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Lung diseases such as cancer substantially alter the mechanical properties of the
organ with direct impact on the development, progression, diagnosis, and
treatment response of diseases. Despite significant interest in the lung’s
material properties, measuring the stiffness of intact lungs at sub-alveolar
resolution has not been possible. Recently, we developed the crystal ribcage
to image functioning lungs at optical resolution while controlling physiological
parameters such as air pressure. Here, we introduce a data-driven, multiscale
network model that takes images of the lung at different distending pressures,
acquired via the crystal ribcage, and produces corresponding absolute stiffness
maps. Following validation, we report absolute stiffness maps of the functioning
lung atmicroscale resolution in health and disease. For representative images of a
healthy lung and a lung with primary cancer, we find that while the lung exhibits
significant stiffness heterogeneity at the microscale, primary tumors introduce
even greater heterogeneity into the lung’s microenvironment. Additionally, we
observe that while the healthy alveoli exhibit strain-stiffening of ~1.75 times, the
tumor’s stiffness increases by a factor of six across the range of measured
transpulmonary pressures. While the tumor stiffness is 1.4 times the lung
stiffness at a transpulmonary pressure of three cmH2O, the tumor’s mean
stiffness is nearly five times greater than that of the surrounding tissue at a
transpulmonary pressure of 18 cmH2O. Finally, we report that the variance in both
strain and stiffness increases with transpulmonary pressure in both the healthy
and cancerous lungs. Our new method allows quantitative assessment of
disease-induced stiffness changes in the alveoli with implications for
mechanotransduction.
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1 Introduction

Altered stiffness is one of the four physical hallmarks of cancer (Nia et al., 2020a; Zhang
et al., 2023a), with implications for the development, progression, diagnosis, and treatment
response of solid cancers. Biologically, elevated stiffness promotes proliferation (Ulrich
et al., 2009), invasiveness (Tse et al., 2012), and metastasis (Wirtz et al., 2011) through
activation of mechanosensitive signaling pathways; clinically, an increase in stiffness is
associated with an increased risk of breast cancer (Boyd et al., 2014) and mortality (Evans
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et al., 2012). In diagnostics, cellular and extracellular stiffness are
traditional markers of cancer (Cochlin et al., 2002; Goenezen et al.,
2012) and are predictive of a tumor’s stage (Panzetta et al., 2017). In
therapy, increased stiffness is linked to reduced efficiency of drug
delivery (Nia et al., 2019). Furthermore, determining the stiffness of
the tumors and their surrounding tissue is an essential precursor for
estimating solid mechanical stresses, another physical hallmark of
cancer (Nia et al., 2016; Nia et al., 2018; Nia et al., 2019; Nia et al.,
2020b; Zhang et al., 2023a; Zhang et al., 2023b). Despite this, the
lung’s or a lung tumor’s stiffness has not been reported under the
following conditions: (i) across a range of physiologically relevant
pressures, (ii) noninvasively, i.e., without sectioning of the tissue,
(iii) under realistic boundary conditions, and (iv) at microscale
resolution.

Although elastography encompasses a broad range of techniques
for assessing the material properties of biological tissues, each
method presents limitations when addressing our specific
problem (Costa, 2004; De et al., 2010; Evans et al., 2012;
Goenezen et al., 2012; Kennedy et al., 2014; Garra, 2015; Schregel
et al., 2018; Seidl et al., 2020; Silva et al., 2020; Ghiuchici et al., 2021;
Kuo et al., 2021; Wang et al., 2023). The gold-standard method for
microscale elastography is atomic-force microscopy (Krieg et al.,
2018), which boasts extremely high-resolution, absolute
measurements of stiffness. However, tissue preparation for AFM
involves resection and submersion in saline, which disrupts the
mechanical integrity of the sample and the alveolar air-liquid
interface (Liu and Tschumperlin, 2011). Though CT and MRI
elastography preserve the mechanical environment of the organ,
these methods have poor spatiotemporal resolution, and they
typically report strain rather than absolute stiffness (Barbone and
Bamber, 2002; Barbone and Gokhale, 2004). Although strain
elastography based on modalities like synchrotron microCT
(Cercos-Pita et al., 2022) have near-micron spatial resolution, to
our knowledge, these methods lack the control and temporal
resolution needed for tracking the same region of interest at
alveolar resolution across changes in inflation pressure. Optical
elastography (Kennedy et al., 2014; Kennedy et al., 2017; Wang
et al., 2023) offers an alternative method for more precisely
estimating the displacements throughout a biological sample. For
example, recent papers have implemented optical elastography
based on digital image correlation (DIC) to quantify the lung’s
strain (Nelson et al., 2023) and stiffness (Maghsoudi-Ganjeh et al.,
2021); but in each case, the empirical method does not provide
physiologically realistic boundary conditions, and the
measurements are not at alveolar resolution. Using optical
elastography based on deformable image registration, our group
recently mapped the elasticity of resected biological samples at
optical resolution either by embedding them in thermo-
responsive hydrogels (Regan et al., 2023) or by adhering
precision-cut lung slices (Kim et al., 2023). However, these
methods also involve resection of the organ and embedding the
sample in saline, which does not preserve the organ’s boundary
conditions and disrupts the air-liquid interface in the lung.

