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In this study we focus on two subnetworks common in the circuitry of swim
central pattern generators (CPGs) in the sea slugs, Melibe leonina and
Dendronotus iris and show that they are independently capable of stably
producing emergent network bursting. This observation raises the question of
whether the coordination of redundant bursting mechanisms plays a role in the
generation of rhythm and its regulation in the given swim CPGs. To address this
question, we investigate two pairwise rhythm-generating networks and examine
the properties of their fundamental components: cellular and synaptic, which are
crucial for proper network assembly and its stable function. We perform a slow-
fast decomposition analysis of cellular dynamics and highlight its significant
bifurcations occurring in isolated and coupled neurons. A novel model for
slow synapses with high filtering efficiency and temporal delay is also
introduced and examined. Our findings demonstrate the existence of two
modes of oscillation in bicellular rhythm-generating networks with network
hysteresis: i) a half-center oscillator and ii) an excitatory-inhibitory pair. These
2-cell networks offer potential as common building blocks combined in modular
organization of larger neural circuits preserving robust network hysteresis.
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1 Introduction

Animal locomotion is facilitated and determined by small neural circuits, known as
central pattern generators (CPGs) (Selverston, 1985; Marder and Calabrese, 1996; Katz
et al., 2007; Calabrese et al., 2016; Katz, 2016; Marder et al., 2022) that can autonomously
produce rhythmic patterns of neural activity. Despite their simplicity, the coordination and
control of these CPGs can exhibit remarkable complexity. Studying animal locomotion
offers a valuable opportunity to comprehend the intricate relationships between network
components that lead to adaptive behavior. The current paper is focused on our recent
collaborative efforts to model stable swim rhythmic patter of two species of the sea slugs
Melibe leonina (Watson et al., 2002; Watson and Newcomb, 2002; Thompson and Watson,
2005) and Dendronotus iris (Sakurai et al., 2011). The CPG circuits underlying their
behaviors have been studied extensively in both species (Newcomb et al., 2012; Sakurai et al.,
2014; Sakurai and Katz, 2015; Sakurai and Katz, 2016). All neurons in the CPGs have been
identified, and their synaptic connections have been determined with careful pairwise
electrophysiological recordings (Sakurai and Katz, 2017; Sakurai and Katz, 2019; Sakurai
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and Katz, 2022). The swim CPGs in these sea slugs do not include
endogenously bursting pacemakers. Hence, each circuit should be
viewed as a whole rather than by looking at specific pacemaker cells.
The working hypothesis is that the given CPG circuits function at
controlled oscillatory states emerge largely through the synergetic
interactions among the coupled components with similar dynamic
and nonlinear properties. This is the main driver and the starting
point of our computational study, which is focused on identifying
what cellular and synaptic qualities can warrant robust generation of
slow oscillations in two specific bicellular blocks, which happened to
be symmetrically built into the swim CPG circuits of the given sea
slugs. Despite the absence of autonomous bursting in individual
cells, the circuit can be decomposed into sub-networks that possess
the capacity to exhibit rhythmic bursting. Our modeling efforts have
led us to investigate how the coordination of these fundamental
network oscillators results in flexible and adaptive rhythmic
patterns. The purpose of this paper is to highlight the properties
of two such oscillators, each with distinct mechanisms for generating
emergent bursting. These models have been directly derived from
our collaborative modeling and experimental research on Melibe
and Dendronotus swim CPGs.

The CPGs in animal locomotion can be broadly categorized
into two categories: those driven by pacemaking cells, (Selverston
et al., 1976; Marder, 1994; Stein et al., 1999; Prinz et al., 2004;
Goaillard et al., 2009; Selverston, 2013), and those that generate
rhythmic patterns through network-level mechanisms as in the
case of the given two sea slugs. This study focuses on the latter
type of CPGs, where slow oscillations emerge from the reciprocal
interaction of multiple cells in the network, rather than from the
oscillatory activity produced by a single pacemaking cell. A
challenge arises, as the distinction between bursting and non-
bursting cells becomes blurred under the influence of synaptic
inputs (Alaçam and Shilnikov, 2015). To address this critical
issue, we ensure that hysteresis (which is a prerequisite for
endogenous bursting in cell models) between the tonic spiking
manifold and the stable quiescent manifold is eliminated,
regardless of synaptic drive. In the context of this paper the
term network hysteresis refers to a scenario when the overlap
emerges temporarily a post-synaptic interneuron due to one-way
inhibition caused by a pre-synaptic one. The literature on small
neural networks has documented several mechanisms underlying
bursting behavior, including post-inhibitory rebound (PIR),
escape, and release (Perkel and Mulloney, 1974; Ermentrout
and Kopell, 1986; Wang and Rinzel, 1992; Skinner et al., 1994;
Baer et al., 1995; Sharp et al., 1996; Skinner et al., 1999; Kopell
and Ermentrout, 2002; Angstadt et al., 2005; Matveev et al., 2007;
Shilnikov et al., 2008; Daun et al., 2009; Szucs et al., 2009; Jalil
et al., 2010; Shilnikov, 2012b; Nagornov et al., 2016). PIR occurs
when a neuron is rapidly depolarized after being freed from
inhibition, resulting in a spike train. Escape occurs when a
hyperpolarized neuron begins firing, followed by inhibition that
terminates its spike train. Release occurs when a spike train ends,
removing inhibition and allowing a previously silent neuron to burst.
The potential for all threemechanisms exist in the cells which constitute
the CPGs in Dendronotus and melibe (Sakurai and Katz, 2022).
However, these mechanisms do not fully explain the oscillations
observed in the swim CPGs of Melibe and Dendronotus, as the
circuits may contain a redundancy of all three mechanisms.

In this study we examine two well-known types of neural circuits
composed of two cells, which will be incorporated into complete
CPG models in future research. The first circuit is a variation of a
half-center oscillator (HCO), which was initially described in the
seminal study by T.G. Brown (Brown, 1911). This HCO consists of
two non-bursting neurons that are reciprocally connected by
inhibitory synapses, resulting in alternating bursting patterns.
Unlike HCOs that rely on hysteresis pre-existing in individual
models, the HCO in this study comprises of non-spiking cells,
providing flexibility and adaptability. Our findings demonstrate
that the emergent bursting mechanism is the same, regardless of
whether the cells are tonic spikers or quiescent.

The second pair-wise network under examination is an
asymmetric circuit composed of an excitatory and an inhibitory
neuron. Excitatory/inhibitory (E/I) oscillatory networks have been
previously explored, particularly as population models (Wilson and
Cowan, 1972). However, mollusk CPG networks consist of a limited
number of cells and hence such population models are well suited
for their in-detail investigation. In this study, we present a 2-cell E/I
network modeled using the Hodgkin-Huxley formalism. Previous
research on neurological systems featuring oscillations and E/I
interactions include neural mass models of gamma rhythm
generation (Börgers et al., 2005; Tiesinga, 2009; Buzsáki and
Wang, 2012), spindle oscillations (Golomb et al., 1994), working
memory (Brunel and Wang, 2001), and respiratory rhythms in the
pre-Bötzinger complex (Rubin, 2006), where the concept of
emergent bursting was investigated in such large ensembles.

In this study, we present models for two 2-cell circuits: the half-
center oscillator (HCO) and excitatory/inhibitory (E/I) modules that
are designed to exhibit robust oscillation mechanisms, devoid of
latent bursting. These modules serve as building blocks for the larger
swim CPG models in the sea slugs Melibe leonina and Dendronotus
iris. The schematic depiction of the swim CPG circuitry in these sea
slugs, as schematically shown in Figure 1, illustrates our assertion
that the HCO and E/I-module components are designed to promote
and sustain stable slow rhythms at the network level, that are
resilient to changes in cellular and synaptic parameters, as well as
intrinsic and external perturbations.

2 Methods and models

2.1 Description of the swim interneuron
(SiN) model

Our objective in choosing a neuron model was its biological
plausibility, even though cellular currents in swim CPG
interneurons of the sea slugs Melibe leonina and Dendronotus iris
have not been identified or specified. As our starting point for a
conductance-based model to describe the swim CPG interneurons,
we picked the original Plant model (Plant and Kim, 1975; Plant and
Kim, 1976; Plant, 1981) of the endogenously bursting cell R15 in the
sea slug Aplysia californica (Rittenhouse and Price, 1985; Levitan
and Levitan, 1988) mainly because it was a well characterized model
with variable spike frequency (Rinzel, 1985; Rinzel, 1987). An
accurate mathematical analysis of the Plant model was initially
done in Refs (Rinzel et al., 1986; Rinzel and Lee, 1987). using
slow-fast dissection, while a variety of dynamical properties of
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the R15-neuron models were examined later in following
publications, see Refs (Canavier et al., 1991; Bertran, 1993;
Canavier et al., 1993; Butera et al., 1995; Butera, 1998; Sieling
and Butera, 2011; Alaçam and Shilnikov, 2015) and
references therein.

Both the model itself and the method of analysis used throughout
this paper differ from the original Plant burster. We emphasize that the
swim interneurons in both sea slug CPGs have not been observed to
burst endogenously (Sakurai et al., 2011; Newcomb et al., 2012; Sakurai
et al., 2014; Sakurai and Katz, 2015; Sakurai and Katz, 2016; Sakurai and
Katz, 2017; Sakurai and Katz, 2019; Sakurai and Katz, 2022). Moreover,
these interneurons are not latent bursters either, as they do not burst
even when perturbed with constant external currents (Alaçam and
Shilnikov, 2015). Accurate neurophysiological experiments on the swim
CPGs demonstrated that their interneurons are either quiescent at most
times, or become tonic-spiking during swim episodes when receiving
excitatory drives from sensory cells. This strongly suggests that the slow
bursting (of period ranging from 2 through 14 s, resp., in juvenile and
grown animals) observed in the experimental studies on the swimCPGs
in the sea slugs is indeed a network-level dynamical phenomenon
emerging due to nonlinear interactions between the interneurons
orchestrated by complex coordination of fast and slow currents,
including synaptic ones. In our modeling efforts, it is important to
address the observed activity of the CPG interneurons in normal
function and under perturbation, as well as describe the realistic
timescales of various synapses in order to explore the network-level
rhythmogenesis in the given CPG-circuits.

Following Refs (Shilnikov and Cymbalyuk, 2004; Shilnikov,
2012a; Alaçam and Shilnikov, 2015). we introduce two additional
parameters, ΔCa and Δx, to manipulate and eliminate bursting from
the swim interneuron (SiN) model. We also add an h-current to
prevent excessive hyperpolarization. We use an averaging approach
for fast-slow decomposition as opposed to the original work. The
reader will find more details on the averaging approach, including
the notion of average nullclines to locate a periodic orbit in the phase

space and corresponding to tonic-spiking activity in the proposed
SiB model in Appendix I in the Supplementary Material below.

