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The striatum as part of the basal ganglia is central to both motor, and cognitive
functions. Here, we propose a large-scale biophysical network for this part of the
brain, using modified Hodgkin-Huxley dynamics to model neurons, and a
connectivity informed by a detailed human atlas. The model shows different
spatio-temporal activity patterns corresponding to lower (presumably normal)
and increased cortico-striatal activation (as found in, e.g., obsessive-compulsive
disorder), depending on the intensity of the cortical inputs. By applying equation-
free methods, we are able to perform a macroscopic network analysis directly
from microscale simulations. We identify the mean synaptic activity as the
macroscopic variable of the system, which shows similarity with local field
potentials. The equation-free approach results in a numerical bifurcation and
stability analysis of the macroscopic dynamics of the striatal network. The
different macroscopic states can be assigned to normal/healthy and
pathological conditions, as known from neurological disorders. Finally, guided
by the equation-free bifurcation analysis, we propose a therapeutic close loop
control scheme for the striatal network.
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1 Introduction and context

Complex dynamical systems of interacting units appear in nature across several
disciplines. Examples of these systems are networks of coupled neurons in the brain,
epidemiological networks of interacting individuals during a virus spreading, and social or
economic networks of human action and perception. A common characteristic of these
networks is the existence of well-defined rules for each individual entity, the so-called
microscopic description, while the emergent network behaviour evolves on a different level,
the macroscopic scale.

The macroscopic description, say, in the form of ordinary or partial differential
equations, governs the time evolution of few macroscopic variables, which are often
given by low order statistics such as densities or correlation functions. It is however
very challenging, if possible at all, to derive such a macroscopic description from a
microscopic model, without making assumptions about the connectivity of the system,
see, e.g., (Kevrekidis and Samaey, 2009; Montbrió et al., 2015). In neuroscience, and
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specifically for brain networks, the microscopic description is based
on the electrochemical activity of individual cells which is frequently
modelled by Hodgkin-Huxley equations (Hodgkin and Huxley,
1952; Terman et al., 2002; Spiliotis et al., 2022b). These cell-
neurons interact through synaptic connections, and the
mathematical description results in large systems of coupled
nonlinear differential equations. The heterogeneous connectivity,
the nonlinear behaviour of each cell, and the stochastic environment
are factors which increase the complexity of the emergent network
behaviour. Existence of multiple stationary states, sustained
oscillations (Deco et al., 2008; Spiliotis and Siettos, 2011; Deco
et al., 2013), as well as travelling waves and spatio-temporal chaos
(Laing and Chow, 2002; Bhattacharya et al., 2022; Palkar et al.,
2023), are signatures of the rich nonlinear behaviour of neural
networks at the macroscopic level (Deco et al., 2008; Spiliotis and
Siettos, 2011; Crowell et al., 2012; Deco et al., 2013; de Santos-Sierra
et al., 2014; Siettos and Starke, 2016; Spiliotis et al., 2022b).

In previous studies (Spiliotis et al., 2022a; Spiliotis et al., 2022b;
Spiliotis et al., 2024) we developed a large-scale computational
model of the basal ganglia network and thalamus to describe
movement disorders and treatment effects of deep brain
stimulation. The model of this complex network covers three
areas of the basal ganglia region: the subthalamic nucleus, the
globus pallidus, both pars externa and pars interna, and the
thalamus and motor and pre-motor cortex. Macroscopic analysis
of the network dynamics allowed us to study the differences in
neural activation patterns that will emerge within the brain’s
structural network when simulating different medical conditions.
For example, our computational model suggests that spatio-
temporal activity in the basal ganglia network shows travelling
wave solutions with more varying structures in the normal state
as compared to the Parkinsonian state, see (Spiliotis et al., 2022b). In
addition, the macroscopic analysis yields optimal frequency ranges
for deep brain stimulation as well as optimal positions for the
electrodes (Spiliotis et al., 2022a).

In this work, we focus on the striatum, an essential intermediate
area of the brain that connects cortical to deep brain regions. The
striatum belongs to the basal ganglia area and orchestrates activities
for controlling movement, decision-making, choosing actions, and
those maximising reward and other psychological behaviours
(Calabresi et al., 2007; Crittenden and Graybiel, 2011; Calabresi
et al., 2014). The striatum integrates cortical signals to create motor
activities based on experience and forthcoming selections. The
significance of striatum functionality is also accentuated by its
involvement in a vast number of neurological diseases ranging
from Parkinson’s disease, Huntington’s disease, and dystonia to
psychological disorders such as obsessive-compulsive disorder,
depression, impulsivity, and attention-deficit hyperactivity
disorder (Remijnse et al., 2006; Crittenden and Graybiel, 2011).

