-word properties
reached under different parametrizations (Rentzeperis and van
Leeuwen, 2021). Note that for simplicity, the number of nodes
and connections is kept constant, but this is not essential. There are
versions of the model where the number of nodes and connections
grows (Gong and van Leeuwen, 2003) or is pruned (van den Berg
et al., 2012). Similar to the study by Watts and Strogatz (Watts and
Strogatz, 1998), a proportion of random rewiring steps are included
(e.g., Jarman et al., 2017; Rentzeperis and van Leeuwen, 2020).

3.1 Relationship with self-organized
criticality

Although formulated independently, adaptive rewiring is closely
related to self-organized criticality (SOC). Criticality per se describes
the behavior of an equilibrium system at a critical point, where the
system undergoes a continuous phase transition between order and
disorder (Muñoz, 2018). The hallmark of the critical state is the
presence of long-range spatiotemporal correlations, that is, the state
of one part of the system at a given location and time can affect
distant parts or itself at later time, and the decay of the correlation
function with distance or time at the critical point follows a power
law (Goldenfeld, 2018). Consequently, probability distributions
describing the responses to external perturbations are expected to
be power laws (Jensen, 2021). The emergence of power laws is
ubiquitous in natural phenomena—such as earthquakes (Gutenberg
and Richter, 1950), star luminosity (Press, 1978), and coastline
length (Mandelbrot, 1983)— and can be attributed to this
underlying criticality.

Achieving such a state in equilibrium systems requires fine-
tuning of the system’s control parameters near a critical point, which
is unlikely to occur in nature. Bak et al. (1987) introduced SOC to
explain how criticality can arise spontaneously in nonequilibrium
systems, without the need for external tuning of control parameters.
SOC posits that the critical state of a system acts as an attractor,
meaning that the system naturally converges to this state through its
intrinsic dynamics. Bak et al. (1987) proposed the sandpile model to
demonstrate how the dynamics within such a system can generate
power-law distributions in a natural, self-organized manner. The
sandpile model is implemented on a lattice where each location
represents a pile of sand with a given number of grains. Grains of
sand are dropped randomly onto the lattice. When the number of
grains at a site exceeds a certain threshold, the site “topples” and
redistributes grains to its neighboring sites. This can cause

neighboring sites to topple as well, resulting in a cascade of
toppling events, known as an avalanche. As grains are
continuously added and redistributed, the system naturally
organizes itself into a critical state, where the distribution of
avalanche sizes follows a power-law distribution.

The idea that neural networks might exhibit SOC was proposed
even before empirical evidence for critical brain activity was
available (Beggs and Plenz, 2003). Hopfield (1994) drew parallels
between the SOC model for earthquakes, the Burridge-Knopoff
model, and the dynamics of locally coupled integrate-and-fire
neurons: In the Burridge-Knopoff model, small stresses build up
locally until they cross a threshold, triggering an earthquake; in
integrate-and-fire neurons, synaptic inputs accumulate until the
membrane potential crosses a firing threshold, generating an
action potential. Hopfield (1994) suggested that such neural
networks might also exhibit SOC like the earthquake model.
Building on this intuition, Herz and Hopfield showed that the
sizes of synchronized clusters in these networks indeed follow a
power-law distribution, the signature of criticality (Herz and
Hopfield, 1995; Hopfield and Herz, 1995). Other critical
phenomena, such as power-law distributed avalanche sizes (Chen
et al., 1995; Corral et al., 1995; Eurich et al., 2002) and 1/f noise
(Usher, 1995), have also been captured in neural networks.

The neural networks in these studies were fixed, in the sense that
they did not change their connectivity and weights. To overcome
this limitation, various activity-dependent mechanisms have been
introduced to automatically bring the network into a critical state,
e.g., Hebbian (Bienenstock and Lehmann, 1998) and homeostatic
rules (Levina et al., 2007; Tetzlaff et al., 2010), reinforcement
learning (Bak and Chialvo, 2001; Chialvo and Bak, 1999; de
Arcangelis and Herrmann, 2010), and activity-dependent
rewiring (Bianconi and Marsili, 2004; Bornholdt and Röhl, 2003;
Bornholdt and Rohlf, 2000).