The original Plant model includes the following fast currents: the
inward sodium and calcium (II), the outward potassium (IK),
necessary for the spike generation, a depolarizing h-current (Ih),
along with the generic ohmic leak (Ileak) current. The gradual spike
frequency adaptation and post-inhibitory rebound in the model are
due to the slow dynamics of two currents: the TTX-resistant inward
sodium and calcium current (IT) and outward calcium-sensitive
potassium current (IKCa).

CmV′ � −II − IK − Ileak − Ih − IT − IKCa, (1)
h′ � h∞ V( ) − h

τh V( ) , n′ � n∞ V( ) − n

τn V( ) , (2)

y′ � 1
2

1
1 + e10 V−50( ) − y[ ]/ 7.1 + 10.4

1 + e V+68( )/2.2[ ] (3)

with the membrane capacitance Cm = 1. Here the dynamic variables
are the membrane voltage V(t), the gating probabilities h(t), n(t),
and y(t). This ODE system describing the R15 Plant burster includes
a fast subsystem to generate repetitive tonic-spiking or quiescent
activity, depending on the level of drive from its slow subsystem.
This spike-generating machinery of the fast subsystem consists of
the four aforementioned currents, which are governed by the
following equations:

II � gI hm
3
∞ V( ) V − EI( ), (4)

IK � gK n4 V − EK( ), (5)
Ih � gh

y V − Eh( )
1 + e− V−63( )/7.8( )3, (6)

Ileak � gL V − EL( ) (7)
Here, the activation of the inward sodium current is assumed
instantaneous and therefore described by an analytical
(sigmoidal) equation m3∞(V), rather than a corresponding fast

FIGURE 1
The illustration of the symmetric, pair-wise organization of the swimming central pattern generators (CPGs) in the sea slug species:Melibe leonina in
panel (A), andDendronotus iris in panel (B). The assembly of these CPGs revolves around two fundamental motifs–a half-center oscillator (HCO)made of
two reciprocally inhibitory neurons, and an excitatory-inhibitory (E/I) module. These subnetworks work in coordination to establish oscillatory motor
circuits. Components belonging to the HCO are represented with the same color, whereas the E/I components are arranged in vertical columns.
Symbols are used to depict synaptic activity, with circles symbolizing inhibitory and triangles representing excitatory action, both on the postsynaptic side
of the synapse.
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ODE. The third current describes a depolarizing h-current that
activates as the voltage drops down below −50mV, see Eq. 3 above.1

Recurrent alternation between fast spike trains and slow
quiescent episodes in the endogenous Plant burster is reciprocally
modulated by the slow inward TTX-resistant Na+-Ca2+ current and
slow outward Ca2+ activated K+ given, respectively, by

IT � gTx V − EI( ), (8)
IKCa � gKCa

Ca[ ]
0.5 + Ca[ ] V − EK( ) (9)

with two dynamical variables: the calcium concentration [Ca(t)] and
a voltage gated probability x(t), which are governed by following
coupled slow system:

x′ � 1
τx

1
1 + e−0.15 V+50−Δx( ) − x[ ], τx ≫ 1, (10)

Ca[ ]′ � ρ Kcx ECa − V + ΔCa( ) − Ca[ ]( ), ρ≪ 1, (11)
where Δx and ΔCa are bifurcation parameters introduced to control
slow dynamics of the SiN-model; we will discuss their action below.
The reader can find the detailed description of biophysical
parameters in Appendix II in the Supplementary Material below.

The time scales of the state variables: V(t), probabilities h(t), n(t),
y(t) and x(t) and calcium concentration [Ca](t) that gate the indicated
cellular currents in the model are presented in Figure 2. Note that
depending on the chosen value of the time constant τx, the average
rate of change of the gating x-variable can be altered: it can be visually
as fast (at τx = 100 s−1) as that of the fast subsystem, or can be slowed
down to match the rate of change of the [Ca]-variable at larger values
such as τx = 273 s−1 also used in this study. Nonetheless, the x-
dynamics is included in the slow subsystem for a few reasons. First, for
the sake of historical continuity, x(t) was treated as a slow variable in
the original slow-fast dissection analysis of thismodel proposed in Ref.
(Rinzel and Lee, 1987). Second, the x-dynamics does not contribute
(but regulate) to the spike generation, which is solely due to the fast
sodium-calcium and potassium currents. Instead its reciprocal
nonlinear interaction with the [Ca]-dynamics is the key factor that
provides the Plantmodel with a slow hysteresis necessary for the onset
of endogenous bursting composed of alternating fast spike trains and
quiescent episodes.

The Δx-parameter represents a deviation from the voltage value
−50mV at which the TTX-resistant Na+-Ca2+ current is half-
activated, see Eq. 10 and the corresponding activating function
x∞(V) � 1/(1 + e−0.15(V+50−Δx)) � 1/2. The second parameter ΔCa

introduced in Eq. 11 shifts the calcium reversal potential from a
hypothetically high value +140mV. This voltage is too high to be
measured experimentally, so changing the reversal potential is
biologically plausible.

The bifurcation diagram in Figure 3 shows the different regions
of activity in the SiN-model based on the parameter pairs (ΔCa, Δx).
The diagram is divided into three main regions: tonic-spiking,
bursting, and hyperpolarized quiescent. The borderlines between
these regions highlight the parameter dependence of the neural
activity in the model. There are two main transition routes from one
region to another: from tonic-spiking to bursting and from
quiescence to bursting. The first route begins with a saddle-
saddle bifurcation (Shilnikov, 1963; Shilnikov et al., 1998;
Afraimovich et al., 2014; Afraimovich et al., 2014; Afraimovich
et al., 2017; Gonchenko et al., 2022) and is followed by a narrow
region of transitional chaos. The second route passes through the
Andronov-Hopf (AH) bifurcation curve and has a codimension-two
Bautin (Andronov and Leontovich, 1937; Andronov et al., 1938;
Andronov et al., 1967) point (BP)2 on it. In-depth analysis of the
origin and nature of chaos near these transition will be given in our
forthcoming paper soon to be submitted. On the left side of this
point, the bifurcation is sub-critical, leading to chaotic bursting
within a transition layer. On the right side, it is super-critical, giving

FIGURE 2
Time scales of the fast variables of the SiN-model: membrane
voltage V, and gating probabilities h, n, and y (within the [0–1] range)
for the inward Na+ sodium and Ca2+ calcium, K+ potassium, and h-
currents, resp., compared against the slow variables, x and [Ca2+],
introduced in both calcium-coupled currents.

1 The Plant model generates bursts with deeply hyperpolarized quiescent

sags, see Figure 4B. To flatten/rectify those sags, the h-current was

additionally introduced in the interneuron model, and we would like to

thank to D. Terman for the suggestion. This current also prevents

unrealistic levels of hyperpolarization in response to negative external

currents applied to the neuron model. The use of h-current, though

practical, does not appear to play a critical role in the swim CPG models.

2 N.N. Bautin examined a structure of such a point where the criticality of

this bifurcation alters from sub to super, and found that its unfolding

includes an additional curve corresponding to a saddle-node bifurcation

of periodic orbits that originates off the codimension-2 point (BP). Note

that the occurrence of such a point in various neuronal models is a

precursor of a possible transition to bursting through a torus

bifurcation (Ju et al., 2018).
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rise to small sub-threshold oscillations that eventually morph into
large bursting. The SiN-model is only capable of demonstrating
tonic-spiking activity or quiescence below the level Δx = −3.5mV,
which is therefore the region of interest for network oscillations
where cells do not burst endogenously. The proposed SiN-model
was calibrated so that it can only show tonic-spiking or quiescent
activity below Δx = −3.5mV. This particular range constitutes the
region of interest with regards to network oscillations as it is
characterized by the absence of endogenous bursting in the
individual interneurons.

2.2 Bifurcation analysis with the Δx and ΔCa-
parameters

In the transition between tonic-spiking and bursting activity, a
series of nonlocal bifurcations occur as the ΔCa-parameter is
increased (at some fixed Δx = 0). This process includes a period-
doubling cascade that leads to chaotic dynamics within a narrow
region in the parameter plane. In this region, the round periodic
orbits for tonic-spiking activity change into two time-scale bursting
orbits consisting of fast spike trains and slow quiescent phases. This
region is adjacent to a local saddle-saddle bifurcation curve (black
line). Unlike a saddle-node bifurcation that results in the merging
and vanishing of saddle and stable equilibrium states, a saddle-
saddle bifurcation results in the emergence of two saddles of
opposite topological types nearby in 3D and higher dimensional
systems (Shilnikov et al., 1998; Afraimovich et al., 2014; Afraimovich
et al., 2017).

In the swim interneuron model, the transition between
hyperpolarized quiescence and bursting as the Δx-parameter is
increased (for fixed ΔCa) involves a series of consecutive
bifurcations. A local AH bifurcation occurs through which a

stable equilibrium state representing the neural quiescence
becomes unstable. The criticality of this bifurcation can be sub-
or super-critical, and is determined by the sign, positive or negative,
of the Lyapunov coefficient at the bifurcation.

A bottom-up route to bursting on the right from the BP-point
where the AH bifurcation is a supercritical one, results in the gradual
onset of stable sub-threshold oscillations that eventually transform
into fully developed bursting at largerΔx-values. On the left from the
BP, the route to bursting is more complicated and can result in
complex bursting oscillations, chaotic sub-threshold oscillations,
unpredictably varying trains of spikes, or a combination of these.
Additionally, bistability can occur in the SiN-model as a result of
bursting co-existing with a stable quiescent state. A detailed
bifurcation analysis of the transitions between neural activity
types will be carried out in a future study.

2.3 Phase space dissection of the swim
interneuron burster

The following four curves in the ([Ca], x)-phase plane serve to
interpret the dynamics of the swim interneuron model and its
transformations. 1) The x-nullcline represents the set of points
where x does not change. 2) The [Ca]-nullcline is the set of
points where the slow variable [Ca] is unchanged. 3) The average
〈x〉 nullcline represents the set of points where x does not change
when averaged over the spiking periodic orbit. 4) The saddle node
on the invariant circle (SNIC) curve3 is a bifurcation curve that
illustrates the boundary between spiking and quiescence in the fast
subsystem. Understanding the interplay between these curves is
crucial in understanding the overall dynamics of the SiN-model.