With that goal in mind, we recently developed the crystal
ribcage (Banerji et al., 2023), which preserves the integrity of the
organ and emulates the in vivo boundary conditions seen by the
lung, while at the same time enabling real-time microscopy of the
entire surface during dynamic ventilation at cellular resolution

(Supplementary Figure S1). Unlike intravital imaging methods
(Looney et al., 2011; Looney and Bhattacharya, 2014; Entenberg
et al., 2018) wherein the lung is immobilized by vacuum or glue,
and which thus compromise the breathing mechanics of the lung at
the imaging site, the plasma-treated crystal ribcage provides a
lubricious, geometrically realistic boundary condition, allowing
mechanical characterization of the lung throughout the breathing
cycle in health and disease. While the tissue preparation involves
resection of the organ from the mouse’s thorax, the ex vivo lung,
with its pleura intact, is imaged immediately after resection, and
the lung can be vascularly perfused with complete media to
maintain cell health throughout the course of imaging.
Consequently, our platform preserves the in vivo physiological
conditions of the lung. By developing an optical elastography
platform based on the crystal ribcage apparatus, we can assess
the mechanical properties of the ex vivo lung in health and disease
with high spatiotemporal resolution and with physiologically
realistic boundary conditions.

Here, to accurately estimate the in vivomechanical properties
of the lung in health and disease, we adopt a multiscale-modeling
approach that couples the microscale displacements estimated
through deformable image registration and the mean, strain-
dependent stiffnesses estimated using a nonlinear, finite-element
model of the lung. We validate the multiscale model against a
virtual, finite-element model of the lung with a cancerous tumor,
demonstrating that the method is capable of accurately
recovering the mechanical properties throughout the domain
even in the presence of pathology. Upon applying the model to
images of the lung within the crystal ribcage, we find that (i) the
stiffness of the lung tissue increases nonlinearly with
transpulmonary pressure across the full range of end-
expiratory to end-inspiratory pressures; (ii) there is significant
heterogeneity in material properties at alveolar resolution; (iii)
the intratumor stiffness increasingly exceeds the extratumor
stiffness across the entire range of pressures; and finally, (iv)
the variance in stiffness increases with strain for both the healthy
and cancerous tissue. While the present study characterizes the
micromechanics of the healthy lung and the lung with cancerous
tumors, the method has the potential to be applied to a wide
range of disease states such as fibrosis, COPD, and respiratory
infections.

2 Methods

2.1 Mouse model of lung cancer, crystal
ribcage fabrication, and imaging

2.1.1 Animal use ethics
All experiments conformed to the ethical principles and

guidelines under protocols set forth and approved by the
Boston University Institutional Animal Care and Use
Committee (protocol number PROTO201900086). All animal
procedures were compliant with ARRIVE guidelines. Mice were
housed in ambient temperature and humidity and 12-h light–dark
conditions under pathogen-free conditions at the Boston
University Animal Science Center. No housing or handling
exceptions were made for this study.
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2.1.2 Mice
We used 11- to 23-week-old male and female mice for

experimental procedures including healthy lung imaging and
generating models of primary cancer, as previously described
(Banerji et al., 2023). A breeding pair of transgenic
B6.129(Cg)-Gt (ROSA)26Sortm4 (ACTB-tdTomato,-EGFP)Luo/J
mice (JAX, 007676, Jackson Labs) (Muzumdar et al., 2007),
referred to by the abbreviation “mTmG”, was initially purchased
to breed a colony; that colony was the source of all animals for healthy
lung and primary cancer experiments. For the present study, which
examines two representativemice from this colony, the healthymouse
was 11 weeks old at the time of imaging. The urethane mouse, serving
as our model of primary cancer, was 23 weeks at the start of urethane
dosing and 54 weeks at the time of imaging. Between these ages, the
murine lung’s volume does not change appreciably both in our
experience and per development studies (Schulte et al., 2019).

2.1.3 Primary cancer model
We adapted a previously described protocol (Janker et al., 2018;

Sozio et al., 2021) to induce primary lung cancer in mTmG mouse
lungs using urethane (Sigma U2500). A stock solution of urethane
was prepared at a working concentration of 200mg/mL in PBS.Mice
were dosed with the urethane solution at 1 mg/g body weight, twice
weekly for 5 weeks by intraperitoneal (IP) injection. Mice were
sacrificed and lungs harvested for imaging in the crystal ribcage after
6–12 months. The maximum tumor size permitted for the study was
1.5 mm in diameter. Mice were excluded from the study after
presenting with labored breathing, hunched posture, or ruffled
fur due to tumor progression.

2.1.4 Crystal ribcage fabrication
The full development of the crystal ribcage platform is described

in our previous work (Banerji et al., 2023). Briefly, microCT scans of
C57BL/6 mouse chest cavity (courtesy the Hoffman group at the
University of Iowa (Thiesse et al., 2010; Vasilescu et al., 2012;
Kizhakke Puliyakote et al., 2016)) were segmented and refined to
create the native ribcage geometry. In successive additive
manufacturing and fabrication steps the ribcage model was
converted into the crystal ribcage mold that was thermoformed
over to create the polystyrene crystal ribcage. The internal surface
was engineered to be hydrophilic to allow the lung to glide over its
surface, as in the native ribcage. A six degree of freedom arm was
included to rotate the crystal ribcage about any axis to image across
the entire the distal lung surface using either a top-down or bottom-
up configured microscope. Because lung volume changes
significantly with age (Schulte et al., 2019), we have fabricated
different, age-specific crystal ribcages to accommodate lungs of
different sizes (Banerji et al., 2023).