In the activity-dependent rewiring rule introduced by Bornholdt
and Rohlf (2000), a random node is selected at each step, and based
on its activity, either a new connection is created between it and
another random node, or a random connection of it is pruned. Thus,
rewiring occurs between two randomly selected nodes, with
connection values determined by the nodes’ activity. This process
drives the network density towards a value where the network
activity dynamics become critical. In adaptive rewiring as
described here, a random node is again selected at each step, but
in contrast, links are pruned from the node with the lowest
interaction intensity and added to the node with the highest
interaction intensity. This is similar to the dynamics in extremal
models of SOC, where the system evolves by initiating events at the
unit with the extremal state value (Gabrielli et al., 1997; Paczuski
et al., 1996). The adaptive rewiring rule may serve a similar function
in driving the network toward a critical state.

Despite the similarities, adaptive rewiring is not intrinsically
linked to criticality. The development of brain-like structures is
dependent on network size and density. These must be above a
certain threshold, otherwise adaptive rewiring does not guarantee
the formation of local clusters (van den Berg et al., 2012). Crucially,
however, above the threshold adaptive rewiring is effective for a wide
range of sizes and connectivity densities. This is not because, as in
SOC, criticality is an attractor for the system. Throughout adaptive
rewiring, networks exhibit nonequilibrium dynamics. Adaptive
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rewiring networks can be viewed as autopoietic systems, where
brain-like structures emerge and are maintained under a variety of
conditions (Maturana and Varela, 1991). We can observe phase
transitions in the network structure during its evolution. For
example, networks that have settled into a centralized
configuration may transition to a more modular one, while
maintaining their brain-like connectivity structure (Rentzeperis
and van Leeuwen, 2021). It is precisely because adaptive rewiring
does not rely on SOC that it can produce specific, robust and flexible
results (Rentzeperis and van Leeuwen, 2021).

4 Manifestations of brain network
topologies

4.1 Emergence of brain-like complex
structures

Applying iterative synchrony-based adaptive rewiring to either
random (Gong and van Leeuwen, 2003; Gong and van Leeuwen,
2004; Kwok et al., 2007) or regular networks with lattice structures
(Rubinov et al., 2009b) yields networks that are modular small-
worlds (van den Berg and van Leeuwen, 2004; Rubinov et al., 2009a),
with the modules communicating through a rich-club core
(Hellrigel et al., 2019). Interesting, the evolution towards these
complex, brain-like structures depends on network dynamics. In
random networks of coupled logistic maps, the network dynamics is
chaotic when the coupling strength is weak and gradually become
ordered as the coupling strength increases (Manrubia and
Mikhailov, 1999), where intermediate coupling strengths produce
dynamics with intermittent or fuzzy synchronization. These are the
conditions where the small-world structures emerge (Gong and van
Leeuwen, 2004). The emerging structural connectivity patterns
follow the functional connectivity of dynamic synchrony patterns
in the model, but not the moment-to-moment ones. The averaged
synchrony pattern over a moving temporal window is the driving
force that generates the brain-like structural networks (Rubinov
et al., 2009a).

The dynamic synchrony patterns that are effective in creating
brain-like connectivity in the models correspond in the brain to the
intermittent episodes of globally correlated activity observed in
spontaneous activity (Gong et al., 2007; Ito et al., 2007). They
allow the systems to spontaneously and rapidly enter and exit
different synchrony states, and are a possible mechanism for the
brain to flexibly switch between different cognitive states (Rodriguez
et al., 1999). Similar dynamics have also been observed in cultured
hippocampal neurons (Antonello et al., 2022; Penn et al., 2016).
Their ubiquity suggests that evolution may have recruited them to
support adaptive rewiring in the establishment of the brain’s
network connectivity structure. Adaptive rewiring, in turn,
supports this type of activity in these models, in the sense that as
a result, the networks exhibit dynamic synchronization over an
increasingly wide range of coupling strengths (Gong and van
Leeuwen, 2004; Hellrigel et al., 2019). Thus, the title of Rubinov
et al. (2009b) was apt: “Symbiotic relationship between brain
structure and dynamics”.

These results were obtained in studies where synchrony-based
adaptive rewiring was performed on binary networks. A study on

weighted networks with fixed weights from different distributions
(Gaussian or long-tailed) and with different coupling strength values
generated brain-like structures for most parameterizations (Hellrigel
et al., 2019). For networks with power-law weight distributions,
adaptive rewiring fails to produce brain-like structures at weak
coupling strengths, similarly to what has been observed in binary
networks (Gong and van Leeuwen, 2004; Rubinov et al., 2009b) or
below-threshold network densities (van den Berg et al., 2012).
Couplings between nodes that are too sparse or too weak to
sustain ordered spatiotemporal dynamics in networks fail to
support the emergence of brain-like structures (Gong and van
Leeuwen, 2004).