The illustration in Figure 4 provides a visual representation of
the dynamics in the swim interneuron burster. Figure 4A shows a 3D
subspace ([Ca], n, V) and depicts a pair of critical manifolds: a 2D
cylinder-shaped surface Mpo consisting of periodic orbits and a 1D
multi-folded space curve Meq made up of equilibria. Figure 4B
depicts the slow ([Ca], x)-phase plane and shows the interplay
between the x-nullcline, [Ca]-nullcline, the average 〈x〉 nullcline,
and the SNIC-curve, which marks the transition between the active
and silent phases of the fast subsystem. The SNIC-curve separates
the oscillatory, tonic-spiking activity (above the SNIC-curve) from
the hyperpolarized quiescent phase (below the SNIC-curve). The
periodic orbits and equilibria are found through numerical
continuation in the fast subsystem, and the bursting periodic

FIGURE 3
The (ΔCa, Δx)-bifurcation diagram of the adapted SiN-model with
the three regions corresponding to tonic-spiking, bursting, and
quiescent activity.

3 SNIC (Saddle-Node-on-Invariant-Circle) stands for a homoclinic

bifurcation of a saddle-node periodic orbit of codimension-one, which

was first examined by Andronov and Leontovich (Andronov and

Leontovich, 1937; Andronov et al., 1938; Andronov et al., 1967) in a

plane, and further generalized by L.P. Shilnikov for the Rn-case in his

Ph.D. thesis, see Refs (Shilnikov, 1962; Shilnikov, 1963; Shilnikov et al.,

1998; Afraimovich et al., 2014; Afraimovich et al., 2017; Gonchenko et al.,

2022). and references therein. The feature of a SNIC bifurcation is that it

unfolds with the onset of either a stable periodic orbit of a long period

emerging from a homoclinic orbit to a saddle-node, or a stable

equilibrium.
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orbit is shown as a blue line on the surfaceMpo. The voltage trace of
this periodic orbit is displayed in Figure 4C.

The solid black curve labeled by 〈V〉 in Figure 4A and its
equivalent denoted by 〈x〉 in 4B represent the “center of gravity” of
the critical manifold Mpo. This manifold Mpo is comprised of
periodic orbits representing the tonic-spiking activity in the SiN-
model. The curve is found by averaging the fast coordinates, such as
Vpo(t) and xpo(t), of each periodic orbit over its period using
the formula:

〈V〉 � 1
T
∫

T

0
Vpo t( )dt and 〈x〉 � 1

T
∫

T

0
xpo t( )dt, (12)

This curve starts at the point where Mpo collapses into the Meq-
manifold and ends at the top fold on the 1D manifold, along which
the bent SNIC-curve passes.

The interplay between these nullclines determines the overall
behavior of the slow subsystem. The intersection of the x- and
[Ca]-nullclines is a fixed point of the slow subsystem,
representing an equilibrium solution, and its stability is

determined by the direction of the vector field at that point. If
the vector field points towards the fixed point, then it is stable,
otherwise it is unstable. Moreover, the x-nullcline also marks the
transition between the active and silent phases of the fast
subsystem as discussed previously, as it corresponds to the 1D
manifold Meq in the full phase space.

In the ([Ca], x)-plane, one can observe a bifurcation line
marking the transition between the active and silent phases of
the fast subsystem, called the saddle node on an invariant circle
(SNIC). The SNIC-curve indicates the threshold value of [Ca] and x
below which the fast subsystem is hyperpolarized and quiescent, and
above which it is tonic-spiking.

In summary, the position and stability of the fixed points, the
direction of the vector field, and the SNIC-curve all determine the
overall behavior of the slow subsystem in the ([Ca], x)-phase plane,
which in turn affects the overall dynamics of the swim
interneuron model.

The geometric analysis of the nullclines helps understand the
slow dynamics of the SiN-model. The intersection of the [Ca] and x-
nullclines in the ([Ca], x)-plane represents an equilibrium state of
the slow subsystem. Whether this state is stable or unstable depends
on the intersection of the [Ca]-nullcline with the stable (solid) or
unstable (dotted) branch of the x-nullcline. The tangency between
the nearly straight [Ca]-nullcline and the bending Σ-shaped x-
nullcline corresponds to a saddle-node or saddle-saddle
bifurcation of the equilibrium states in the model, as seen in the
bifurcation diagram. The transverse crossing of the [Ca]-nullcline
through a knee of the x-nullcline represents an AH bifurcation in the
slow subsystem of the SiN-model.

The behavior of the full model is determined by the geometric
configuration of the slow nullclines in the ([Ca], x)-plane. A stable
equilibrium in both slow and fast subspaces is required for attractor
behavior. Only stable sections of the slow-motion or critical
manifolds, tonic-spiking Meq and quiescent Mpo, can correspond
to observable spike generation and resting states in the SiN-model.
Therefore, there are three options to interpret types of neural activity
exhibited by the given model based on dynamics in its slow
compartment: i) a stable equilibrium state located below the
SNIC-curve in ([Ca], x)-plane is also a steady state in the whole
system and corresponds to hyperpolarized quiescence in the SiN-
model; ii) a stable equilibrium located above the SNIC-curve in the
([Ca], x)-plane is a stable periodic orbit in the phase space and
corresponds to tonic-spiking activity; or iii) any unstable, repelling
or saddle, equilibrium state located below the SNIC-curve
corresponds to a saddle one on the phase space of the SiN-
model, and is hence invisible in general, as we said above. This is
not the case in critical situations typically occurring at complex,
chaotic transitions between activity types where saddle orbits
become inflectional and determine bifurcation routes.
Furthermore, roles of saddles are imperative when the system
under consideration is bistable or multistable, as they determine
boundaries between basins of co-existing attractors, including
quiescent, tonic-spiking and/or various bursting ones (Shilnikov
and Cymbalyuk, 2004; Shilnikov et al., 2005a; Cymbalyuk and
Shilnikov, 2005; Shilnikov and Kolomiets, 2008; Shilnikov, 2012a;
Ju et al., 2018).

The geometric configuration based on the average 〈x〉 nullcline
connecting to the equilibrium nullcline x′ = 0 in the ([Ca], x)-phase

FIGURE 4
Phase subspace of the adapted SiN-model at specific parameter
values. Panel (A) shows the critical manifold Mpo made up of tonic-
spiking periodic orbits and the curve 〈V〉 representing the time
averages of fast oscillations. The blue trajectory, turning around
theMpo-surface and sliding along theMeq-curve, is a bursting periodic
orbit. Panel (B) shows the slow dynamics of the SiN-model in the ([Ca],
x)-subspace, with two stable overlapping branches of the average
nullcline 〈x〉 and the x-nullcline x′=0 representing the 〈V〉- and Meq

manifolds. Panel (C) displays the voltage trace of the bursting orbit
with alternating episodes of hyperpolarized quiescent transients and
fast spikes.
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plane is reminiscent of the single cubic nullcline found in a
relaxation oscillator and its biological interpretation–the
Fitzhugh–Nagumo neuron. The hysteresis in this construction,
marked by two overlapping branches, is a necessary condition for
oscillations in the Fitzhugh–Nagumo neuron, which would
correspond to endogenously bursting oscillations in the SiN-
model. However, this is not sufficient for oscillations. To ensure
oscillations the overlapping branches may not intersect with the
other nullcline. Figure 4B depicts such a configuration where the
nullcline [Ca]′ = 0 crosses the nullcline x′ = 0 throughout its unstable
branch. This results in the onset of a stable limit cycle (blue line) in
the ([Ca], x)-phase plane, which corresponds to a bursting periodic
orbit and shown in Panel A where the orbit turns around the tonic-
spiking manifold Mpo, slides onto the quiescent manifold Meq, and
back to Mpo and so forth to generate the voltage trace in Panel C of
the same figure.

2.4 Transitions due to intrinsic and external
parameters

External parameters are used to control the activity of the
neuron in an isolated environment. The constant applied current,
Iapp, allows for a direct control over the neuron’s voltage and changes
the voltage trajectory in the phase plane. The synaptic drive or
current, Isyn, represents the interaction between neurons and the
exchange of information through synaptic transmission. This
interaction can either excite or inhibit the neuron based on the
value of the reversal potential, Erev. The panels of Figure 5
demonstrate the overall effects of individual variations of four
control parameters Iapp, Δx, ΔCa, and gsyn on the geometric
organization and its rearrangements of the slow ([Ca], x)-
phase plane.

The bifurcation diagram in Figure 3 shows that as the intrinsic
parameter Δx is decreased, the SiN-model morphs from an
endogenous burster to a no-burster. This rearranges the ([Ca],
x)-phase plane, causing the overlapping of nullclines for periodic
orbits and equilibria to break down. This is shown in Figure 5C,
where a decrease in Δxmakes the nullcline x′ = 0 bend, leading to the
emergence of an upper stable branch below the SNIC-curve, and
shifts the Σ-shaped nullcline x′ = 0 to the right, eliminating the
overlap with 〈x〉. This suggests that at Δ = −4mV, the model
transitions directly from the tonic-spiking activity to the
hyperpolarized quiescent state as ΔCa is varied.

Figure 5D shows how variations in ΔCa affect the shape and
intersection of the [Ca]-nullcline and the x′ = 0 nullcline. As the
slope of the [Ca]-nullcline changes, it shifts its intersection with the
x′ = 0 nullcline. The figure highlights how these changes in the
nullclines result in different bifurcations as ΔCa is varied.

In Figure 5B, it can be seen that the application of positive Iapp
currents shifts the nullcline x′ = 0 to the right and bends the SNIC-
curve in the same direction, thus increasing the overall excitability of
the neuron. On the other hand, negative Iapp currents have the
opposite effect by decreasing the excitability of the neuron, shifting
the nullcline x′ = 0 to the left and further bending it. This results in a
shrinking of the oscillatory domain and a lower stable
hyperpolarized branch.

While the local effect of Isyn on the SNIC-curve is qualitatively
similar to the application of the constant current, the overall
outcome of the synaptic drive on slow dynamics is profoundly
different and significant. One can see from Panel E that increasing
the inhibitory current (with Erev = −70mV) shifts the nullcline x′ = 0
to the left, as well as straighten its shape and eliminates its upper
knee points. Figure 5F illustrates how the application of an
increasing excitatory current translates the location of the SNIC-
curve and reshapes the nullcline x′ = 0, eliminating hysteresis and
hence bursting activity.

There is a simple explanation for the different effects of Iapp and
Isyn. The latter term can be factored into two sub-terms: constant gsyn
Erev which can be treated as some constant current Iapp, positive or
negative, depending in the sign of Erev and a time-variable term −gsyn
V(t), which also becomes fixed at a voltage steady state, but its value
varies along the steady state nullcline x′ = 0. As we have seen above
that this term always makes the hysteresis shrink by a shear-like
transformation of the nullcline, thus overwhelming the opposite
effects induced by Iapp. We stress that the difference between
applications of the constant current Iapp and synaptic current Isyn
has profound implications for the interpretation of
electrophysiological experiments.