2.1.5 Lung preparation
Isolated mouse lungs were ventilated and perfused as previously

described (Vanderpool and Chesler, 2011; Banerji et al., 2023).
Briefly, the mouse trachea was cannulated and the lungs
dynamically ventilated (Kent Physiosuite Mouse Ventilator, Kent
Scientific). The lungs were perfused by cannulating the pulmonary
artery and left atrium, and perfusing serum-free RPMI cell culture
medium (Corning) through the lung vasculature. After cannulating
the trachea and mouse heart, the lung–heart bloc, was excised and

placed into the crystal ribcage for ex vivomicroscopy under variable
quasi-static positive air pressures.

2.1.6 Lung microscopy
As previously described (Banerji et al., 2023), ex vivo lungs,

under quasi-static inflation conditions and within the crystal
ribcage, were imaged using (i) an upright Nikon
stereomicroscope with a 1x objective, and (ii) an upright Nikon
CSU-X1 spinning-disk confocal microscope with 1x, 2x, 4x and 10x
objectives, using NIS-Elements acquisition software and with the
environmental temperature control set to 37°C.

Z-stacks of the diseased and healthy lungs were acquired on the
confocal microscope using a 561 nm laser at 20–50 ms exposure
(50–20 frames per second) per frame. Voxel sizes varied based on
objective used, with XY resolution varying from 1–10 μm and Z step
sizes varying from 2.5–12.5 μm. Total Z-stack acquisition time was
on the order of 6–15 s for each positive-end expiratory pressure
(PEEP) condition.

Before imaging, lungs were gradually recruited by slowly raising
the intratracheal pressure to 18 cmH2O, measured using custom
sensors sensitive to 0.1 cmH2O, using a water column. The pressure
was then reduced in decrements of 1 cmH2O down to 2 cmH2O. To
allow the lung to relax to its steady-state condition, each pressure
was maintained for 1 min before imaging.

2.2 Organ-scale geometry modeling

Figure 1 summarizes the multiscale model. In short, we (i)
segment microCT images of the lung in MATLAB 2022b (The
MathWorks, Inc.), (ii) construct a geometric model from the
segmentation in SolidWorks 2021 (Dassault Systèmes), (iii)
simulate ventilation of the organ-scale model in Abaqus 2022
(Dassault Systèmes) for a range of material coefficients, (iv)
determine the coefficients that optimally reproduce the observed
pressure-distension behavior of the lung in the crystal ribcage, (v)
solve the inverse elasticity problem for the distribution of material
properties throughout the microscale domain in arbitrary units, and
finally, (vi) rescale these relative stiffnesses so that the mean value
matches the stiffness of the organ-scale model, yielding our goal of
recovering the absolute stiffnesses throughout the microscale
domain. Given a three-dimensional microCT image (Thiesse
et al., 2010; Vasilescu et al., 2012; Kizhakke Puliyakote et al.,
2016) of the mouse thorax, we first construct three-dimensional
geometric models (Figure 1A) of the mouse lung and ribcage for
finite-element analysis as follows.

2.2.1 Segmenting the lung and ribcage
Due to significant variations in the lung’s intensity within a

microCT volume, segmenting the organ by thresholding is
unreliable. To segment the lung, we thus construct a naïve,
Bayesian classifier—trained on a single, two-dimensional slice of
the image along with its ground-truth class labels—to differentiate
the lung class L from its surroundingsM (Bishop, 2006). LetΩ ⊂ R3

be the position vectors of pixels within the domain of the microCT
image (Thiesse et al., 2010; Vasilescu et al., 2012; Kizhakke
Puliyakote et al., 2016), so that x

.∈ Ω is the position of a given
voxel. The image can then be expressed as the scalar field
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I(x.): Ω → R. Let F(x.): Ω → Rn map from each of these position
vectors to the n-dimensional feature vectors extracted from
I(x.): Ω → R. In the present study, each feature vector has ten
components, φi(x.): Ω → R, each corresponding to a
transformation of the image volume by a different neighborhood
operation. These components are listed in Table 1.

LetΩL ⊂ Ω be the subset of position vectors from a given slice
of the image volume that have been manually labeled as
belonging to the lung, and let ΩM ⊂ Ω be the remaining
position vectors from the same slice. For the priors, we
assume that the prior probability P(L) � |ΩL|

|ΩL|+ |ΩM |, which
implies by the axiom of normalization that P(M) � 1 − P(L).
To estimate the likelihoods, P(x. | L) and P(x. |M), we train
Gaussian mixture models on the feature vectors F(ΩL) and
F(ΩM), respectively. Finally, from these definitions, we apply
Bayes’ theorem to recover P(L | x.), the posterior probability that
a given pixel corresponds to lung tissue.

P L | x.( ) � P x
.