Around the density threshold, networks undergoing adaptive
rewiring show interesting dynamics of their structure: clusters
are formed but they are unstable (van den Berg et al., 2012). As a
result, the system maintains a higher degree of randomness. A
shift towards randomness were observed in the structural
connectivity of anorexic patients (Collantoni et al., 2021) and
in the functional connectivity of schizophrenic patients (Rubinov
et al., 2009a). The dynamics of intermittent clustering and
returns to randomness is reminiscent of the typical
intermittent relapses and remissions of schizophrenic patients
(Robinson et al., 1999). For this reason, the model behavior at the
connectivity threshold has been linked to the dysconnectivity
hypothesis of schizophrenia (Rubinov and Bullmore, 2013).

The emergence of a brain-like structure through adaptive
rewiring is robust to perturbations in the dynamics of minority
groups of nodes (Haqiqatkhah and van Leeuwen, 2022). Such
groups were either collectively assigned a less chaotic oscillatory
regime, thereby facilitating their synchronization to simulate
sensory-driven perceptual grouping or coupled with higher
strengths to represent a memory trace. When these
manipulations persist, the minorities form relatively segregated
modules within the overall connectivity structure. These results
provide a first indication that adaptive rewiring may contribute
to information processing functionality of the network.

4.2 Diffusion rate as a control parameter of
adaptive rewiring

Adaptive rewiring based on a more abstract type of interaction,
diffusion, offers a parsimonious explanation for the diversity of
brain topologies. Specifically, different topologies arise by varying a
single parameter, the diffusion rate, defined as the elapsed time of
diffusion in the network before a rewiring step occurs (Jarman et al.,
2017; Rentzeperis and van Leeuwen, 2020). When the diffusion rate
is low, networks develop modular structures with homogeneous
degree distribution (Figures 2A, B); when it is high, networks
produce centralized structures where a few high degree nodes
form a core connected to peripheral nodes (Figures 2A, C); and
at intermediate diffusion rates, there is a transition zone where the
rewired networks exhibit some degree of both centrality and
modularity (Figure 2D; Jarman et al., 2017). In all cases the
rewired networks were small-worlds. This result also extends to
weighted networks (normally or lognormally distributed), which
also generate topological rich clubs (Rentzeperis and van
Leeuwen, 2020).
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Plasticity in the brain exhibits different modes, either shaping
network topology to meet new computational demands or
maintaining the network topology under perturbations. The
former is referred to as specificity, the latter as robustness. To
model different modes of brain plasticity, Rentzeperis and van
Leeuwen (2021) examined the effect of diffusion rate when
networks had an established brain-like topology prior to
rewiring. The initial topologies varied, ranging from more
modular to more centralized networks. For adaptive rewiring
with small diffusion rates, the rewired networks exhibit
specificity, i.e., networks become modular regardless of their
initial topologies, which may involve a phase transition in case
the initial topology was centralized; for intermediate and large
diffusion rates, networks exhibit robustness, i.e., networks
maintain their initial topologies, i.e., remain centralized if they
were centralized, or remain modular if they were modular.

A third property of plasticity is flexibility. A rewiring process
exhibits flexibility if it deviates stochastically from robustness or
specificity. Flexibility could benefit network reorganization by
establishing some diffuse connections that can be recruited, e.g.,

when computational demands change. Adaptive rewiring shows
greater flexibility in networks with lognormally distributed weights
than in those with normally distributed weights, in either the
specificity or robustness mode. Recent experimental evidence
suggests that synaptic strengths follow a lognormal distribution
(e.g., Ercsey-Ravasz et al., 2013; Loewenstein et al., 2011; Song
et al., 2005), but the advantages of this type of distribution are
still unclear. The computational study by Rentzeperis and van
Leeuwen (2021) offers the working hypothesis that the lognormal
strength distribution contributes to the networks’ structural
flexibility.