Our main aim is the development of a mathematical-
computational framework to analyse the macroscopic network
behaviour of the striatum area, using data from microscopic
simulations of a modified Hodgkin-Huxley network of neurons.
We achieve our goal by an equation-free approach (Gear et al., 2005;
Kevrekidis and Samaey, 2009; Marschler et al., 2014a; Laing, 2018).
We identify the mean synaptic activity as the appropriate
macroscopic variable that captures the network dynamics. This is
also justified from other computational and medical-clinical studies

Popovych and Tass (2019); Buzsáki (2004); Parasuram et al. (2016)
since neural network activity like synchronisation, is also reflected
by the amplitude of the local field potential (LFP) which is modelled
as an ensemble-averaged synaptic activity of neurons. The equation-
free method allows to perform a numerical bifurcation and stability
analysis for the macroscopic dynamics. Our analysis will reveal an
interesting property which is not accessible by straightforward
simulations of the network, namely, the existence of two
macroscopic network states, a high activation state and an
unstable low activation state. The different macroscopic states
can be related to healthy and pathological conditions existing in
neurological disorders. During obsessive-compulsive disorder there
is an increased cortico-striatal activity (Maltby et al., 2005; Marsh
et al., 2014). Our computational model also predicts this high
activation solution. Additionally the model shows a second
solution which provides a low activation state, leading the
striatum activity to a less pathological activation. Such a state is a
potential healthy target for deep brain stimulation and may result in
strategies for an efficient treatment. In fact, based on our analysis we
propose a closed loop macroscopic control scheme which provides
better performance compared to a straightforward deep brain
stimulation approach.

2 Construction of the striatum model

We extract the surface of the striatum using magnetic resonance
medical data taken from a previously published atlas (Iacono et al.,
2015) and transform into theMNI (Montreal Neurological Institute)
coordinate system. We place neurons randomly inside this area,
see Figure 1A.

2.1 Modelling the striatum network by small
word connectivity

We place in total 1995 neurons as network nodes in the striatum
area. In line with medical studies (Yager et al., 2015) we assume that
the vast majority of nodes (i.e., 95% of nodes) represent medium
spiny neurons (MSN) while the remaining 5% of nodes are
interneurons. The actual connectivity of the striatum is
constructed following the idea of the small-world algorithm
(Watts and Strogatz, 1998; Bassett and Bullmore, 2006; Stam and
Reijneveld, 2007; Bullmore and Sporns, 2009; Spiliotis and Siettos,
2011). Small-world structures suitably model physiological networks
(Netoff et al., 2004; Bassett and Bullmore, 2006; Bassett and
Bullmore, 2017; de Santos-Sierra et al., 2014; Berman et al., 2016;
She et al., 2016; Fang et al., 2017) since those networks are highly
clustered and typically show short path lengths, enhancing in this
way signal or rhythm propagation within the network and support
synchronisation. Initially, each MSN is connected with k � 20
neurons in the local neighbourhood of 5mm diameter. Then,
with a small probability p, for each local connection a new
remote neighbour is added. For interneurons we follow the same
approach, using, however, a five times higher interneuron to MSN
connectivity with k � 100 links. In this way, we obtain a network
which is highly clustered with a small distance between nodes. The
resulting striatal network gives a graph G � (V, E), where V is the
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set of nodes and E the set of edges, i.e., the connections between
neurons. The connectivity can be captured by a so-called adjacency
matrix A, where Aij � 1 if there is a connection from node j to node
i, and Aij � 0 otherwise. Each of the nodes represents a neuron with
dynamics being described by modified Hodgkin-Huxley equations.
The position of the striatum in the model is based on a medical atlas,
and the positions of neurons are constructed based on this
information. That means each index i comes with the Cartesian
coordinates of the neuron and set of links. The connectivity of the
neurons is constructed using the Watts and Strogatz small-world
algorithm. In this type of connectivity, the nearest neurons are
connected, and their activity is communicated to the nearest nodes,
analogous to a graph Laplacian. Additionally, the small-world
connectivity allows rare remote connections with a small
probability, offering a more realistic neuronal network activity.
As our model contains the actual geometric information of the
position of neurons, we are finally able to model deep brain
stimulation, where the position of electrodes and their spatial
interaction with neighbouring neurons becomes essential (see,
e.g., Eq. 13). It is the purpose of an equation-free method to
reduce such a complex realistic description of the striatum to as
few degrees of freedom as possible, by keeping the important
dynamical signatures.