∣∣∣∣∣ L( )P L( )
P x

.
∣∣∣∣∣ L( )P L( ) + P x

.
∣∣∣∣∣ M( )P M( )

(1)

The lung segmentation SL(x.): Ω → 0, 1{ } is then defined as
SL(x.) � 1 if P(L | x.)> 0.5 and SL(x.) � 0 otherwise. In the

FIGURE 1
Model description. (A) A Bayesian classifier segments the geometries of the lung and of the ribcage from microCT images (Thiesse et al., 2010;
Vasilescu et al., 2012; Kizhakke Puliyakote et al., 2016) of themouse thorax, and the segmentation is then used to construct a solid geometry in SolidWorks
for finite-element analysis. (B) After recruitment, the height, H, of the organ in the crystal ribcage is measured as the distending transpulmonary pressure
decreases from 18 to 2 cmH2O in decrements of 1 cmH2O, with the pressure at the start of the nth step denoted by Pn , and thematerial constants of
the finite-element model are chosen to reproduce this pressure-distension curve. (C) Deformable image registration determines howmaterial points, x,
within the lung tissue displace with microscale resolution in response to an increment in pressure of 1 cmH2O, producing the estimated displacements,
ureg(x), for that step, and (D) the inverse elasticity problem is solved using an implementation of the Adjoint-Weighted Equation formulation (Barbone
et al., 2010) of the inverse elasticity problem in Fenics (DOLFINx, 2023), an open-source Python framework for numerically solving differential equations
in scientific computing applications. From the measured displacements, we recover an estimate of the elastic modulus in relative units, Erelative, having
unity mean. Upon rescaling this estimate so that its mean value matches that of the organ-scale model, Eorgan, we recover the absolute stiffness
throughout the microscale domain, Eabsolute.

TABLE 1 Components of the feature vectors extracted from the microCT
volume for building the Bayesian classifier. Each feature vector has ten
components, each corresponding to a different transformation of the
image volume. To normalize the components, each component is divided
by its standard deviation.

Feature-vector
component

Description

φ1 Sobel filter with threshold 0.1 applied
to I

φ2 Sobel filter with threshold 0.4 applied
to I

φ3 Gaussian filter of variance 2 applied
to φ1

φ4 Gaussian filter of variance 4 applied
to φ2

φ5 Laplacian-of-Gaussian filter applied to I

φ6 Gaussian filter of radius 4 applied to I

φ7 Gaussian filter of radius 8 applied to I

φ8 Gaussian filter of radius 16 applied to I

φ9 The original image I

φ10 Morphological dilation of φ2
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MATLAB implementation, these maps—I(x.), F(x.), SL(x.), and
P(L | x.)—are represented as matrices.

In contrast, because the intensity of bone tissue is much higher
than that of other biological materials, the approach to segmenting
the ribcage is simpler. Here, the ribcage segmentation
SR(x.): Ω → 0, 1{ } is defined as SR(x.) � 1 if and only if the
intensity I(x.) exceeds some constant, volume-dependent
threshold. For both the lung segmentation and the ribcage
segmentation, the resulting segmentation contains multiple
connected components, corresponding to features like the
scapula, humerus, cartilaginous tracheal rings, and tissue outside
of the lung; extracting the largest connected components from these
initial segmentations isolates the desired region of interest.

2.2.2 Constructing solid models of the lung
and ribcage

From the lung segmentation SL(x.), we approximate the surface
of the diaphragm as follows. First, we find
zmax(x, y) � max z | (x, y, z) ∈ Ω ∧ SL(x, y, z)� 1}{ . We then
filter the mapping zmax(x, y) using a mode filter. Finally, we
resample points from this surface using a thin-plate smoothing
spline and save the point cloud to a text file (Hastie et al., 2009). This
point cloud represents the geometry of the diaphragm.

Next, to construct a point-cloud approximation of the ribcage,
we first find the geometric centroid of the lung, x

.
c, from SL(x.)

using the following equation.

x
.

c � 1

∑ x
.∈ΩSL x

.( )∑ x
.∈Ωx

.
SL x

.( ) (2)

For each slice of the volume, we then project rays from the
projection of the centroid, x

.
c, onto the given slice at a dense collection

of angles from 0 to 2π until each ray contacts a nonzero pixel on the
interior of the ribcage segmentation SR(x.). A thin-plate smoothing
spline is then fit to these contact points to produce a surface
approximating the ribcage, and a dense collection of points, PR,
are sampled from this surface. Because the ribcage is open near
the apex of the lung, these sampled points are artifactually peaked in
the neighborhood of the apex. To correct this, the nodes near the apex
are flattened by minimizing the following objective function.

∑
i
k zi − Zi( ) − gz( )2 + α ∇xyzi( )2 + β ∇2

xyzi( )2 + γ ∇xy zi − Zi( )( )2
+ δ ∇2

xy zi − Zi( )( )2
(3)

In this equation, zi represents the z-component of the ith node’s
position vector after correction, Zi represents the same component
before correction, k represents the stiffness of a virtual spring
anchoring a point to its original height, and gz is a body force
pulling these points toward the centroid of the ribcage. The
remaining terms serve to regularize the optimization, penalizing
the first and second derivatives of the height as well as changes in
these derivatives. The sum is taken over the points near the apex of
the lung. Finally, these point clouds of the diaphragm and ribcage
are saved as text files for subsequent import into SolidWorks.