A careful analysis of Figure 5E reveals the absence of overlap
between the unstable (dotted) branch of the x nullcline and a given
value of the external current Iapp. This factor alone precludes the
possibility of latent bursting, as the presence of hysteresis exists, but
is not aligned with the tonic spiking manifold. Nevertheless, it is
advisable to incorporate an additional buffer when x is not much
faster than [Ca], as the jump in the trajectory is delayed after passing
the catastrophe at the knee point.

To illustrate the difference in the parameter regimes of the SiN-
model (see its bifurcation diagram in Figure 3), we choose ΔCa as a
bifurcation parameter and explore how its variations are correlated
with specific bifurcations and how they underlie the transitions
between neural activity types. One can see from Figure 6 that the
appearance and disappearance of the knee points in the nullcline
x′ = 0 and the corresponding changes in the slope of the [Ca]-
nullcline near the intersection point with the nullcline x′ = 0 are
directly linked to the bifurcations and the transitions in neural
activity patterns. As ΔCa increases, the knee points of the nullcline
x′ = 0 may disappear, leading to a change in the stability of the
adjacent equilibria, resulting in either the loss of tonic-spiking or the
appearance of new periodic orbits, or a combination of both. These
bifurcations are responsible for the re-arrangements of the phase-
plane, which is why the ([Ca], x)-phase plane must be monitored
carefully to understand the mechanisms of the transitions between
neural activity patterns.

We consider the case where the SiN-model exhibits tonic-
spiking activity as shown in Figure 6A1. Note from this panel
that after the trajectory crosses above the SNIC-curve, it begins
to zigzag (spike) and move towards the stable orbit located near the
nullcline [Ca]′ = 0 (represented by the grey line). As ΔCa increases
further, the nullcline [Ca]′ = 0 turns clockwise past the SNIC-curve.
To proceed with the analysis, we must consider two cases separately.

• Case 1: the average nullcline 〈x〉 connects to an unstable
branch of the nullcline x′ = 0. Then, tonic-spiking activity
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transforms into bursting activity as occurs in the original Plant
model with Δx = 0mV. This case is illustrated in Figure 6A2.

• Case 2: the average nullcline 〈x〉 connects to a stable branch of
the nullcline x′ = 0. Then tonic-spiking activity transitions to
the quiescent state directly as occurs at the level Δx = −4mV.
This case is illustrated in Figure 6B2.

Figures 6A1-A3 show how the ([Ca], x)-phase plane changes as
ΔCa is increased at Δx = 0mV, beginning with tonic-spiking activity.
The stable periodic orbit in the fast subsystem vanishes through the
SNIC bifurcation, resulting in a stable equilibrium state in the slow
subsystem. As ΔCa decreases further, the nullcline [Ca]′ = 0
intersects with the unstable section of the nullcline x′ = 0 and

FIGURE 5
Variations of the principal control parameters in the SiN-model lead to changes in the slow ([Ca], x) phase plane and result in different types of activity
in the voltage trace (A1). In Panel (A2), the blue line is the average nullcline 〈x〉 and the solid/dotted dark blue line is the stable/unstable branch of the
x-nullcline x′=0 representing the 〈V〉- andMeq manifolds, respectively. The grey line is the nullcline [Ca]′=0, and the red line is the SNIC bifurcation curve.
The background color shows the average low or high voltages in the plane. In Panel (B), the hysteresis in the slow dynamics is shown as the external
current Iext changes from −0.1 (red lines) to 0.05 (blue lines). Panel (C) shows the effect of decreasing the Δx parameter from 0 to −4 on the overlap of the
nullcline x′=0 and the average nullcline 〈x〉. In Panel (D), increasing ΔCa from −100 to 350 shifts the intersection of the nullclines [Ca]′=0 and x′=0 across
the SNIC curve and changes the type of activity in the voltage trace from tonic-spiking to quiescence or bursting. In Panels (E, F), changes in the maximal
conductance gsyn of inhibitory and excitatory currents result in rearrangements of the nullclines and the stability of the x-nullcline x′=0.
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the SiN-model starts bursting due to periodic alternations between
tonic-spiking and quiescence phases. When ΔCa decreases even
further, the intersection moves below the bottom knee point,
resulting in hyperpolarized quiescence. This transition occurs in
two stages: first, the bursting limit cycle shrinks and the neuron

exhibits small-amplitude subthreshold oscillations, then the limit
cycle collapses through a supercritical AH bifurcation near the knee.

Figures 6B1-B3 represent three parallel transition stages asΔCa is
increased at Δx = −1.4mV, before the Bautin point. The system starts
off as a tonic spiker as before, see Figure 6B1. As the intersection

FIGURE 6
The voltage traces of the slow ([Ca], x)-phase plane are shown superimposed with a white stream-plot. There are three different panels, each
showing the effects of different values of the parameters Δx and ΔCa. The top panels (A1–A3) show the intermediate bursting regime at Δx =0. Panel
A1 shows tonic-spiking activity at ΔCa =−60mV, with a latent hysteresis due to the overlap of the x-nullclines. Panel (A2) shows a burster configuration at
ΔCa =0mV. Panel (A3) shows a trajectory near the subcritical AH bifurcation with decaying subthreshold oscillations near the lower knee point of the
nullcline x′=0 at ΔCa =120mV. The middle panels (B1–B3) show transient chaos en route to bursting at Δx =−1.4mV. Panel (B1) shows tonic-spiking
activity at ΔCa =−60mV. Panel (B2) shows transient chaos for ΔCa =−32mV before a subcritical AH bifurcation. Panel (B3) shows a bursting trajectory at
ΔCa =40mV after the unstable limit cycle disappears. The bottom panels (C1–C3) show that there is no occurrence of bursting for Δx =−4 where the SiN-
model transitions from tonic-spiking (Panel C1) at ΔCa =−100mV directly to the quiescent state (Panel C2) at ΔCa =0mV and finally to subthreshold
oscillations (PanelC3) at ΔCa =105mV. The limit cycle emerges and collapses sequentially through two supercritical AH bifurcations near the high and low
knee points, respectively, on the nullcline x′=0.
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between the two slow nullclines reaches the SNIC-curve, the system
undergoes a subcritical AH bifurcation creating a stable equilibrium
bounded by an unstable limit cycle (Figure 6B2). On the exterior of
the limit cycle, there is transient bursting. As ΔCa increases further,
the unstable limit cycle and the basin of attraction of the stable
equilibrium grow and shrink, until the unstable manifold of the
unstable orbit separates from the chaotic bursting, leading to
bistability. As the unstable limit cycle finally disappears in a
second a subcritical AH bifurcation, stable bursting emerges
Figure 6. Increasing [Ca]′ = 0 further sends the intersection
below the bottom knee point leading to quiescence (Figure 6A3).

Figures 6C1-C3 demonstrate the behavior change as ΔCa

increases at Δx = −4mV. As the intersection of the two slow
nullclines lowers below the SNIC-curve and crosses the stable
section of the nullcline x′ = 0, the neuron becomes quiescent
(Figure 6C1). As ΔCa continues to increase, a supercritical AH-
bifurcation occurs, marking the start of subthreshold oscillations as
the limit cycle does not reach the SNIC-curve in the ([Ca], x)-phase
plane (Figure 6C2). Finally, when the nullcline [Ca]′ = 0 lowers
below the bottom knee point, the subthreshold oscillations are
stopped by the hyperpolarized quiescent state, as depicted
in Figure 6C3.

The behavior of the system is determined by the shape of the x-
nullcline in the phase plane. The [Ca]′ = 0 nullcline is controlled by
the ΔCa parameter, and decreasing this parameter causes the
nullcline to turn counter-clockwise. If this nullcline intersects the
stable section of the x′ = 0 nullcline, the intersection becomes a stable
equilibrium state of the SiN-model. If the [Ca]′ = 0 nullcline
continues to turn counter-clockwise, it will eventually intersect
the average 〈x〉 nullcline, which triggers a bifurcation sequence
that can result in the transition from bursting to quiescent to tonic-
spiking behavior. This bifurcation sequence can be explained by
comparing the phase plane diagram to the bifurcation diagram
in Figure 3.

• The bifurcation diagram in Figure 3 suggests that there are
three different transition routes through which the swim
interneuron model can undergo as ΔCa is increased within
[-80, 50]mV range: transition i) from tonic-spiking to bursting
activity directly at level Δx = 0, or ii) additionally throughout
the quiescent state at Δx = −2, or iii) from tonic-spiking to the
quiescence only at Δx = −4.

2.5 Neuron bursting in response to synaptic
inhibition

In order to understand how the network bursting occurs, it is
helpful to consider the transients generated as synaptic drive is
switched on and off. The reciprocation of these transients provides
an explanation for network bursting. Figure 7 illustrates the
responses of quiescent (panel A with ΔCa ≥−20mV) and tonic-
spiking (panel B with ΔCa ≤ −35mV) interneurons after they are
temporarily hyperpolarized by a 5 [sec]-long inhibitory synaptic
current (episodes in red). The voltage traces in Figure 7A1, B1 show
that after the perturbation the SiN-model exhibits a fast post-
inhibitory rebound with a high spike frequency initially, followed
by a slow adaptation while returning to their respective attractors.

Note that the slow spike frequency adaptation observed in the
voltage traces is driven by the slow [Ca]-dynamics in the model.

Consider the swim interneuron model under perturbation
caused by a pulse of the inhibitory synaptic current Isyn = gsyn
(V(t) + 80). The pulse duration of 5 s is long enough for the SiN-
model to converge onto a newly perturbed stable state, as can be seen
from the voltage traces. In addition to the original, unperturbed
nullcline x′ = 0, Figure 7A3, B3 depict two additional perturbed
nullclines, labelled xsyn1′ � 0 and xsyn2′ � 0, corresponding to two
different gsyn-values, 0.5 and one respectively. The intersection point
(red dot) of the nullcline [Ca]′ = 0 with the stable nullcline xsyn2′ � 0
at gsyn = 1 is a stable equilibrium state of the inhibited neuron.
Shown in red is a phase trajectory forced to quickly transition from
the unperturbed stable equilibrium state (blue dot) in Figure 7A3, or
from a periodic orbit in Figure 7B3 towards the inhibited or
perturbed steady state (red dot). This steady state persists as long
as the inhibitory current lasts.

As soon as the inhibition is removed, the SiN-model responds
with a fast PIR associated with the trajectory (blue line) in the ([Ca],
x)-phase plane that takes off nearly vertically from the perturbed
steady state towards the tonic-spiking manifoldMpo. Having landed
onto Mpo, it slowly transitions back to its original state along the
manifold with a gradually decreasing spike rate. Note that the
decreasing size of the steps between spikes on the manifold Mpo

in the phase plane is deceptive, because orbits to the left of the Mpo

populate the phase plane less densely, even though they are slower.
This is simply a consequence of exponential convergence to the
attractor in the slow subsystem and is not indicative of the speed of
the periodic orbit in the fast subsystem.