2.2 Modelling of the neuron dynamics

Our striatum network contains two types of neurons, the medium
spiny neurons (MSN) representing 95% of all neurons and fast spiking
neurons (FSI) which are the remaining ones. For the equations of

motion of the neuron dynamics we follow (Chartove et al., 2020). It is
reported therein, using models as well as experimental works, that
striatal projection neurons (MSN) are capable of generating β

oscillations. In contrast, striatal fast-spiking interneurons (FSIs) are
responsible for generating delta and theta rhythmicity (at 2–6 Hz). In
this sense, the FS-neurons are somewhat paradigmatic for GABAeric
interneurons in the striatum (that means, neurons which use
neurotransmitter gamma-aminobutyric acid in synapses, mainly to
inhibit other neurons), although, obviously, other types such as
Somatostatin-expressing inhibitory interneurons (SOM+) exist
(Melzer et al., 2017). We chose to model the striatum mainly with
parvalbumin-positive fast spiking interneurons (PV+) (Melzer et al.,
2017). On the one hand they are among the best characterised
neurons (Tepper et al., 2010). On the other hand a recent study
focusing on identifying interneurons in the striatum found that those
neurons accounted for the largest group of interneurons overlapping
with 5HT3-EGFP, the marker which turned out to best identify
interneurons but otherwise did not very much overlap with
classical markers (Muñoz-Manchado et al., 2016). In addition PV+
are found more prominently in the dorsal, whereas SOM+ are more
prominently found in the ventral striatum (Zandt et al., 2024). Finally
Cholinergic neurons, in turn, act only via metabotropic receptors and
hence slower than the GABAergic ones.

An MSN or FS neuron at node i is modelled by current balance
equations for the membrane potential Vi

C
dVi

dt
� −ILEAK − IK − INa − IM/D − Isyn + Iapp (1)

where C is the membrane capacity. The current balance Eq. 1
contains four membrane currents, the fast sodium and potassium

FIGURE 1
Representation of the striatal network: (A) Schematic representation of the striatum area as obtained in a MNI coordinate space. Colour code
represents the membrane electrical activity in mV. (B) Raster plot representation of the network activity in time (in ms) and space (index of neuron of the
nucleus). Black dots represent activated neurons (i.e., time dependent action potentials passing through −15mV to positive values) (C) Time series of two
representative medium spiny neurons (MSN) of the striatum. (D) Fourier analysis for the mean membrane activity �V(t) � 1/N∑iVi(t) showing a γ
rythm, i.e., with main characteristic frequency above 30Hz (such rhythm appears, for instance, in the striatum during motivated behaviour and reward
processing (Kalenscher et al., 2010)).
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currents INa, IK, the leak current ILEAK. For MSN neurons an
M-current IM occurs whereas FS neurons contain a D-current ID
(Chartove et al., 2020). All currents follow the Hodgkin Huxley
formalism Hodgkin and Huxley (1952), that means
IX � gXm

n1
X h

n2
X · (V − EX), where X ∈ {Na,K,M, LEAK}. The

exponents n1, n2 represent the number of activation-inactivation
channels respectively, gX is the maximum conductance of the ion
and EX stands for the reverse potential for each ion. Specifically, the
sodium current has three activation gates and one inactivation gate
so that

INa � gNam
3
NahNa · Vi − ENa( ). (2)

The potassium current has the form

IK � gKm
4
K · Vi − EK( ). (3)

and the leak current reads

ILEAK � gLEAK · Vi − ELEAK( ). (4)
Finally, the M- and D-current which enter the MSN and the FS
neurons, respectively, are given by

IM � gMmM · Vi − EK( ), ID � gDm
3
DhD · Vi − ED( ). (5)

The gating variables mNa, hNa, mK, mM, at node i each obey,
following the Hodgkin-Huxley formalism (Hodgkin and Huxley,
1952; Chartove et al., 2020), an equation of the type

dxi

dt
� axi Vi( ) − axi Vi( ) + bxi Vi( )( )xi, (6)

where xi ∈ {mNa, hNa, mK, mM} stands for the respective gating
variable at node i. The voltage dependent coefficients for the
gating variables of the sodium current are given by

amNa V( ) � 0.32
V + 54

1 − e− V+54( )/4), bmNa V( ) � 0.28
V + 27( )

e V+27( )/5 − 1

and

ahNa V( ) � 0.128e− V+50( )/18, bhNa V( ) � 4
1 + e− V+27( )/5.

The coefficients of the activation gating for the potassium
current read

amK V( ) � 0.032
V + 52

1 − e− V+52( )/5), bmK V( ) � 0.5e− V+57( )/40,

and for those of the M-current we have

amM V( ) � 0.032
V + 52

1 − e− V+52( )/5), bmM V( ) � 0.5e− V+57( )/40.

The fast spiking neurons (FS) follow similar equations (Chartove
et al., 2020), where instead of the M-current we use fast-activating,
slowly inactivating D-current ID, given in Eq. 5, with three
activation gates and one inactivation gate, thus imposing a delay
in firing upon depolarisation (Golomb et al., 2007; Chartove et al.,
2020). Table 1 contains the respective parameter settings for both
types of neurons.