From these point clouds, we finally construct STEP (Standard
for the Exchange of Product model data defined by ISO 10303 (Pratt,
2001)) representations of the diaphragm and the ribcage using the

ScanTo3D feature in SolidWorks. By cutting the ribcage surface with
the diaphragm surface, and filling the space enclosed between them,
we recover a simplified model of the lung that is everywhere tangent
to the ribcage. This approach guarantees a priori that, at the start of
each simulation, the lung geometry and the ribcage geometry are in
perfect contact, preventing errors in predicted strains and stresses
that may arise due to mismatch between these geometries. The STEP
representations of the ribcage and the lung are then exported from
SolidWorks.

2.3 Organ-scale finite-element modeling

2.3.1 Simulating the healthy lung
To perform finite-element simulations of the organ, these STEP

geometries are now imported into Abaqus 2022 (Dassault Systèmes).
The ribcage is taken to be a discrete, rigid part and is meshed with
rigid, triangular elements. The lung is taken to be a deformable part
and is meshed with C3D10 quadratic tetrahedral elements, which
are chosen over C3D4 linear tetrahedral elements for their tendency
to converge more quickly with coarser mesh resolutions. In
simulations of the healthy lung, the lung mesh consists of
34,541 nodes and 21,945 elements; the ribcage mesh consists of
64,093 nodes and 127,697 elements. The simulation was performed
on the Boston University Shared Computing Cluster hosted by the
Massachusetts Green High-Performance Computing Center
distributing the load over 12 processors with 4 GB of RAM per
processor, each simulation completed within 7 h.

Based on prior studies and on the lung’s microstructure and
constitutive behavior—which resembles a hyperelastic,
tetrakaidekahedral foam whose walls are comprised of elastin,
type-I collagen, and type-III collagen—the lung is modeled using
the Ogden-Hill model (Berezvai and Kossa, 2017) of a hyperelastic
foam (Vawter et al., 1979; Andrikakou et al., 2016). The general form
of the strain-energy density function is thus taken to be

U � ∑N

i�1 2μi/α2i( ) λαi1 + λαi2 + λαi3 − 3 + 1
βi

J−αiβi − 1( )( ), (4)

where αi is a dimensionless material parameter determining the
nonlinear behavior of the stress-strain relation, βi is a
dimensionless material parameter given by the Poisson’s ratio
as βi � ]i/(1 − 2]i), μi is a material parameter with units of stress
determining the shear modulus during small strains from the
reference configuration, λi is the ith principal stretch, J is the
determinant of the deformation gradient, andN is the number of
terms in the model. For simplicity, we assume that the strain-
energy density function consists of only one term, reducing the
general equation to

U � 2μ/α2( ) λα1 + λα2 + λα3 − 3 + 1
β

J−αβ − 1( )( ). (5)

This strain-energy density function, and consequently the
pressure, is linear in the parameter
μ and nonlinear in the parameter α. Therefore, if we simulate the
distensions for parameters (μ, α), then the pressures required to
produce the same distensions for any other (μ*, α) are a simple
rescaling of those for (μ, α). In practice, therefore, it is unnecessary to
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simulate ventilation for the same α but different μ to determine the
pressure-distension curve.

The boundary conditions (Supplementary Figure S2) include
immobilization of the ribcage, frictionless sliding contact between
the lung’s upper surface and the ribcage, and negative pressure on
the boundary of the lung. Although experiments involve positive-
pressure ventilation, the simulation involves applying negative
pressure to the external surface of the lung; the explanation for
this apparent discrepancy is that the governing equations are
symmetric under mutual inversion of the pressure’s sign and the
surface normal’s direction, implying that the model is equally
applicable to either mode of ventilation (Shi et al., 2022). Since
the parts have been designed a priori to be tangent everywhere,
initial contact between the surfaces is easy to establish.

While previous studies (Tawhai et al., 2009; Shi et al., 2022) have
shown that gravity significantly influences the mechanics of the
human lung, our model neglects the influence of gravity due to its
smaller role in the mouse. Consider the conservation of linear
momentum under conditions of static equilibrium, which has
been rendered dimensionless (Munson et al., 2012) by factoring
out the lung density ρlung, gravitational acceleration g, lung height
Hlung, and transpulmonary pressure Ptp.

Ptp

ρlunggHlung
∇* · P* + B* � 0 (6)

Here, ∇*, P*, and B* represent the dimensionless divergence
operator, the dimensionless tissue stress, and the dimensionless
gravitational body forces, respectively. The tissue stress is known
to be approximately equal to the transpulmonary pressure (Mead
et al., 1970). Consequently, the dimensionless number Ptp

ρlunggHlung

characterizes the magnitude of the tissue stress divergence
relative to the magnitude of gravity. In the human lung, this
dimensionless quantity remains below 1 for transpulmonary
pressures up to 20 cmH2O, indicating the significant role of
gravity in governing its mechanics. In the mouse lung, however,
this dimensionless quantity is equal to 1 when the transpulmonary
pressure is 1 cmH2O, but decreases linearly as the transpulmonary
pressure increases; once the transpulmonary pressure reaches
10 cmH2O, this dimensionless number increases to 10, indicating
that tensile forces within the tissue greatly exceed gravitational body
forces. Based on this reasoning, we posit that it is reasonable to
neglect gravity when modeling the murine lung, with the
approximation improving at higher pressures. Additional
reasoning is discussed in the results.