To summarize the discussion on the cellular properties:

• Quiescent and tonic-spiking neurons in isolation can produce
an episodic burst after recovery from forced inhibition.

• The stronger the inhibition is, the greater spike frequency
becomes in the post-inhibitory rebound due to smaller [Ca]-
values associated with the forced state in the neuron, and the
more pronounced the slow spike frequency adaptation is in
the corresponding voltage trace.

• The duration of the post-inhibitory rebound and the adaptation
speed are determined by the change rate [Ca]′ of the calcium
concentration, as well as the distance to travel back to the initial
state of the neuron, which is determined by the position of the
nullcline [Ca]′ = 0 (due to ΔCa) in the ([Ca], x)-phase plane.

In the following sections, we will show how the cellular
dynamics enhanced with a strong PIR and the slow spike
frequency adaptation can coordinate with slow synaptic dynamics
to generate emergent network-level bursting in two generic types of
building blocks for rhythm-generating circuits.

2.6 Modeling synapses

The synapses in Melibe and Dendronotus may be either fast or
slow. Slow synapses are of particular interest, as they occur on the
same timescale as network oscillations and have been reported in the
swim CPGs of the sea slugs (Watson et al., 2002; Watson and
Newcomb, 2002; Thompson andWatson, 2005; Sakurai et al., 2011).
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In order to be able to accurately control the frequency response of
the synaptic gating variable we introduce a new logistic model that
can describe both delayed and slow synaptic summation, which can
act as an efficient high-pass filter. We briefly compare the logistic
synapse’s properties with similar synapses from literature, namely,
the α-synapse, (Rall, 1967; Wang and Rinzel, 1992), higher order
kinetics (Destexhe et al., 1994a; Golomb et al., 1996; Destexhe et al.,
1998), and a dynamic synapse (Hill et al., 2001).

2.7 Fast threshold modulation

(FTM). This simple paradigm (Wang and Rinzel, 1992; Kopell
and Somers, 1993) adequately describes fast synapses. In a FTM

framework, the synaptic activity is turned “on” or “off”
instantaneously. This directly utilizes the aforementioned f∞
function with the presynaptic membrane potential Vpre:

S t( ) � f∞ Vpre t( )( ). (13)

Such fast synapses happened to be useful for understanding
synchronized neuronal activity, including bursting with
inhibitory synapses, and multistability in small, weekly
coupled neural networks (Belykh and Shilnikov, 2008;
Shilnikov et al., 2008; Jalil et al., 2010; Wojcik et al., 2011;
Wojcik et al., 2014; Schwabedal et al., 2016; Collens et al.,
2020; Kelley and Shilnikov, 2020; Pusuluri et al., 2020).
Moreover, this assumption has the benefit of simplifying the

FIGURE 7
Voltage trace showing quick post-inhibitory rebounds followed by the spike frequency adaptation in the swim interneuron model returning to
the stable quiescent state at (ΔCa =−20mV, Δx=−4mV) in Panel (A1) or to tonic-spiking activity at (ΔCa =−35mV, Δx=−4mV) in Panel B1 after it becomes
hyperpolarized by an inhibitory synaptic current perturbation −gsyn (V(t)+80). Panels (A2, B2) show the time evolution of the neurotransmitter release
rates matching the spike frequency changes resulting in stronger summation in the logistic synapses (introduced in next section Eq. 22). Panels:
(A3, B3) show the ([Ca], x)-phase projection showing the tonic-spiking manifold Mpo, and the unperturbed Σ-shaped nullcline x′=0 superimposed
with two perturbed ones xsyn1,2′ � 0 straightened by the application of inhibitory synaptic current perturbations with gsyn =0.5 and 1 (left black line).
(A3) Forced transition from the depolarized quiescent state (blue dot) at the intersection point of the nullcline [Ca]′=0 (pink dashed line) with a stable
branch on x′=0 towards the stable quiescent state of the neuron in normal conditions, while the red dot on the nullcline xsyn2′ at gsyn =1 corresponds to
a hyperpolarized steady state emerging temporarily due to the force by the inhibitory synaptic current pulse. Panel (B3) depicts the response to the
same perturbation of the swim interneuronmodel transitioning back to the stable periodic orbit at ΔCa =−35mV, located on themanifoldMpo near the
intersection point of the average curve 〈x〉 and the calcium nullcline [Ca]′=0 above the SNIC-curve in the ([Ca], x)-projection.
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network dynamics, facilitating both analysis and simulation (Jalil
et al., 2013; Schwabedal et al., 2014; Lodi et al., 2019).

As FTM synapses do not have any temporal dynamics, the FTM
paradigm does not suit the kinetics of slow synapses.When temporal
dynamics of synapses become pivotal in neural circuitry, the lack of
dynamics in the FTM becomes a critical limitation for modeling.
This is the case where the synaptic strength changes dynamically
with time and can sum up at higher ranges of spike frequency in a
pre-synaptic neuron to cause substantially nonlinear effect,
inhibitory or excitatory, on a post-synaptic neuron. It was
established in Refs (Beveridge, 2009; Sakurai and Katz, 2016).
that both swim CPGs in the given sea slugs rely on synaptic
summation to maintain slow bursting oscillations. So, whenever
the synaptic activation changes gradually, the time-varying
dynamics governing the synaptic current in Eq. 20 is to be
described by an ODE or even an ODE system to account for
other nonlinear synaptic qualities like potentiation or fatigue,
for example.

The relationship between pre-synaptic frequency and
neurotransmitter release is computed for each synapse from
trajectories of a pre-synaptic cell coupled to a post-synaptic cell.

The frequency of the pre-synaptic cell is increased over time by
slowly decreasing the ΔCa parameter. For each spike over this
trajectory, the frequency is calculated as the reciprocal of the
inter-spike interval, and the average neurotransmitter rate, ∠S〉 is
computed from the time-average of the synaptic gating variable S
over the same spike. The time series demonstrating this comparison
is pictured in Figure 8, and the curves showing the relationship
between pre-synaptic frequency and < S> are shown in Figure 9.

2.8 α-synapse

Adopting the phenomenological approach taken by Hodgkin
and Huxley, Wang and Rinzel (Wang and Rinzel, 1992) proposed
what is now commonly referred to as an α-synapse. Its activation is
meant to mimic the profile of an α-function given by tp e−t, where p is
a positive integer. The idea of such α-synapses is rooted in the
pioneering computational work byW. Rall (Rall, 1967), who studied
and modeled various aspects of synaptic potentials.

The dynamic equation describing the rate of change of the S(t)-
variable in the α-synapse is given by

FIGURE 8
Panel (A1): voltage trace of the pre-synaptic (quiescent) interneuron model receiving depolarizing (positive) square pulses of increasing amplitude.
(A2) IPSP on the voltage trace of the post-synaptic (quiescent) interneuron model receiving inhibitory (hyper-polarizing) synaptic currents from the pre-
synaptic interneuron in (A1) modeled using the α-synapse of the first-order kinetics (A3), the slow dynamic (A4) and logistic (A5) synapses. (A3) The
probability/rate of the neurotransmitter release in the α-synapse using the first order (black line) with α =0.01 and β =0.008, and second order (cyan
line) kinetics in response to a single spike and spike trains in the trace shown in Panel (A1). Panels (A4, A5) demonstrate stronger responses or
accumulation in the dynamic (τM =1200) and logistic synapses. (B1) Voltage trace shows a gradual adaptation/transition (due to slow [Ca]-dynamics) of
the pre-synaptic interneuron transitioning from an initially quiescent state to its native tonic-spiking activity with a high frequency at ΔCa =−70mV. (B2)
Voltage trace revealing responses of the quiescent post-synaptic interneuron receiving synaptic inhibitory current from the pre-synaptic interneuron
(Panel B1) modeled using the α-synapse (B3), the dynamic (B4) and logistic (B5). Panels (B3–B5): increasing rate of the neurotransmitter release in the α-,
dynamical and logistic synapses correlating with the higher spike frequency in the pre-synaptic interneuron in Panel (B1). The white lines show the
corresponding average.
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S′ t( ) � α 1 − S( )f∞ Vpre( ) − βS (14)

with some positive α and β constants. So, when V(t) is below the
synaptic threshold Θsyn and hence f∞ = 0, then the synaptic
probability S(t) exponentially decreases to zero as e−βt. During an
action potential as long as V(t) ≥Θsyn, then S(t) is approaching the
equilibrium state (α/(α + β)) exponentially fast as e−(α+β)t. Note that
Eq. 14 is sometimes referred to as an α − β-synapse with the first-
order kinetics (Destexhe et al., 1994b).

If α and β values are on the same order of magnitude, say, 0.1,
then the α-synapse is as fast as an FTM (Jalil et al., 2012; Alaçam and
Shilnikov, 2015; Baruzzi et al., 2020; Baruzzi et al., 2021). Decreasing
β by one order of magnitude ~ 0.01 makes the synapse sufficiently
slow and stronger as it can accumulate and demonstrate the
pronounced summation with monotonically increasing S(t) on
average, see Figure 8A3, B3 (grey lines), in response to trains of
fast spikes in the pre-synaptic neuron. Typical values for the α-
synapses in the swim CPGs are α = 0.01, while β is set in the range
[0.001, 0.0005] for slow synapses, and [0.01, 0.1] for fast ones.
Decreasing proportionally α and β makes the time progression of
S(t) smoother with smaller amplitude variations.

The dynamics of the α-synapse can be further enhanced by
adding higher order synaptic kinetics that is modeled by an ODE
system with the feed-forward structure of equations like Eq. 14
(Destexhe et al., 1994a; Golomb et al., 1996; Destexhe et al., 1998):

S1′ t( ) � α1 1 − S1( )f∞ Vpre( ) − β1S1, (15)
S2′ t( ) � α2 1 − S2( ) S1 − β2S2, (16)

S3′ t( ) � α3 1 − S3( ) S2 − β3S3, and so on, (17)
with the same or different time constants αi and βi in each equation.
In the case of same time constants, the synapse model of higher
kinetics creates a smoothing effect and dampens the effect of
individual spikes within a burst in the pre-synaptic neuron, see
Figure 8A3, B3 (black lines).