The current Iapp in Eq. 1 is written as Iapp � I0 + IDBS, where I0
predominantly represents a network activation current which
describes the dependence of the neuronal activation due to
intensity of cortical-striatal connectivity. The coupling between
the neurons in Eq. 1 is described by the synaptic current Isyn.
Details will be outlined in the next Section 2.3. Since our network
model contains realistic spatial details about the actual neural system
we would be able to model the impact of deep brain stimulation as
well. Thus, the term IDBS representing the deep brain stimulation,
enters here as an additive contribution. In our analysis we keep
IDBS � 0, except the last section where we discuss the
implementation of DBS in our model.

2.3 Description of the network inhibitory
synaptic activity

We model the activation of a synapse using the activation
variable si for the i-th neuron (Compte et al., 2000; Laing and
Chow, 2002; Ermentrout and Terman, 2012)

dsi
dt

� αX 1 − si( )HX Vi( ) − βXsi, (7)

where X ∈ {M, F} denotes whether the i-th neuron is a medium
spiny neuron (M) or an interneuron (F), and HX(V) is a sigmoid
function. The variable si describes the activation of synapses from
the pre-synaptic neuron i to post-synaptic neurons. The parameters
αX and βX in Eq. 7 determine the activation and inactivation time
scales, respectively, of the inhibitory synaptic connections. For MSN
we choose, following (Chartove et al., 2020),

HM V( ) � 1 + tanh V/4( ),
with activation rates αM � 2 and βM � 1/13. Similarly, for
interneurons the expressions are given by

HF V( ) � 1 + tanh V/10( ),
with activation rates αF � 4 and βF � 1/13. For a neuron i of type
X ∈ {M, F} the total synaptic inhibition it receives from pre-synaptic
neurons of type Y ∈ {M, F} is given by

Ii,GABA � gXY Vi − EGABA( )∑
j∈Y

Aijsj, (8)

whereAij is the adjacency matrix of the graph, the summation j ∈ Y
is taken over neurons of typeY andEGABA � −80mV. The parameter

TABLE 1 Values for the conductance gX and inverse potential EX for the
MSN and FS neurons.

Parameters gX and EX MSN FS

gLEAK 0.1 mS/cm2 0.25 mS/cm2

gK 80 mS/cm2 225 mS/cm2

gNa 100 mS/cm2 112.5 mS/cm2

gM 1.3 mS/cm2 -

gD - 0.1 mS/cm2

ELEAK −67 mV −70 mV

EK −100 mV −90 mV

ENa 50 mV 50 mV

EM −100 mV -

ED - −90 mV
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gXY represents the conductance between X and Y interactions with
X,Y ∈ {M, F}.

The synaptic current for the MSNs consists of two parts, first the
sum of synaptic currents over medium spiny neurons (describing the
inhibition between MSN-MSN neurons) and second, the sum over
interneurons (interneurons inhibition of MSN), so that Eq. 8 yields

Isyn � gMM Vi − EGABA( ) ∑
j∈M

Aijsj + gMF Vi − EGABA( )∑
j∈F

Aijsj. (9)

Similarly for an interneuron the synaptic current is given by

Isys � gFF Vi − EGABA( )∑
j∈F

Aijsj + gFM Vi − EGABA( ) ∑
j∈M

Aijsj. (10)

Here the first sum represents the rare case of FS-FS inhibition, while
the second term governs the feedback inhibitory loop of MSN to
interneurons. For the conductivity values we use gMM � gMF � 0.02
and gFF � gFM � 0.005.

In summary, Eqs 1, 2, 3, 4, 6, 7, 9, and 10 constitute a high
dimensional heterogeneous set of coupled nonlinear differential
equations defined on a graph with adjacency matrix A. The state
of each neuron at node i is described by the set of variables
(Vi, (mNa)i, (hNa)i, (mK)i, (mM)i, si). Figures 1B,C illustrates the
temporal dynamics of the network.

3 Equation-free method for analysing
macroscopic network behaviour

To describe the main idea in basic terms, consider a high-
dimensional dynamical system, for instance the dynamics of the
neural network presented in the previous section. The network
model evolves in time under specified known microscopic rules, e.g.,
the equations of motion for each node described above. Denote by
Ut ∈ RN the state of the full network. Its time evolution over a time
interval T is given by

Ut+T � ΦT Ut( )
where the so-called flow ΦT: R

N → RN can be obtained from
the (numerical) integration of the microscopic equations
of motion.