Finally, it is important to note that the lung exhibits hysteresis,
with its inflation characterized by one strain-energy density function
and its deflation characterized by another (Vawter et al., 1979). In
this study, we elect to model the lung’s behavior during quasistatic
deflation, so that our measurements used to calibrate the model are
taken from states of higher pressure to states of lower pressure in
near-equilibrium. The same approach can easily be repeated to
recover a model of the lung’s behavior during inflation.

2.3.2 Simulating the cancerous lung
To simulate the cancerous lung, the same process is repeated,

but rather than being constant, the material field μ(X.) is defined as

μ X
.( ) � Ae− X

.−X.tumor( )n/σn + B, (7)

where X
.

tumor is the centroid of the spherical tumor in material
coordinates, σ determines its width, n controls the shape of the decay
in magnitude with distance, and the coefficients A and B determine
the stiffness in the near and far fields. To illustrate, we note that
μ( �X) approaches A + B as �X approaches �Xtumor, and that μ( �X)
approaches B as ‖ �X − �Xtumor‖ approaches infinity. Consequently,
A + B is the stiffness at the tumor’s centroid, while B is the stiffness
far from the tumor. This material equation possesses three attractive
properties: (i) it is spherically symmetric, corresponding to our
interpretation that the equation represents a spherical tumor, (ii)
stiffness decays with distance from the centroid, reflecting our intent
that the tumor is stiffer than its surroundings, and (iii) it is
differentiable and smooth, making it easier to work with during
numerical computations. When n � 2, the field is a
multidimensional normal distribution, and as n → ∞, the field
approaches an indicator function for a ball. In our studies, we
chose n � 4.

The ribcage mesh is the same as before, while the lung mesh now
consists of 12,679 nodes and 7,766 elements. Adaptive mesh
refinement, which was necessary for convergence in the
neighborhood of the tumor, yielded a mesh with fewer elements
relative to the simulation of the healthy lung. The simulation was
performed on the Boston University Shared Computing Cluster
hosted by the Massachusetts Green High-Performance Computing
Center; distributing the load over 12 processors with 4 GB of RAM
per processor, the simulation completed within 4 h.

2.3.3 Calibrating the organ-scale finite-
element model

The finite-element simulation is repeated for different material
parameters within a neighborhood of the values yielding optimal
agreement between empirical and in silico outcomes. When the
strain-energy density function is restricted to a single term, the
parameter μ represents the material’s shear modulus during small
strains, as can be shown by a Taylor expansion of the strain-energy
density function about λ � 1. From the stress-strain curve in the
linear regime, when the strain increases linearly with distending
pressure, we can estimate the Young’s modulus as the ratio of the
increment in strain to the increment in pressure. From Figure 2C, we
estimate that incrementing the pressure from 0 kPa to 0.5 kPa yields
an increment in strain of 0.2. Following this reasoning, we find that
E ≈ 0.5 kPa/0.2 � 2.5 kPa. Assuming a Poisson’s ratio of ] � 0.2
(Concha et al., 2018), this value for the Young’s modulus
corresponds to a shear modulus of μ � E/(2(1 + ])) ≈ 1 kPa.

Based on these initial estimates, we perform simulations for μ �
1 kPa and the dimensionless parameter α ranging from six to 16. The
outcomes of these simulations are then used to construct a
calibration surface P(λH, μ, α), where λH is the stretch of the
finite-element model along the vertical axis, μ and α are the
material parameters mentioned earlier, and P is the
transpulmonary pressure required to distend the finite-element
model to this degree of stretch. From the observed distensions of
the lung in the crystal ribcage (Figure 1B) for pressures ranging from
2 to 18 cmH2O, (λobs, Pobs), we then determine the maximum
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likelihood assignments for μ and α by minimizing the following
objective function (Bishop, 2006).

∑
λobs ,Pobs( ) P λobs, μ, α( ) − Pobs( )2 (8)

This optimization procedure is not computationally intensive;
running on a personal laptop with 16 GB of RAM and a typical
CPU, for example, the process completes within seconds. The outcome
is a single, point estimate of the coefficients that characterize the organ-
scale behavior. It should be noted that, because themodel is linear in the
parameter μ, we can in practice simplify the problem of determining the
optimal parameters by transforming the objective function as follows.

∑
λobs,Pobs( ) μP λobs, 1, α( ) − Pobs( )2 (9)

This implies that, rather than sampling the function
P(λobs, μ, α), we only need to sample the function P(λobs, 1, α) in

our finite-element simulations. In contrast, because the model is
nonlinear in α, an analogous transformation is not possible for α;
this is why we limit the constitutive model to a single term.

2.4 Inverse elasticity problem at the
microscale

2.4.1 Measuring the displacements using image
registration

To measure the displacements caused by a change in distending
pressure applied to the lung at cellular resolution, we leverage
deformable image registration (Heinrich et al., 2012a)
(Figure 1C). To prepare the images for registration, we perform
an optimization to autonomously correct the bulk rotation of the
material due to the natural curvature of the crystal ribcage away