2.9 Dynamic synapse

Regarding synaptic plasticity, the accumulation of the slow α

synapse is a poor model because it is not compatible with
pronounced postsynaptic potentials. One approach to creating
facilitated synapses is to introduce a modulating variable M
which operates on a different timescale from S. This approach
was originally introduced to model a spike-mediated synaptic
current (Hill et al., 2001)

Isyn � gsyn S t( )M t( ) Vpost t( ) − Erev( ), (18)

where S(t) can be borrowed from the fast α-synapse (Eq.14), or from
the FTM-synapse (13), while the rate of change of theM(t)-variable
is supposed to be quite slow

M′ t( ) � f∞ Vpre( ) −M

τM
(19)

with a large time constant τM ~ 103 or greater. We will discuss the
temporal characteristics of the dynamic synapse below.

We also brieflymention an additionalmodeling technique to alter the
temporal characteristics of synaptic current while leaving dynamics of the
synaptic probability S(t) intact. The idea, which was also borrowed from
theHH-formalism and originally intended for calibration of conductance
values, is to use higher powers of S in the synaptic current equation gsyn
Sp(V − Erev), p = 2, 3 . . .. The objective is to reshape the ascending
concave-down course of S(t) at its initial phase to a concave-up onewith a
following inflection point in the time-progression due to the Sp(t)-term
(0 ≤ S(t) ≤ 1). This modification is supposed to cause initial delays and
result in a less rapid/steep build-up in such a slow synapse.

The synaptic current Isyn in the post-synaptic neuron is modeled
as follows:

Isyn � gsyn S t( ) Vpost t( ) − Erev( ), (20)

where gsyn is a maximal conductance, S(t) is a synaptic gating
variable, Vpost is the membrane voltage in the post-synaptic
neurons, and Erev is a synaptic reversal potential, which can be
set at +40mV or −80mV for excitatory and inhibitory synapses,
respectively. The sigmoid function f∞(V) is defined as

f∞ V( ) � 1

1 + e−k Vpre−Θsyn( ), (21)

where the constant k determines its derivative at f∞(V) = 0.5, the
inflection point where V = Θsyn. Here Θsyn is treated as the
synaptic threshold typically set around +20mV in the middle of
spikes, between the spike threshold around −40mV (sodium
channels opens) and the spike peak +40mV. Values for k are
typically set somewhere in a range [0.5, 50], and as the value of k
is set large, the function becomes a continuous approximation
of the Heaviside step function, where the function f∞ remains
close to zero as long as Vpre(t) < Θsyn, and quickly jumps to
1 after the voltage in the presynaptic neurons exceed the
synaptic threshold.

Most slow synapses act through complex sequences of nonlinear
interactions including secondary messenger cascades, which can delay
the neurotransmitter release in pre-synaptic neurons or their binding
with neurotransmitter receptors in post-synaptic ones. In such cases it is
sometimes desirable to introduce a dynamic delay or some low spike
frequency filter without explicitly modeling every stage of postsynaptic
intracellular signal transduction in terms of state variables.

2.10 Logistic synapse

For this purpose, we introduce a new synapse model, which we
call the logistic synapse, named after its similarity to the logistic
model of population growth, where the probability S(t) is governed
by a single ODE:

S′ t( ) � α S 1 − S( )f∞ Vpre( ) − β S − S0( ), (22)

where a constant 0 ≤ S0 ≤ 10−3 can be viewed as some spontaneous
neurotransmitter release rate on average in the pre-synaptic neuron.
The key feature of this modeling approach is the term S (1 − S) which
provides: (i) means to control a latency of the synapse in the initial
ascending phase of summation, and hence (ii) a logistic or sigmoid-
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like shape of the S(t)-variable determining the proportion of open
channels. With this logistic model, we obtain a desired nonlinear
dependence of the strength of the synaptic current on the spike
frequency in the pre-synaptic neurons to match the experimental
studies on the swim CPGs. In addition, with the logistic synapse
acting as a high-pass filter we can further explore the role of such
time-varying synaptic coupling on rhythmogenesis and its
robustness in 2-cell building blocks of two types considered below.

In Figure 9 we show the frequency response of the logistic synapse
compared with alternative approaches to synaptic modeling to
determine the dependence of the strength of the synapse models on
the spike frequency in the pre-synaptic neurons in the long run,
skipping initial transients. One can see from this diagram that in the
case of the α-synapse of the first (grey) and second (black) order kinetics
there is a threshold around 2.5–3Hz, after which its strength escalates
nearly instantaneously to increase slowly with the higher spike
frequency. Observe that the dependence of the strength of the
dynamic synapses on the spike frequency is nearly monotonically
linear while the logistic synapse remains weak as long as the spike
frequency in the neurons stays below 3 Hz. With the higher spike
frequency, its efficiency and strength rapidly grow within the spike
range 3–6 Hz.

In Figure 10, the term inflection refers to the concavity change
point in the sigmoid characteristics of the logistic synapse. Here,
summation refers to a nearly monotone, solid buildup of I/EPSPs
in a voltage trace of the post-synaptic neuron caused and aligned
with the spike train in the pre-synaptic one. In contrast, in the
case of potentiation the size of I/EPSPs increases with each
sequential spike in the pre-synaptic neurons, followed by a
reset to a base-line between sequential spikes. The
potentiation typically occurs in a synapse model described by
an ODE system with diverse fast and slow time-scales, such as Eqs
15–18 or Eqs 18, 19 due to distinct α-values on different

magnitude orders, say α1 = 1 and α2 = 0.1, or α1 = 1 and a
large τm-constant, respectively. Note that with a higher spike
frequency, potentiation may likely morph into summation.

3 Dynamics and stability of network
bursting in coupled pairs

Below we present two different mechanisms of rhythm generation
in such pair-wise networks. The first example is emergent bursting in a
reciprocally inhibitory network, reminiscent of Brown’s original HCO,
see Figure 1 The second neural pair consists of excitatory and inhibitory
neurons (Figure 1B) where the tonic-spiking neuron provides an
excitatory drive to the quiescent or less active neuron that
subsequently provides a slowly building inhibition. For each network
we show several different configurations corresponding to the
endogenous behavior of the cells. We discuss the stability and
multistability at different parameter values and briefly summarize
the mechanism in terms of the coordination of nullclines as they are
recurrently driven by synaptic current as described in the methods and
models section above.

3.1 Half-center oscillator

HCO configurations generate symmetric oscillations that have a
phase lag of one-half period. In each of the following HCO figures,
the phase plots on the left show the trajectories of two cells, and two
nullclines, unperturbed x′ = 0 and perturbed or inhibited xinh′ � 0.
These nullclines in each phase plot correspond to the unperturbed
and maximal levels of the synaptic drive, respectively in the pre- and
post-synaptic neurons alternating sequentially due to the symmetry
of the network. The position of the nullcline for a cell at a given time
is an interpolation between these two. The movement of the
nullclines through the burst cycle can be visualized concretely in
Appendix III in Supplementary Material below.

3.2 Two quiescent interneurons

Depending on the coupling strength, a stable oscillatory
regime appears. When the inhibition is weak, as in Figure 11, or
the initial phases of the constituent neurons are too close, the
bursting pattern decays and converges to the steady state at
ΔCa = −30mV. When the strength of inhibition is high, the
network exhibits stable oscillations. This is a bistable pattern
since both cells are quiescent. Setting the initial conditions for
the synaptic variables to zero would result in a silent network
regardless of which synaptic parameters are chosen. When the
coupling strengths are insufficient to maintain oscillations, but
the initial conditions are appropriately chosen, the network
bursting persists for several bursts before the transient fades.
Since both cells are quiescent, the burst transition may occur
through the release mechanism, but since there is never a stable
equilibrium, it may also be an escape mechanism. This
phenomenon occurs when inhibition is sufficiently strong
such that the intersection between the slow nullclines falls on
the spiking side of the SNIC curve. On the other hand, the

FIGURE 9
Shape comparison of the average synaptic probabilities or
neurotransmitter release rates 〈S〉 in themodels of the α-synapse with
the first (grey dots) and second order (black dots) kinetics, the dynamic
(cyan dots) and the logistic synapses (red dots) plotted against the
spike frequency in the pre-synaptic neuron. The key feature of the
logistic synapse is its inflection point.
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FIGURE 10
Summarization of the key properties such as delay, potentiation, summation and inflection, of the fast and slow synapse models.

FIGURE 11
An HCO network constituted of two quiescent interneurons, iN1 (blue) and iN2 (green) at ΔCa =−30mV, coupled reciprocally by the inhibitory
(denoted by•) logistic synapses. Schematic diagram (left). Panels (A1–E1): insufficient inhibition (S(t)-traces in PanelD1) and/or improper phase-lag (small
green and blue dots) between initial phases of the HCO interneurons does not let emerging network-bursting keep the initial momentum and oscillations
seize and converge to a quiescent state (voltage traces in Panels B1, C1), which is located at the crossing of the nullclines x′=0 and [Ca]′=0 (red and
black lines, resp.) below the SNIC-curve (as a dotted grey line) in the ([Ca], x)-phase plane in Panel (A1). Panels (A2–E2): increasing the reciprocal inhibition
strength leads to the onset of self-sustained emergent bursting in the HCO. HCO bursting is associated with a stable cycle in the ([Ca], x)-phase plane
shown in Panel (A2), which occurs due to the emergent network hysteresis in the driven neuron during the slow hyperpolarized phases near the forced
nullcline xinh′ � 0. This HCO is bistable: bringing initial states of the neurons close together will lead to decaying oscillations. The synaptic parameters are
gsyn =0.027, α =0.05, β =0.0051 in the upper panels and gsyn =0.047nS, α =0.05, β =0.0051 s−1 in the bottom panels.
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mechanism may be characterized as a post inhibitory rebound
since the cell will emit a transient spike train following
inhibition.

3.3 Two tonic interneurons

The case when both neurons are tonic is similar to the quiescent
case, both in mechanism and appearance. The network is illustrated
in Figure 11. Both the initial phase and strength must be appropriate
as in the previous case. Setting the phases near the borderline of the
basin of attraction for network oscillations shows that the
oscillations slowly grow in strength and converge to the final
attractor. In this case, the escape mechanism cannot play a role
since the calcium transient converges to a spiking periodic orbit. The
gradual convergence to the burst pattern in 11A2 demonstrates the
breadth of the basin of attraction for the bursting rhythm.

Figure 12 shows how network anti-phase bursting evolves
asymptotically through a canard-type periodic orbit with small
initial amplitude via an AH bifurcation. If the x-dynamics are
slowed down to match the time scale of the [Ca]-dynamics,
stable network oscillations can develop gradually. A1-E1 show
that below a bifurcation threshold, network oscillations decline
and converge to the tonic-spiking (round) periodic orbit (seen in
the ([Ca], x)-phase plane in Figure 12A1). The stability of this HCO
network bursting is evident in the growth of S(t) oscillations
(Figure 12D2) and calcium concentration (Figure 12E2).
However, bistability may result in the absence of oscillations, as
shown in Figure 12B1. The network can exist in two states: both
neurons exhibit tonic-spiking activity or the network bursts. To
initiate network bursting, one option is to have one neuron initially
inactive and the other active, or to excite both neurons with an
external current or synaptic pulse. This triggers an inhibitory race
between them, leading to anti-phase bursting.