We are interested in analysing the network behaviour on a
different macroscopic scale. Assume there exists a suitable low-
dimensional macroscopic variable x ∈ Rd with d≪N, which
captures the emergent collective behaviour of the network
dynamics. Such collective coordinates xt � R(Ut) depend on the
degree of freedoms of the system, and are determined by a restriction
map R: RN → Rd. Often one uses suitable averages for the purpose
to capture the dynamics of a system at a macroscopic scale, see, e.g.,
(Kozma et al., 2005; Kevrekidis and Samaey, 2009; Spiliotis and
Siettos, 2011). The motion of the macroscopic variable per time step
is then given by

xt+T � R ΦT Ut( )( ) � R◦ΦT( ) Ut( ).
The main assumption of the Equation-Free approach (Gear et al.,
2003; Kevrekidis and Samaey, 2009; Marschler et al., 2014a; Sieber
et al., 2018) is that a macroscopic description in the form of closed
equations of motion for the collective coordinate xt exists, even if

one is unable to provide an analytic derivation for such effective low-
dimensional equations of motion. The success of this idea relies on
the ability to construct a meaningful lifting operator L: Rd → RN

such that

Ut � L xt( )
gives for each macrostate xt a particular microstate Ut which
represents all the possible microstates which are consistent with
xt. As with respect to the restriction map, the lifting operator
needs to fulfil the obvious consistency constraint R◦L � Iwhere I
denotes the identity map. Whether such a lift exists depends of
course on the microscopic model, the emergence of collective
motion, and a suitable choice for the macroscopic variable. If all
these conditions are met one obtains the macroscopic
evolution law

xt+T � R ΦT L xt( )( )( ) � R◦ΦT◦L( ) xt( ) � FT xt( ),
and the equations of motion, i.e., FT, can be derived from a
numerical integration of the microscopic equations of motion
over short time intervals T, without the need of going through
cumbersome calculations (hence the notion of an equation-free
approach). If successful, one can finally utilise algorithms to
compute dynamical signatures, such as fixed points and their
stability, as well as complete bifurcation diagrams from the
macroscopic description in terms of FT, see for instance (Gear
et al., 2003; Kevrekidis and Samaey, 2009; Siettos, 2011). An implicit
equation-free analysis (Marschler et al., 2014b; Sieber et al., 2018)
could further minimise the numerical errors in the computed
bifurcation diagram.

4 Equation-free analysis of the
striatum model

In this section, we apply the theoretical framework of an
equation-free approach (Gear et al., 2005; Kevrekidis and
Samaey, 2009; Marschler et al., 2014a) to analyse the emergent
network dynamics macroscopically. Initially, we describe the lifting
and restriction operator as well as the timestepper construction.
Then, we discuss the consequences of the resulting one-dimensional
evolution equation.

4.1 Lifting and restriction operator

The mean synaptic activity of MSNs turns out to be a suitable
macroscopic variable

St � 1
N

∑
i∈M

si t( ). (11)

While such a choice looks appealing, and can be justifiedwith hindsight,
one can also support this choice by amore subtle data analysis using for
instance diffusion maps, a data-driven method for dimensional
reduction and manifold learning (Coifman and Lafon, 2006; Nadler
et al., 2006; Laing et al., 2010;Marschler et al., 2014a; Dsilva et al., 2018).
Here we skip those technical details and take Eq. 11 as our
reduction map.
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The crucial step to build the timestepper is the lifting
operator. The construction of the lifting operator is based on
two steps. First, we record a microscopic realisation of the
system from a previous simulation, i.e., we store all the
microscopic variables after a short period of 20 ms. Then, in
the second step, we assign synaptic variables to the 1856 MSNs
in the following way: Given a mean synaptic activity St, we
assign synaptic variables to the 1856 MSNs by randomisation,
si(t) � St + 0.05 · Zi where Zi ~ N(0, 1) are uncorrelated normal
random variables, while we keep the other microscopic degrees
of freedom unchanged. Then, we numerically integrate the
coupled Hodgkin-Huxley equations for all neurons for a
(macroscopically) short time T, to derive the new network
microstate Ut+T � ΦT(L(St), I0). The time T is chosen such
that the other variables become enslaved to the mean
synaptic activity St. In fact, relatively short bursts on short
time scales establish such a slaving relation (Gear et al., 2005;
Spiliotis and Siettos, 2011). Constructing heuristically a lifting
operator which results in a microscopic initialisation closer to
the unknown attractive slow manifold leads to a faster
convergence to the macroscopic behaviour and smaller
numerical errors of the explicit equation-free analysis. As
already mentioned, an implicit equation-free analysis
(Marschler et al., 2014b; Sieber et al., 2018) could even
further minimise the numerical errors in the computed
bifurcation diagram.