FIGURE 2
Constructing the finite-element model of the lung from a microCT volume and organ-scale pressure-distension data. (A) A Bayesian classifier
segments the mouse lung and ribcage from a microCT volume (Thiesse et al., 2010; Vasilescu et al., 2012; Kizhakke Puliyakote et al., 2016) of the mouse
thorax. From the segmentations, we construct smooth point clouds approximating the interior surfaces of the ribcage and of the diaphragm. From these
point clouds, we construct solid models in SolidWorks and then mesh those models in Abaqus. (B) Pressure versus vertical stretch, λ, is recorded for
simulations across a range of values for the material parameter α. Because the model is linear in the material parameter μ, this allows us to produce a
predictivemodel of transpulmonary pressure versus distension for awide range ofmaterial coefficients based on a limited number of forward simulations.
The parameter α controls the nonlinearity of the model. The parameter μ controls the initial slope of the model in the small-strain regime. Having
characterized the model in (B), we can solve (C) for the optimal material coefficients from stereomicroscope images of the lung in the crystal ribcage
shown in (D). (E, F) Strains and stresses in the lung throughout the finite-element model.
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from the imaging plane. Because the image-registration algorithm
does not, in practice, yield good estimates for the displacements
along the shallow depth axis, we project the rotationally corrected
images along this axis.

After preprocessing the images, we invoke the image-
registration algorithm. This algorithm, which has been adapted
from earlier literature (Heinrich et al., 2012a), formulates the
inverse-elasticity problem as an inference problem on a Markov
Random Field (MRF) to automatically determine the displacements
necessary to match images of the lung at two different pressures. The
observable variables of the Markov Random Field are modality-
independent neighborhood descriptors (MIND) extracted from the
image (Heinrich et al., 2012b), while the latent variables are the
displacements necessary to minimize the sum of squared differences
in these descriptors across the two images; edges between the latent
variables of neighboring observables represent the constraint that
displacements vary smoothly throughout the domain. Let O and T
be the original and deformed images, respectively. Furthermore, let
W(O, u) be the image produced by warping the image O using the
displacements u. Lastly, let the function D map an image to its
MIND representation. Then the registration algorithm finds the
displacements that minimize the objective function

∑
x
.∈Ω D W O, u( )( ) − D T( )( )2, (10)

where the sum is taken over the points in the image domain, Ω.
From these displacements and the material properties of the
calibrated finite-element model, we next find the distribution of
stiffnesses throughout the domain, as described in the next section.

2.4.2 Solving for the shear modulus parameter
To determine the relative stiffnesses of the material throughout

the image domain, we leverage a Python implementation of the
Adjoint-Weighted Equation (AWE) formulation of the inverse-
elasticity problem (Barbone et al., 2010). Let X

.
∈ Ω0 ⊂ R2 be the

coordinates of material points of a deformable body in the reference
configuration, and let x

.∈ Ω1 ⊂ R2 be the coordinates of the same
material points after some deformation. Because soft tissues deform
continuously, there exists a continuous function ψ: R2 → R2 such
that x

. � ψ(X.). Given the registered displacements,
u(X.) � ψ(X.) − X

.
, along with the definition of the deformation

gradient, F(X.) � ∇
X
.ψ(X.), we can recover the deformation gradient

tensor in terms of X
.

(Holzapfel, 2000).

F X
.( ) � I + ∇

X
.u X

.( ) (11)

From the deformation gradient, we next determine the Cauchy-
Green strain tensor field, C(X.), as follows.

C X
.( ) � F X

.( )T

F X
.( ) (12)

By the spectral theorem and the manifest symmetry of C(X.), we
subsequently determine the eigenvalues, λ1(X.)2 and λ2(X.)2, of
this tensor.

The areal strain, which is a scalar field representing the fractional
change in the material’s area relative to its value in the reference
configuration, is then given by

εA X
.( ) � λ1 X

.( )λ2 X
.( ) − 1. (13)

The whole organ’s stress-strain behavior is well-described by a
hyperelastic material law, where the nominal stress is the derivative
of the strain-energy function with respect to the principal nominal
stretches. If we assume that this model holds at all length scales,
down to the cellular scale and for both healthy and diseased tissue,
then we can use this same constitutive model when solving the
inverse problem. Therefore, from the same strain-energy function
introduced earlier, we recover the principal components of the first
Piola-Kirchhoff stress tensor as follows.

Pi � ∂W
∂λi

� μ X
.( ) 2

αλi
λαi − J−αβ( )( ) (14)

where β � ]
1−2]. In evaluating the above expression, we need to

compute the Jacobian determinant J � λ1λ2λ3, but image
registration only yields the stretches tangential to the lung’s
surface. Consequently, we approximate J as J ≈ (λ1λ2)3/2. Finite-
element simulations of the whole organ indicate that this
approximation generally holds within 10%–15% error
(Supplementary Figure S2).

For a hyperelastic material, it is well-known that the
eigenvectors of the stress are aligned with the eigenvectors of the
strain. Therefore, if v

.
i are the principal directions of the right

Cauchy-Green strain tensor, the first Piola-Kirchhoff stress
tensor becomes

P � P1 v
.

1 ⊗ v
.

1 + P2 v
.

2 ⊗ v
.

2. (15)
We can simplify the above expression by defining the tensor

A(X.) � P(X.)/μ(X.), leading to the following simplified form.

P X
.( ) � μ X

.( )A X
.( ) (16)

Here, μ(X.) is unknown while A(X.) is completely determined
by the displacements. At static equilibrium and in the absence of
body forces, the conservation of linear momentum requires that the
divergence of the first Piola-Kirchhoff stress, P(X.), with respect to
the material coordinates, X

.
, vanishes.