4.3 Synergy with spatial rewiring principles

So far, we have only considered the topological properties of
brain networks, but the brain is embedded in a three-dimensional
space. Incorporating this feature into computational studies will
help us understand the interplay of the wiring principles that aim to
minimize space, material, and processing time (Ramón y Cajal,

FIGURE 2
(A) Bar-plot of node degrees dv at different diffusion rate values. The height of each bar is the average number of nodes having degree dv . τ is the
value of diffusion rate, where ϵ � 10−15 and δ � 1015. For each τ, the proportion of random rewiring corresponding to the maximum the small-worldness
index is chosen. (B–D) Examples of small-world networks with (B)modular, (C) centralized and (D) intermediate architectures. Adapted from Figures 1D,
2B, D, 3D in Jarman et al. (2017) under a CC BY 4.0 license.
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1899). To study these effects, network models are embedded in a
three-dimensional volume with each node being assigned to a
coordinate position.

A prominent spatial organization property associated with
minimizing material (wiring length) is that the probability of two
neurons being connected decreases with distance (Hagmann et al.,
2007; Kaiser et al., 2009). As a result, neural connections are densely
interconnected locally. However, to minimize processing time, brain
networks also develop a number of long-range connections
(Bullmore and Sporns, 2012; Kaiser and Hilgetag, 2006). These
two different connectivity patterns indicate that wiring principles
could be at odds with each other and that there is a happy medium
where both are satisfied to a certain extent (Bullmore and
Sporns, 2012).

In a spatially embedded network, a rewiring penalty based on the
Euclidean distance between nodes was incorporated into the
synchrony-based adaptive rewiring algorithm. Complex networks
evolved nevertheless, regardless of the type of cost function used
(Jarman et al., 2014). Each cost function produced a degree of
segregation between adjacent modules, as well as some overlap,
suggesting that these structures could be involved in establishing
topographical maps. However, there were some subtle differences.
Adaptive rewiring based on a linear cost function yields
topologically segregated modules corresponding to spatially
segregated regions, consistent with observations from structural
connections in the brain (Figure 3A; Hagmann et al., 2008;
Rubinov et al., 2015). While the majority of connections are
largely intramodular and short-range, a sparse set of long-range
connections survives in the network, forming a rich-club core that
connects spatially segregated modules. In contrast, an
“overpenalizing” exponential cost function imposes a greater
penalty on distant nodes, resulting in a stricter separation
between intramodular and hub nodes. We call such networks
“autistic,” based on the hypothesis that the imbalance between
local and global connectivity is responsible for the precise minds
characteristic of autism spectrum disorders (Belmonte et al., 2004;
Van De Cruys et al., 2014). Finally, an “underpenalizing”
logarithmic cost function imposes a less severe penalty on distant

nodes compared to the linear and exponential cost functions. As a
result, adaptive rewiring in this regime produces a less strict
separation of modules and somewhat blurs the distinction
between intramodular and hub nodes. Spatially, it loosens the
spatial separation between modules (Figure 3B), resulting in
“ectopic” nodes that are localized in the region of one module
but belong to another. We named such networks “dyslexic” and
“creative”: Dyslexic because the presence of ectopic nodes is likely to
cause noise in modules dedicated to alphabetic reading and thus
misidentification of letters; creative because the presence of ectopic
units facilitates the formation of unusual conceptual combinations.
The model is therefore consistent with the hypothesized relationship
between creativity and dyslexia (Cancer et al., 2016; Cockcroft and
Hartgill, 2004).

For diffusion-based adaptive rewiring, Calvo Tapia et al. (2020)
introduced an alternative mechanism for minimizing connection
length. They used a spatial proximity-based rewiring rule that
replaces the longest connection of a node with a connection to
the nearest unconnected node. The removal of the long-range
connection is purely a consequence of the choice of using an
initially random network with no biological significance. But the
adherence to a neighbor may be understood as the formation of gap
junctions which propagate calcium signals between spatially
adjacent neurons (Niculescu and Lohmann, 2014). Rewiring
occurs according to either adaptive rewiring or the spatial
rewiring rule, which is determined by a Bernoulli trial at each
step. A fixed proportion of spatial proximity-based rewiring
maintains network connectedness while generating modular
small-world structures with the modules being spatially
segregated, similar to the study by Jarman et al. (2014), but this
time as a function of the proportion of spatial proximity-
based rewiring.