Finally, we apply the restriction operator to the new network
microstate Ut+T, i.e., we compute the mean synaptic activity St+T
which then defines the macroscopic evolution law St+T � FT(St, I0).
Here we have explicitly noted a constant network activation current
Iapp � I0 as a static parameter of our model (see Eq. 1). Figure 2
shows a graphical representation of the numerical procedure.

Since the macroscopic variable St changes little on the time scale
T we can approximate the time discrete dynamics by a time
continuous first order differential equation

S′ t( ) � f S t( ), I0( ) ≈ FT St, I0( ) − St
T

. (12)

where the right hand side FT(St, I0) in the difference quotient is
determined by our equation free approach.

4.2 Data-driven system identification,
stability and bifurcation analysis

Using Eq. 12 we can construct the right hand side f of the
macroscopic equation of motion. We perform independent parallel
computations by covering the phase space with an equidistant mesh
of initial values for the macroscopic variable, and the I0 axis with an
equidistant lattice of parameter values. We thus obtain the right
hand side f(S, I0) with fairly high numerical resolution. The results
for f in dependence on S are depicted in Figure 3, for I0 � 8, 10, 12,
12.8, 13, and I0 � 13.2. Despite a quite noisy neuron dynamics we
obtain a rather smooth result for f which shows little fluctuations.
The computation of f has been based on macroscopic averages over
at about 2000 neurons and an ensemble average of 20 realisations,
resulting in statistical errors of about 0.5%, in line with the data
shown in Figure 3. The fixed points of the macroscopic dynamics are
given by the zeros of the function f, while the sign of the slope at the
zero determines the stability of the fixed point. The fixed point is
stable for negative slope, while the fixed point is unstable for positive
slope. Here stability refers to stability with respect to the
macroscopic dynamics which is solely governed by the mean
synaptic activity S(t). While the internal microscopic dynamics is

FIGURE 2
Equation-free construction of the timestepper: Start with the macroscopic variable St , the mean synaptic activity. Transform this value into a
consistent microscopic network state Ut ∈ Rn through a lifting operator. We simulate the network equations for the all neurons and for a short
macroscopic time T to derive the new network microstate Ut+T . Finally, average the synaptic variables si to obtain the macroscopic variable St+T .
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still highly complex, at the macroscopic level the motion is captured
by the single scalar quantity S(t). With our equation free approach
we have been able to determine the right hand side of the
macroscopic equation of motion (22), see Figure 3. Thus, the
zeros of this right hand side and the sign of the slope allow us to
determine the location and the macroscopic linear stability of the
macroscopic stationary state.

We observe that the shape of right hand side f is smooth and the
graph shifts down, as the value of parameter I0 increases. As a
consequence the number of macroscopic fixed points changes. For
I0 � 8 we obtain one stable fixed point. As the value of I0 increases,
e.g., for I0 � 10, we see two fixed points, an unstable one at small
values S* � 0.09 and a second stable one at S* � 0.73 with high
network activation. For increasing values of the parameter I0 these
two fixed points still persist with stability properties unchanged, but at
a critical value close to I0 � 13.2 the two fixed points collide and
disappear in a saddle-node bifurcation. We can condense this
information in a bifurcation diagram, see Figure 4. There are two
branches of steady state solutions. The high neural activation solutions
are stable (solid red line in Figure 4) while the low activation branch is
unstable (dashed blue line in Figure 4). These two branches bifurcate
in a saddle node bifurcation at ICRIT � 13.19. In general, an increased
intensity of the current I0 changes the rhythmicity and the density of

activation. In the pathological case which corresponds to high
activation, neurons exhibit spiking activity with variable periods
(i.e., non-constant period between two spikes), and some neurons
appear to show brief intervals of synchronised activity, preceded and
followed by non-synchronous firing. Such synchrony could either be
due to transient common activation via network inputs (e.g.,
inhibition of fast-spiking neurons), or it could actually occur by
chance with this tonic firing at a relatively high frequency. The
equation-free method remarkably reveals also an unstable low
neural activation branch. Such an unstable state is not accessible
by direct numerical simulations of the network model, it is a genuine
outcome of the equation free approach. In terms of the microscopic
dynamics such a state corresponds to an invariant saddle in the full
phase space containing all microscopic degrees of freedom. For a
potential neurophysiological interpretation of this state we recall that
during the pathological case of obsessive-compulsive disorder, there is
a hyperactivity of the striatum network. Thus, the stable high-
activation branch of the solution can be seen as a pathological
condition. The unstable low activation state that cannot be reached
in direct simulations is nevertheless accessible by control techniques,
such as closed loop deep brain stimulations. When successful,
stabilising this unstable low activation state will produce a
therapeutic effect on the striatum network hyperactivity.