FIGURE 12
An HCO network constituted of two tonic-spiking neurons at ΔCa =−40mV. Panels (A1–E1): insufficient reciprocal inhibition and/or phase-lag
between initial phases cause network bursting to weaken and make both neurons return to tonic-spiking activity, which can be well-observed in [Ca]-
traces (Panel E1) converging to some fixed value corresponding to two round periodic orbits indicated by a double dot above the SNIC-curve near the
(red) nullcline [Ca]′=0 in the phase plane in Panel (A1). Panels (A2–E2): changing initial phases and/or increasing the reciprocal inhibition leads to the
onset of network bursting, corresponding to a stable limit cycle in the ([Ca], x)-phase plane shown in panel (A2). This HCO is bistable: decreasing inhibition
or/and initial phase-lagwill lead to similar damping oscillations as in the previous case. The synaptic parameters are gsyn=0.057nS, α=0.03, β=0.003 s

−1 in
the upper panels and gsyn =0.067nS, α =0.03, β =0.003 s−1 in the lower panels.
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3.4 “Winner takes all.”

To summarize the discussion on HCO-dynamics, in a “winner
takes all” scenario, it is common to see variation in the spike
frequency of neurons. In this setup, the blue neuron has a high
spike frequency at ΔCa = −50mV while the green neuron has a lower
spike frequency at ΔCa = −40mV. However, as seen in Figure 13A1,
the green neuron becomes the winner, inhibiting and shutting down
the blue neuron at the forced hyperpolarized state. This occurs when
the lasting inhibition is too strong, either due to a larger α-value or a
lower β-value in the logistic synapse. Weakening the green neuron’s
inhibition allows the blue neuron to rise, producing sub-threshold
oscillations in its voltage trace. These oscillations are associated with
a stable network limit cycle in the phase plane, and with further
weakening of the green neuron’s inhibition, the amplitude of the
sub-threshold oscillations will increase, leading to full
bursting episodes.

Le us conclude the HCO section with the following
observations:

• HCO bursting with 1
2 phase-lag is a emergent phenomenon

based on the network hysteresis, and originates from transient
dynamics in the constituent neurons;

• HCO bursting becomes self-sustained provided that the
balance of phases and the balance of amplitudes (coupling)
are fulfilled;

• If either balance condition fails, then the HCO bursting falls
apart and its constituent neurons come back to their
natural states;

• The HCO is a bistable network;
• coupling with logistic synapses makes the HCO-dynamics
flexible and fluctuating, and less stiff compared to α-synapses;

• HCO can be composed of both (non-identical) quiescent, or
both tonic-spiking neurons, or their combinations, which

FIGURE 13
Illustration of the “winner takes all” concept in the HCOnetwork. Panels (A1–E1): The initial positions place the green neuron atΔCa =−40mV atop so
that its strong and lasting inhibition forces the blue counterpart neuron at ΔCa =−50mV to stay at a hyperpolarized state near the intersection of the
corresponding nullclines [Ca]′=0 and x′=0 (next to its bottom knee-point) and under the SNIC-curve in the phase plane as shown in panel (A1). Panels
(A2–E2): Weakening inhibition makes the blue neuron becomes less hyperpolarized to produce forced sub-threshold oscillations seen in the
voltage traces and corresponding to a limit cycle in the ([Ca], x)-phase plane between the two knee-points of the Σ-shaped nullcline x′=0 as depicted in
Panel (A2). The synaptic parameters are g12=0.1nS, α12=0.021, β12=0.0013s

−1, and g21=0.8nS, α21=0.03, β21=0.0011s
−1 in the upper panels and g21 is

reduced to 0.1nS in the lower panels.
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warrants its wide structural stability range, and makes it less
dependent on variations of cellular parameters.

3.5 Excitatory–inhibitory (E/I) module

The excitatory-inhibitory (E/I) module is analogous to the
classic predator-prey relationship and a common block of other
similar networks (Venkadesh et al., 2024). The excitatory (blue)
neuron acts as the “prey” by providing enough drive for the
inhibitory (green) neuron, acting as the “predator,” to generate
tonic-spiking activity and slow down the excitation through
inhibitory feedback. This results in the excitatory neuron
transitioning to an inactive, hyperpolarized phase, causing the
predator to lose the drive from the excitatory neuron. The
excitatory neuron then returns to its initial state, freeing the prey
from inhibition. A weak electrical synapse, or gap junction, is
included between the neurons in this E/I module, which was

reported in the biological E/I module, a key building block in the
swimCPG of the sea slug,Dendronotus iris (Sakurai and Katz, 2022),
see Figure 1B. Although this gap junction was present, it was not
observed to play a significant role in rhythmogenesis, and the
network operates well without it.

The construction of the E/I module is detailed in Figures 14, 15.
The network is silent with an uncoupled pair of one quiescent
neuron and tonic neuron. As slow excitation is introduced the
quiescent cell fires tonically after a delay. The introduction of
inhibition shown in Figure 15 creates the conditions for bursting
as the calcium dynamics in the excitatory cell and the slow excitation
become resonant.

3.6 Tonic and quiescent neurons

Observe from the phase plane in Figure 15A2 that the inhibitory
drive drives the excitatory (blue) neuron into a state of

FIGURE 14
Building an E/I-module. Panels (A1-E1): uncoupled excitatory tonic-spiking neuron (blue) at ΔCa =−50mV and inhibitory quiescent neuron (green) at
ΔCa =−20mV. Panels (A2-E2): Turning the excitatory synapse “on” in the blue neuronmakes the inhibitory neuron spike tonically as well. (A1, A2) red lines
labeled by [Ca]′=0 standing for the calcium nullclines above/belowwhen the [Ca]-variable increases/decreases, the unperturbed and perturbed locations
of the equilibrium states (double dots) are shown in the color-matching Σ-shaped nullclines x′=0 and xexc′ � 0, as well as shows the position of the
periodic orbits in the ([Ca], x)-phase planes for both neurons. The synaptic parameters are g12=0.2nS, α12=0.016, β12=0.001s

−1 and gelec =0.0002nS and
g21=0nS in the lower panels.
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hyperpolarized quiescence along the approximate position of the
forced equilibrium nullcline, xinh′ � 0. The inhibitory feedback
becomes stronger with increasing excitatory drive, resulting in a
longer recovery time for the excitatory (blue) neuron from its
hyperpolarized state. This means that stronger coupling can
prolong the interburst interval and the burst period of the
network. However, increasing the strength of the bidirectional
electric synapse (gap junction) allows the excitatory neuron to
recover faster by counteracting the inhibitory effect and restoring
the network balance, bringing the duty cycle of network bursting
closer to the necessary phase relationship to sustain oscillations. This
relationship is evident in the S(t)-traces represented in Figure 15D2.

Note that bursting oscillations in the voltage trace of the
inhibitory neuron occur due to its cycling between a meta-stable
state due to excitation drive and its natural resting state, which it
receives no drive while the excitatory neurons transitions
throughout forced hyperpolarized episodes. These cycling
translates into small oscillations crossing the SNIC-curve in the

([Ca], x)-plane around [Ca] = 1.15 in Figure 15A2–E2. Unlike large-
amplitude network limit cycle of the excitatory neuron, the
oscillations corresponding to the inhibitory one are hardly
noticeable. Nevertheless, as long as the transient stays above or
below the SNIC-curve, the corresponding voltage traces will
respond, respectively, with spike trains alternating with quiescent
intervals, see Figure 15B2, C2.

To demonstrate the stability and parameter range of network
bursting, we make the excitatory and inhibitory neurons diverse.
The excitatory neuron is set to have an active tonic-spiking behavior
at ΔCa = −60 mV, while the inhibitory neuron is set to be deeply
hyperpolarized at ΔCa = 20 mV, and undergoes the same assembly
stages as before. The results are shown in Figure 16. The phase plane
in Figure 16A shows that the inhibitory neuron has longer and
deeper excursions between its two states: tonic-spiking and
quiescence, as evidenced by the green cycle and the SNIC curve.
The longer period of emergent bursting is also evident in the voltage
traces (Figure 16B1, B2). In addition, Figure 16C shows a stable limit

FIGURE 15
Building an E/I-module. Panels (A1–E1): Turning the inhibitory synapse “on”makes the E/I-module initiate network bursting but cannot sustain due
to a lack of balanced coupling so it breaks apart with its components returning to their natural states: a tonic-spiking neuron (blue) at ΔCa =−50mV and a
quiescent neuron (green) at ΔCa =−20mV. Panels (A2–E2): increasing inhibition lets the E/I-module sustain the network bursting stably as seen from the
voltage and release rate S(t)-traces as well-seen from Panel (B2-D2). Note both neurons alternate between tonic-spiking and quiescent phases
demarcated by the SNIC-curve in the ([Ca], x)-phase plane in panels (A1, A2). The synaptic parameters are g12=0.15, α12=0.0142, β12=0.001s

−1 and
g21=0.2nS, and α21=0.01, β21=0.001s

−1 in the upper panels, and g12=0.2nS, α12=0.016, β12=0.001s
−1 and g21=0.5nS, α21=0.011, β21=0.001s

−1, and
gelec =0.0003nS in the lower panels.
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cycle in the ([Ca]1, [Ca]2)-phase plane, indicating a proper balance
of amplitudes and phases, with a phase-lag close to one quarter (1/4)
period. This is confirmed by the instantaneous snapshot of the
current phases of both neurons shown as two double dots (blue at
12 o’clock and green at nine o’clock) on the corresponding limit
cycles in the ([Ca], x)-phase plane.

3.7 Two quiescent neurons to generate
perpetual bursting

Next, let us discuss twomore options to generate emergent bursting
in the EI-module. In the first case, both neurons are naturally quiescent
at different ΔCa-values, as can be deduced from their voltage traces in
Figure 17B1, C1. This figure depicts that the excitatory neuron is
initiated in the tonic-spiking phase far from its natural equilibrium
(represented by the small blue dot) to produce a flux of positive
feedback to the inhibitory neuron, which is initially set closer to its
native equilibrium state (green dot).We can deduct from thisfigure that
this EI-module is misbalanced and cannot keep up its initial
momentum, as seen in the synaptic rate S(t) traces in Figure 17D1,
which decay and slow down emerging bursting back to the quiescent
states in both neurons. Those are represented by the blue and green

double-dots through which the (red) nullclines [Ca]′ = 0, left for ΔCa =
20mV and right for ΔCa = 60mV, cross the Σ-shape nullcline x′ = 0 in
the ([Ca], x)-projection in Figure 17A1.