Another spatial organization property explored by Calvo Tapia
et al. (2020) is based on the observation that connections exhibit
specific non-random topographic structures. For example,
neuronal connections tend to extend either in the same
direction, as the axons of pyramidal cells in the cortex (Mohan
et al., 2015), or extend in a concentric fashion, such as the dendrites

FIGURE 3
Community structure of a network after an (A) linear-penalizing and (B) under-penalizing adaptive rewiring process. Nodes are arranged in a
spherical setting approximating the brain and colored according to the module to which they belong. Adapted with permission from Figures 10A, 11A in
Jarman et al. (2014). Copyright 2014 by Springer Nature.
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of retinal ganglion cells (Boycott and Wässle, 1974; Völgyi et al.,
2009). The formation of these topographic structures has been
associated with propagating waves of electrical activity (Alexander
et al., 2011; Ito et al., 2007) or gradients of guidance cues (Tessier-
Lavigne and Goodman, 1996) as organizing principles. To
investigate the effects of these principles, Calvo Tapia et al.
(2020) introduced an alignment-based rewiring rule that aligns
the connections along an underlying vector field representing
propagating waves or gradients of guidance cues. When
alignment-based rewiring is combined with adaptive and spatial
proximity-based rewiring, the resulting network still preserves the
modular small-world structure while developing a detailed brain-
like functional anatomy. Namely, a laterally propagating wave
organizes modules into super-chains that can serve as the
structural basis for a synfire chain (Figure 4A) while a radially
propagating wave organizes modules into ganglia that support
parallelism with a convergent input and a divergent output
(Figure 4B; McLachlan, 2003).

4.4 Convergent-divergent units in
directed networks

Synchrony and diffusion, the measures of interaction strength
introduced so far, are symmetric in that the propagation of activity
flows indiscriminately in both directions of a connection. Although
this symmetry is mathematically convenient and can capture certain
aggregate effects, the flow of information in the nervous system is
directed. Most synapses are chemical synapses, where information is
transmitted unidirectionally as a neurotransmitter flows from a
presynaptic to a postsynaptic terminal. In addition, structural
connectivity on a larger scale (i.e., white matter tracts) is also
directed (e.g., Harriger et al., 2012; Scannell et al., 1999;
Varshney et al., 2011). To accommodate this anatomical
asymmetry, a number of recent studies have used adaptive
rewiring on directed networks (Li et al., 2024; Luna et al., 2024;
Rentzeperis et al., 2022).

To model adaptive rewiring in directed networks, Rentzeperis
et al. (2022) used two algorithms widely used in distributed
computing: advection and consensus (Box 2; Chapman, 2015;
Ren et al., 2007), both of which are generalizations of network
diffusion used in undirected networks. They act as homeostatic
mechanisms that aim to reduce the activity differences between
units. When consensus is used to adaptively rewire the incoming
links to a unit, divergent hubs are produced. Divergent hubs are
units that have a large number of outgoing links and support
broadcasting of information received. Similarly, when advection
is used to rewire the outgoing connections to a unit, convergent hubs
are generated. Convergent hubs are units that have a large number of
incoming connections and support the integration of the received
information.

When advection and consensus are used in equal proportions,
the network develops convergent-divergent units (Figure 5A),
consisting of convergent hubs that collect input from sparsely
connected local nodes and project it through a densely
interconnected, relatively encapsulated core to divergent hubs
that broadcast their output back to the local units. Convergent-
divergent units provide a parsimonious explanation for the
emergence of context-sensitive sensory neurons, i.e., neurons that
respond to local features but are also modulated by global contextual
features. Prominent examples of this connectivity pattern are
somatostatin (SOM) neurons which collect inputs from and
project responses back to orientation-selective neurons in layers
2/3 of mouse V1. The SOM neurons and vasoactive intestinal
peptide neurons form intermediate subnetworks to modulate the
responses of orientation-selective neurons as the relationship
between surround and stimulus changes (Keller et al., 2020). In
the same study by Rentzeperis et al. (2022), a small proportion of
random rewiring increased the connectivity of the directed network,
in effect facilitating the communication between nodes, without
affecting the convergent-divergent units. In a spatially embedded
network, Li et al. (2024) showed that spatial proximity-based
rewiring plays a similar role to random rewiring in promoting
network connectivity. In addition, the proportion of random

FIGURE 4
(A) A super-chain emerges under the influence of a laterally propagating wave. (B) A ganglion emerges under the influence of a radially propagating
wave. Networks are embedded in a two-dimensional unit disk, where nodes are located in space according to their coordinates. Green arrows indicate
the propagating waves’ direction. The insets provide a topological view where the nodes are rearranged in space to minimize the number of the crossing
connections. Adapted from Figure 3 in Calvo Tapia et al. (2020) under a CC BY 4.0 license.
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rewiring controlled the degree of encapsulation of the inner core of
the convergent-divergent units, thus allowing them to differ in
processing style.