FIGURE 3
Equation-free system identification: For different values of parameter I0, we construct numerically the right hand side f in dependence on themean
synaptic activity S. Red dots indicate the zeros of f , i.e., the fixed point solutions of themacroscopic dynamics. Clearly, the right hand side shows one fixed
point at I0 � 8, two fixed points in the range I0 ∈ [10, 13.2] and finally, no fixed point for I0 > 13.2.
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5 Discussion

The recently invented field of network physiology aims at
inferring dynamical interactions in complex biological or medical
systems from observed data. With its inherently interdisciplinary
intention this field aims to understand, based on data analysis,
modelling approaches, or clinical practice, how diverse biological or
physiological sub-systems interact from the cellular microscopic to
the phenomenological macroscopic level, to explain diverse
physiological phenomena, such as healthy or unhealthy states
(see, e.g., (Schöll, 2022) for a recent editorial). Looking at the
emerging field of network physiology from an equation free
perspective has the potential to add an additional facet to this
area of research. An equation free approach aims at uncovering
the complex dynamical behaviour at a macroscopic level without the
need to reconstruct the complex underlying microscopic dynamical
network, thus addressing a main goal of network physiology from
the outset. We have showcased a computational framework to
analyse biophysical neuronal network models, and we applied the
method to the striatum area. Based on a realistic mathematical
model for the microscopic dynamics of the striatum we have been
able to detect relevant macrostates and their dynamical features
using an equation-free approach. One major contribution of this
research work is that the method bridges the different levels of
spatio-temporal scales, the microscopic ones where the physics of
neurons is known and the macroscopic ones where the analysis is
performed. The activity of neurons and the individual synaptic
activity is given using the Hodgkin-Huxley formalism, which
constitutes the microscopic description of the model. The
network connects these neurons and produces a macroscopic or
emergent behaviour with different spatio-temporal properties.
Importantly, our equation-free approach allows us to study this
emergent behaviour in detail, i.e., to perform stability and

bifurcation analysis. The synaptic activity shows steady
behaviour, which corresponds to the high network activity, the
upper branch of solution in Figure 4, while the corresponding
spectrum of the mean membrane activity shows a characteristic
peak at the gamma band (see as well Figure 1D). Several other
studies also analyse the macroscopic network activity or the
emergent network behaviour (Fesce, 2024; Kromer and Tass,
2024; Venkadesh et al., 2024). Additionally, in (Kromer and Tass,
2024), a detailed study of mean synaptic activity, including synaptic
plasticity, is performed. The proposed equation-free approach can
be applied to these works containing multiple spatio-temporal
scales. For example, by studying synaptic plasticity, one can
extract critical values of synaptic strength, which contribute to
phase transition in the macroscopic network dynamics
(Marschler et al., 2014a).

Our realistic microscopic model was based on an FDA-
approved state-of-the-art human atlas (Iacono et al., 2015)
extracting coordinates for the striatal neurons, on modified
Hodgkin-Huxley equations for medium spiny neurons (MSN)
and fast-spiking neurons (FSN) (Hodgkin and Huxley, 1952;
Chartove et al., 2020), and on complex network structures for
neuronal connectivity (Netoff et al., 2004; Bassett and Bullmore,
2006; Bassett and Bullmore, 2017; de Santos-Sierra et al., 2014;
Berman et al., 2016; She et al., 2016; Fang et al., 2017). Depending
on the parameters, the network model produces patterns which
can be associated with healthy or pathological conditions, reflected
by low or high synaptic activity. In clinical studies of obsessive-
compulsive disorder (Maltby et al., 2005; Marsh et al., 2014) a
dysfunctional hyperactivity of the frontal-striatal circuits is
observed similarly to the high activation state we obtain in our
model for increasing the intensity of the cortico-striatal current I0.

Within an equation-free approach we were able to investigate
the crucial macroscopic behaviour for the mean synaptic activity.

FIGURE 4
Macroscopic system analysis of the striatum network: Bifurcation diagram as obtained from the equation-free analysis of the striatum network. The
network activation current Iapp � I0 is used as the bifurcation parameter, and the mean synaptic activity of MSNs acts as macroscopic variable. Solid line
(red) are stable fixed points, dashed line (blue) are unstable fixed points. The two branches disappear in a saddle-node bifurcation at ICRIT � 13.19. The
insets show temporal simulations of mean synaptic activity S, for I0 � 8, 10, 12. Simulations converge to the upper stable branch of the
bifurcation diagram.
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Such an analysis not just reproduces the dynamically stable high
activity branch, but also shows an unstable low activity state which is
inaccessible by direct simulations of the model. Such unstable
dynamical states could be promising targets for treating
pathological conditions.