Increasing the excitation remedies the situation, as one see from
see Figure 17A2-E2. So, it appears that newly born stable limits
cycles underwent through a network version of an Andronov-Hopf
bifurcation in the slow phase plane in Figure 17A2 that gave rise to
the onset of steady self-sustained bursting. This bursting is due to a
strong or balanced level of reciprocal nonlinear interplay of
excitatory and inhibitory currents flowing back and forth through
feedback looks between the constituent neurons. Recall that while
coupling can be sufficient for the occurrence of self-sustained
bursting, it can fail at the initial stage because of an improper
balance of the phases or a phase-lag between the neurons in the EI-
module. On the other hand, even with proper initial phases, the
network may not gain the initial momentum, and bursting will slow
down and seize just like in the previous case (Figure 17A1). This is
an indicator that likewise the HCO, the EI-module is bi-stable as
well, and moreover network oscillations are composed of transient
trajectories generated by its components. This is reminiscent to the
concept and principles underlying perpetual motions observed in
various pairs of diversely connected mechanical bodies
(Angrist, 1968).

FIGURE 16
Prey-predator network. (A) diverse E/I-module constituted of a tonic-spiking neuron (blue) at ΔCa =−60mV and a quiescent neuron (green) at
ΔCa =+60mV that reciprocally produce robust bursting in voltage traces (B1–B4) corresponding to a stable limit cycle in the ([Ca], x)-plane in Panel (A) and
the ([Ca]1 , [Ca]2)-phase plane in Panel (C) due to both factors: sufficiently strong coupling and a phase-lag ~ 1/4 period of oscillations between
excitatory and inhibitory fluxes of neurotransmitter releases seen in Panel (B3). Decreasing the inhibitory strength makes the oscillations less
pronounced. Note two phase point snapshots, blue and green dots located at 12 o’clock (above) and nine o’clock (left) on the limit cycles lock positions
on the two cycles in Panel (A) indicating a 1/4-period phase-lag between the oscillations in the excitatory and inhibitory neurons, resp. The synaptic
parameters are g12=0.03 and g21=0.1nS, while α12=0.02, β12=0.0011, α21=0.012, β21=0.001 all in s−1, and gelec =0.001nS.
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Let us reiterate that the phase-lag between oscillations generated
by the advancing excitatory neuron and the following inhibitory
neuron is to be close to a quarter of the network period. This is
apparent in Figure 17A2 (as well as panel D2), which captures a
snapshot of the relative positions of the blue and green phase points
on the corresponding cycles at 5 (lower right) and 12 o’clock (above)
respectively. Recall that the change rate of the gating x-variable is
faster than that of [Ca]-dynamics, and therefore the phase points do
not turn along the cycles uniformly (with non-constant orbital
speeds). Therefore, such snapshots can show some variability of
the phase lags between oscillations fluctuating around the target
value of 1/4 on average.

3.8 Two tonic-spiking neurons

The bistability and the conditions of balanced initial phases and
mixed-coupling remain valid also in the case of the excitatory-

inhibitory module comprised of two tonically spiking neurons at
two distinct values ΔCa = −60mV and ΔCa = −40mV, see Figure 18.
One can see from the voltage traces shown in Figures 18B, C that the
blue excitatory neuron demonstrates bursting activity with quiescent
phases caused by the flux of the inhibitory current generated by the
green inhibitory one. The stronger the inhibition current is, the
longer the excitatory neuron recovers from it. This feedback
mechanism alone can regulate the duty cycle of network bursting
in the EI-module. Note that the inhibition becomes stronger as the
excitatory drive increases; the inhibitory neuron receives the
excitatory drive and becomes even more hyper active with a
greater spike frequency through the forward loop and vice versa.
Because both neurons are initially chosen to demonstrate tonic-
spiking activity, the voltage trace of the inhibitory one in Figure 18C
demonstrates a spike frequency modulation caused periodically by
the positive drive originating from the excitatory neuron. In turn,
those cycling episodes of higher frequency cause stronger inhibition
feedback looped back onto the excitatory neuron that warrants the

FIGURE 17
Panels (A1-E1): The network bursting in the E/I-module loses its initial momentum and transitions back to the native quiescent states: the excitatory
(blue) neuron at ΔCa =20mV and the inhibitory (green) neuron at ΔCa =60mV. (A1) Equilibrium states are shown as blue and green double dots at the
intersection of the nullclines [Ca]′=0 and x′=0 in the ([Ca], x)-phase plane. Panels (A2-E2): Increasing the forward excitation warrants self-sustained
bursting oscillations with a phase-lag close to 1/4. Here, the synaptic parameters are gelec=2.5×10

−4nS, αex=0.033, βex=0.001, αin=0.021, βin=0.001
all in s−1, gex =0.0375nS and 0.045, gin =0.6nS.
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quiescent interburst intervals in its traces, and so forth. At this point,
the role of stronger electrical coupling between both neurons comes
into play. As we mentioned earlier the electrical gap junction equates
the dynamics of the coupled neurons, and even synchronizes them
in the absence of mixed chemical synapses. In the given case,
depending on the inhibitory/excitatory balance, increasing the
electric coupling can produce two possible outcomes: i)
depolarizing the excitatory neuron and shortening or
illuminating interburst intervals and bringing it back to the
original tonic-spiking activity. In the second case ii) inhibition
“prevails” over excitation, so that the interburst episodes when the
excitatory neuron becomes deeply hyperpolarized around −70
to−75mV, also bring down the voltage in the inhibitory neuron, and
its spike frequency decreases substantially. One can observe fast EPSPs
between bursts in the voltage trace (Figure 18B) of the excitatory neuron
caused by the electrical current in a correlated response to spikes
generated by the inhibitory one. This “equating” action by the gap
junction can be also seen in the position of the corresponding cycles
in the ([Ca], x)-projection in Figure 18A: weakening the strength of
electrical coupling noticeably increases the amplitude of forced
oscillations in the blue excitatory neuron. On the contrary, gradually
increasing the electrical coupling will misbalance the excitatory/inhibitory
ratio, eventually bringing both cycles closer in the phase plane, and
narrowing the phase-lag between them will result in halting the burst
rhythmogenesis in the excitatory-inhibitory module.

We wrap up the EI-module section with the following
conclusions:

• emergent EI-bursting is a network-hysteresis based
phenomenon, and stems from transient dynamics in both
constituent neurons;

• EI-bursting bursting becomes self-sustained provided that
both balances of initial phases and coupling strength are met;

• when either balance condition fails, network bursting
disintegrates and the EI-neurons return to their natural states;

• EI-module is a bistable network;

• logistic synapses make emergent IE-bursting flexible, and less
stiff compared to α-synapses;

• EI-module can be comprised of tonic spiking and quiescent
neurons, and both tonic-spiking neurons, which warrants its
broad structural stability range;

• phase-lag in EI-bursting can fluctuate between 1
4 and

1
2 as the

inhibitory synapse becomes more delayed.

4 Discussion

The understanding of CPGs can be improved by identifying the
right dynamic constructions and their characteristics, especially
regarding the output behavior’s flexibility and stability in response to
parameters. Although single neuron models and simple patterns have
been studied, more research is needed to explain how small network
features lead to adaptable behavior. The versatility of twoCPGnetworks
in this paper is demonstrated by their gradual convergence to the
bursting attractor and their easy control by cellular and synaptic
parameters. Further formalizing the dynamic principles and
characteristics of these subnetworks will expand the network motifs
and adaptability mechanisms.

This paper highlights two key concepts. Firstly, a more accurate
method is required to determine and measure the dynamic requirements
for oscillatory activity inneural circuits beyond themotifs illustrated in this
paper. To address this, the paper introduces the idea of network hysteresis,
which stems from the discovery that in self-oscillating neural systems
where cells do not have active hysteresis, hysteresis must be shared
between cellular and synaptic variables. Further research will delve into
methods for identifying and analyzing the subsystems and manifolds
involved in hysteretic activity across networks.

The second objective of this paper is to offer versatile building
blocks for the CPG circuits in sea slug swimming. In future studies,
these motifs will be used to construct and analyze larger CPG networks.
The parameters that work best for these large CPGs may not match
precisely with the parameters for bursting, but we still anticipate that the

FIGURE 18
Inhibition-driven bursting in the excitatory (blue) neuron [its phase projection in (A)] reciprocally causes a slow frequency modulation in the voltage
trace of the inhibitory (green) neuron in the E/I-module; here both neurons are set to spike tonically as shown in (B–E), resp., at ΔCa =−60mV and
ΔCa =−40mV; gelec =4·10−3nS, while αex =0.025, βex =0.001, αin =0.01, βin =0.0014 all in s−1, and gex =0.01nS and gin =0.15nS.

Frontiers in Network Physiology frontiersin.org22

Scully et al. 10.3389/fnetp.2024.1397151

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2024.1397151


sequence of transients that defines the bursting in the small networks we
present here will bear enough resemblance to the mechanisms in larger
circuits to be helpful in explaining them.

This paper offers a bifurcation analysis of the swim interneuron
model presented here but does not examine chaotic transitions in
detail. A full dynamical analysis of the swim interneuron model is
left to future research.

5 Conclusion

In conclusion, this paper provides a comprehensive overview of two
mechanisms of rhythm generation in pair-wise networks. The first
mechanism, emergent bursting in a reciprocally inhibitory network, has
been shown to be capable of generating flexible rhythms over a wide
range of initial states through the coordination of transients driven by
synaptic current. The second mechanism, an excitatory/inhibitory pair,
demonstrates the stability and multistability of different configurations
that correspond to the endogenous behavior of the cells.

Moreover, the paper presents a conductance-based model for
swim CPG interneurons in sea slugs Melibe leonina and
Dendronotus iris. The Plant model (Plant and Kim, 1975; Plant
and Kim, 1976; Plant, 1981) was selected as the starting point for the
developed SiN-model due to its well-known variability in spike
frequency. However, the original one was modified to eliminate
bursting, which is not observed in swim interneurons, by
introducing two additional bifurcation parameters and an h-
current, as well as using an averaging approach for fast-slow
decomposition. The effect of these modifications, as well as the
effect of synaptic drive, was shown to provide a better understanding
of the behavior of these neurons in a network setting. Additionally, a
novel synapse called the logistic synapse was introduced, which can
effectively act as a high pass filter and create a delay.

The neural circuits discussed in this paper overlap to form the
CPG networks inMelibe leonina and Dendronotus iris. This work
serves as a foundation for future studies to explore the interaction
of these two mechanisms and the properties of the resulting
system in the context of animal locomotion.
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