Recently, Luna et al. (2024) used adaptive rewiring on a directed
network to investigate the role of retinal waves in the formation of
retinal ganglion cells (RGCs) as divergent hubs in the visual system
(Figure 5B). Retinal waves are relatively structured activity dynamics
that shape visual circuits (Arroyo and Feller, 2016). The authors
show that such activity waves, in combination with adaptive
rewiring, can generate divergent hubs, i.e., nodes that project to a
large number of other nodes. These share characteristics with the
connectivity profile of RGCs. In contrast, nodes that receive inputs
from RGCs are disposed to become convergent hubs, which is
consistent with the connectivity of the lateral geniculate nuclei
(LGN) in the mammalian visual system. Indeed, RGC-targeted
LGN nodes develop into convergent hubs capable of transmitting
integrated signals to downstream areas, including the primary visual
cortex. Thus, the model shows how retinal waves might orchestrate
divergence and convergence early in the development of the
visual system.

5 Outlook

Rather than building the brain network unit by unit, connection
by connection from the genetic code, evolution has set the stage for
the brain structure to unfold during development. We have
discussed adaptive rewiring as a central principle in modeling
how brain structure dynamically changes during development.
Adaptive rewiring leads to complex brain-like networks,
i.e., networks with a modular small-world structure and a rich-
club core. This effect is specific in the sense that the network
topology can be adapted to computational requirements, robust
in the sense that the network topology is maintained under
perturbations and independent of a critical regime, and flexible
in the sense that it is capable of generating a variety of network
configurations within the bounds of specificity and robustness. In
brain development, the cost of flexibility outside of these bounds
may be associated with dysfunctions such as schizophrenia, autism,
and dyslexia. Adaptive rewiring was able to mimic these effects,

suggesting the origin of the relationship between dyslexia and
creativity. Adaptive rewiring interacts constructively with
principles of spatial organization in the formation of
topographically segregated modules and structures such as
ganglia or chains. At the mesoscopic level, adaptive rewiring
leads to the development of functional architectures, such as
convergent-divergent units, and provides an explanation for the
early development of divergence and convergence in the
visual system.

The studies reviewed here offer a first indication of the versatility
of the adaptive rewiring principle in the generative modeling of
neural network structures. These models have necessarily made
many simplifying assumptions to model nervous systems. Future
research can extend adaptive rewiring by replacing these
assumptions with more biologically plausible ones.

First, mechanisms of synaptic plasticity could be incorporated
into the models. Adaptive rewiring on networks with
predetermined, fixed edge weights does not take into account
that synaptic strengths change continuously over time in
response to specific patterns of neural activity, whether it is
spontaneous or driven by external stimulation. Synaptic plasticity
takes different forms that play different roles in neural development
and function (Citri and Malenka, 2008). Several models have been
proposed to describe how synaptic strength changes with neural
activity, but they do not address the co-evolution of complex
patterns of connectivity (e.g., Bi and Poo, 2001; Clopath et al.,
2010; Cooper and Bear, 2012; Vogels et al., 2011). A recent
generative model of synaptic self-organization, by Lynn et al.
(2024) is a step in the right direction. The model uses a variation
of adaptive rewiring, adaptive reweighting, to produce connectivity
strengths that are heavy-tailed, matching the distributions of
synaptic weights for both vertebrates and invertebrates, as well as
their clustering (Lynn et al., 2024). The model iteratively prunes
random connections and redistributes their strength to the
remaining connections, either randomly or via a preferential
growth rule. Perhaps an additional step would be to include
adaptive rewiring so that the model also generates the
connectivity structures discussed here.

Second, the dynamical properties of neural units, such as
neuronal excitability (Picken Bahrey and Moody, 2003), of

FIGURE 5
(A) Schema of a convergent-divergent unit. Adapted from Figure 2 in Li et al. (2024) under a CC BY 4.0 license. (B) Schema of retinal circuitry.
Adapted from Figure 1B in Luna et al. (2024) under a CC BY 4.0 license.
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dominant frequencies of neural oscillations (Rochefort et al., 2009),
and of coupling strengths (Yrjölä et al., 2024) undergo regulated
changes during brain development. These temporal variations are
likely involved in the transitions of spontaneous activity observed
during early brain development, the precise timing of which are
critical for normal development (Wu et al., 2024; Yrjölä et al., 2024).
Rentzeperis and van Leeuwen (2021) showed that the effect of
adaptive rewiring with different diffusion rate values on network
topology can depend on the topology of initial networks. This
suggests that the timing of changes in network dynamical
parameters influences the results of adaptive rewiring processes.
Incorporating temporal variations in network parameter values into
adaptive rewiring could provide insight into how the timing of these
changes affect network organization and could ultimately suggest
potential targets for therapeutic intervention.