Deep brain stimulation (DBS) of the striatum has evolved as a
promising therapy for patients with severe and resistant forms of
obsessive compulsive disorders (OCD) and mental impairments
(Rodriguez-Romaguera et al., 2012; Blomstedt et al., 2013; Widge
et al., 2019; Wu et al., 2021). While there exist different

computational approaches modelling DBS for OCD, see for
instance (Szalisznyó and Silverstein, 2021), we can utilise our
realistic large scale dynamical system to obtain insights about
pathological neural activity during OCD. Since our model has
been based on the realistic spatial structures of the striatum each
neuron, labelled by an index i, comes with its corresponding spatial
position, given by a vector �xi. The impact of the current applied in
DBS and acting on the i-th neuron depends on the distance between
the position of the electrode in real space, denoted by �xE, and the
position of the i-th neuron. It is modelled by

FIGURE 5
Deep brain stimulation (DBS) on the striatum model: Simulation of the network model with the current Eq. 13 added to the network equations.

FIGURE 6
Closed loop control scheme for DBS on the striatum network: Application of DBS with constant amplitude along the line of Eq. 13 for t< 150 ms
(red). Close loop control scheme for DBS, using Eq. 14, adjusting the DBS amplitude by linear proportional feedback for t> 150 ms. (A) Raster plot for
n � 500 randomly chosen neurons. Black dots represent activated neurons (i.e., time dependent action potentials passing through −15 mV towards
positive values. (B) The mean synaptic activity for DBS without control (red), and DBS with linear proportional feedback (blue).
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IDBS � ADBS exp −‖ �xi − �xE‖2/σ2( )H sin ωDBSt( )( )
· 1 −H sin ωDBSt + δDBS( )( )( (13)

This quantity enters the equation for the i-th neuron in an additive
way, Iapp � I0 + IDBS, see Eq. 1. The impact of DBS decreases super-
exponentially with respect to the distance from the electrode. Far
from the electrode, the intensity current is almost zero, having no
impact on the neuron action, and different electrode positions result
in different network activations. Here ωDBS � 2π/TDBS denotes the
angular frequency, TDBS the period, and the phase shift δDBS the
duration of the pulse, with H abbreviating the Heaviside function
(H(x) � 1, if x> 0, else H(x) � 0). The function H takes into
account that DBS is not applied as a plain harmonic, but in
terms of periodic pulses. The crucial amplitude and frequency in
DBS is determined by the two parameters ADBS and ωDBS,
respectively. Figure 5 shows the application of DBS at
�xE � (−9, 9, 5), with the DBS amplitude and frequency ADBS �
200 and ωDBS � 2π/130. We observe that DBS induces strong
synchronisation in the neural activity of striatum.

Thanks to the equation-free framework we are now able to
design a macroscopic proportional feedback controller for DBS. For
instance, for I0 � 10, the equation-free analysis showed the existence
of one unstable fixed point at mean synaptic activity S* � 0.08. We
use the amplitude of DBS, that means ADBS, as control variable
which is adjusted due to linear proportional feedback

dADBS

dt
� −Kp S − S*( ) (14)

where Kp denotes the gain of the control. By choosing the gain
appropriately we aim at driving the system towards the low
activation state. Figure 6 shows the application of DBS at the
point �xE � (−9, 9, 5) and for frequency 200Hz. We observe that
after switching on the feedback control (t> 150ms) the macroscopic
activity gets closer to the healthy low activation state, see Figure 6B,
and that synchronisation is destroyed in favour of a desynchronised
state, see Figure 6A. In general, explaining the mechanism of DBS
and how it acts in the evolved brain network is still a mystery. For
example, in Parkinson’s disease, it is unclear whether DBS
suppresses or enhances the neural activity of the targeted areas
(Rubin and Terman, 2004; Montgomery and Gale, 2008). In
Figure 6, we present two stages of DBS: the first 150 ms without
a control scheme and the second part after 150 ms. While DBS
without control induces synchronised activity of neurons such a
synchronised state is suppressed when control is turned on. In that
respect the closed-loop DBS results in realistic patterns closer to
healthy conditions.

There are still considerable unknowns for a successful
application of DBS such as the anatomical targets of stimulation,
optimal stimulation parameters like amplitude and frequency of
stimulation, as well as long-term effects of stimulation. In obsessive
compulsive disorders hyperactive frontal-striatal activity has been

reported (Maltby et al., 2005; Marsh et al., 2014). We conjecture that
this hyperactivity is qualitatively similar to the stable upper branch
solution as depicted in the bifurcation diagram Figure 4. Since our
network model allows for properly modelling the network activation
current a corresponding equation-free analysis of the model may
then provide some answers to the open questions raised above. Our
successful simple showcase provides evidence that such an
ambitious program may succeed.
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