Third, adaptive rewiring could be used in combination with
models of neural growth. In an early application (Gong and van
Leeuwen, 2003), a generative algorithm combined a rule for random
initial attachment of additional nodes with adaptive rewiring (based
on oscillatory dynamics) to develop complex networks with scale-
free connectivity distributions. A setting that would bring the
algorithm closer to biological developmental processes would
include spatial embedding and directionality, and combine
adaptive rewiring with initial attachment based, for example, on
dynamic axon expansion driven by guidance cues (Liu et al., 2024).

Although models of adaptive rewiring are still highly abstract,
we believe that adaptive rewiring provides a suitable framework for
harnessing biological principles in both neuroscience and artificial
intelligence. First, adaptive rewiring could shed light on early
neurodevelopment by being implemented in more biologically
realistic networks. To this end, adaptive rewiring could be
combined with agent-based models that capture both the
biological dynamics and the physical processes of
neurodevelopment, including cell proliferation, cell migration,
neurite outgrowth and cell apoptosis (Bauer et al., 2014;
Breitwieser et al., 2022). Given the previously highlighted role of
activity-dependent processes in the construction of neural networks,
adaptive rewiring can be incorporated as a mechanism of structural
plasticity. Such highly biologically realistic, multi-scale
computational models will provide many opportunities to
validate and refine adaptive rewiring-based models with a wealth
of experimental data.

In addition, adaptive rewiring could be used to study the
temporal variation of functional connectivity across physiological
states. Early studies using oscillatory networks have shown that
networks undergoing adaptive rewiring exhibit intermittent
dynamics (Gong and van Leeuwen, 2004; Hellrigel et al., 2019).
These dynamics are reminiscent of the reorganizations of topology
and connection strengths observed in the functional connectivity of
brain rhythms (Bartsch et al., 2015; Ivanov et al., 2017; Lin et al.,
2020; Liu et al., 2015). Such reorganizations are crucial for
facilitating spontaneous transitions (Bartsch et al., 2015; Ivanov
et al., 2017; Lin et al., 2020; Liu et al., 2015; Rosenblum, 2024) and
maintaining critical temporal organization (Lo et al., 2002;
Lombardi et al., 2020; Wang et al., 2019) across physiological
states. As we discussed in Section 3.1, adaptive rewiring is closely
related with SOC models. Therefore, adaptive rewiring may serve as

a mechanism of the co-evolution of network organization and
dynamics to explain these phenomena.

Finally, adaptive rewiring could be applied to deep neural
networks (DNNs) as a neural architecture search method (Zoph
et al., 2018; Zoph and Le, 2017). Recent advances of generative
DNNs, such as ChatGPT and Sora (OpenAI, 2023; OpenAI,
2024), are impressive in their performance, but despite their
remarkable achievements, even state-of-the-art DNNs still lag
behind humans in many cognitive tasks (Goertzel, 2023; Maus
et al., 2023; Ortega et al., 2021). Moreover, the energy
consumption of these large models (Luccioni et al., 2023; Xu
et al., 2024) is in stark contrast to the energy efficiency of the
human brain (Balasubramanian, 2021). In particular, current
DNNs typically lack the aforementioned complex network
structures (Roberts et al., 2019), and differ significantly from
brain networks in their neural representations (Xu and Vaziri-
Pashkam, 2021). Recent studies have shown that connectome-
inspired networks are comparable to or even outperform
traditional DNNs in some vision tasks (Barabási et al., 2023;
Bardozzo et al., 2023; Roberts et al., 2019). In contrast to state-of-
the-art approaches where structural properties are determined a
priori, adaptive rewiring allows the complexity of the network to
increase with the presence of sensory inputs (Haqiqatkhah and
van Leeuwen, 2022). We expect that DNNs will benefit from the
brain-like network architectures generated by adaptive
rewiring by more closely mimicking the efficiency of the
human brain.
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