∇
X
. · P X

.( ) � 0 (17)

From our earlier simplified form for P( �X), the condition of
static equilibrium becomes

∇
X
. · μ X

.( )P X
.( )( ) � 0. (18)

In the AWE formulation of the inverse elasticity problem for a
linearly elastic material, we seek a variational solution for μ( �X) to
the above differential equation. This yields a map μ(X.) of relative
stiffnesses, whose scale is determined by the specified-mean
boundary condition (Albocher et al., 2009). After solving the
inverse problem for μ(X.), we rescale μ(X.) so that the mean
stiffness throughout the domain matches the organ-scale stiffness
determined by calibrating the finite-element model.

From Holzapfel’s equation (6.180) (Holzapfel, 2000), which is
reproduced below as Eq. 19, along with the strain-energy function
mentioned earlier, we determine the components of the elasticity
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tensor, C, at each state of deformation for each position within the
domain. In the following equation, Sa are the principal values of the
second Piola-Kirchoff stress tensor, λa are the principal stretches,
and N̂a are the principal directions of the deformation.

C � ∑3

a,b�1
1
λb

∂Sa
∂λb

N̂a ⊗ N̂a ⊗ N̂b ⊗ N̂b

+∑3

a,b�1,a ≠ b

Sb − Sa
λ2b − λ2a

N̂a ⊗ N̂b ⊗ N̂a ⊗ N̂b + N̂a ⊗ N̂b ⊗ N̂b ⊗ N̂a( )
(19)

Finally, we perform an iterative optimization to determine the
Young’s modulus and Poisson’s ratio fields that optimally
approximate the components this tensor. This Young’s modulus
is what we ultimately report as the lung’s stiffness (Figure 1D).

2.5 Statistical comparison of intergroup and
intragroup strains and stiffnesses

To characterize changes in strain and stress fields with pressure,
we discretized the domain by coherence length into 50 × 50 pixel
patches (See Supplementary Figure S5), the dimensions of which
were chosen to minimize the correlation between image patches. We
then computed the mean within each patch, along with the standard
deviation across patches within the same domain. With these means
and standard deviations, p-values were computed (i) across image
patches within the same field in order to examine the significance of
spatial variations in strain and stiffness and (ii) across pressures
within the same patch in order to examine the significance of
pressure-driven changes in strain and stiffness within a given patch.

3 Results and discussion

3.1 Validating the finite-element model

We begin by describing and assessing the finite-element model
of the organ, which constitutes the first stage of the system. The
image classifiers described in the methods yield high-quality
segmentations of the lung and the ribcage. These segmentations
are subsequently used to construct a realistic, though simplified,
model of the lung within the crystal ribcage (Figure 2A). We find
that the pressure-stretch curve of the finite-element model changes
smoothly with the parameter α of the hyperelastic foammodel; from
these curves, we construct a smooth surface approximating the
transpulmonary pressure as a function of stretch λ and material
parameter α (Figure 2B). Having characterized how the finite-
element model’s response changes with α, we solve for the values
of μ and α that maximize the likelihood of observing the distensions
that we measure in the crystal ribcage; for the data collected in the
present study, we determine that the optimal value for μ is 0.61 kPa
and for α is 12.4 (Figure 2C) through the optimization described
earlier. The general form of the hyperelastic foam model consists of
multiple additive terms. Although a greater number of terms should
in theory lead to a better approximation of the data, fitting a model
with multiple terms is complicated by the model’s nonlinearity in
the α parameter, so that it is not possible to reuse the calibration
surface to fit successive terms beyond the first. For simplicity and

because the subsequent outcome is adequate for our purposes, we
settle for a single term. These simulations consistently converge to
the same numerical equilibrium. We observe that the qualitative
distension of the finite-element model matches that of the real lung
in the crystal ribcage (Figure 2D). Despite the finite-element model’s
homogeneous material properties, its strains (Figure 2E) and stresses
(Figure 2F) grow increasingly heterogeneous across the lung’s
surface as the pressure increases, with the highest values
occurring near the spine.

3.2 Validating the multiscale model

After constructing the finite-element model and calibrating its
material constants, we proceed to evaluate the system’s predictive
performance. To do so, we modify the calibrated finite-element
model to contain a stiffer inclusion representing a tumor
(Figure 3A). From the displacements of this model over a range
of pressures, we solve the inverse elasticity problem in the vicinity of
the tumor. Across the entire range of distending pressures, we find
that the total areal strain (Figure 3B) is highly correlated with the
ground-truth stiffness (Figure 3C). We further find that the stiffness
estimate produced by our multiscale model (Figure 3D) is well-
correlated with the ground truth. Although the prediction is
somewhat biased relative to the ground truth, we find that the
mean of the predicted stiffness is strongly correlated with the mean
of the ground truth both inside and outside the tumor (Figure 3E). In
a simpler setting, our preliminary work also indicates that the
nonlinear formulation of the inverse elasticity problem accurately
predicts the stiffness distribution throughout a 2D, hyperelastic
membrane (Supplementary Figure S4). In contrast, our
preliminary work also indicates that a piecewise-linear
formulation of the inverse elasticity problem fails to do so
(Supplementary Figure S5).

3.3 Lung stiffness at alveolar resolution

After validating the model, we next apply the model to real
images of the lung in the crystal ribcage to measure the stiffness of
the lung in absolute units and at alveolar resolution. First, we apply
themodel to images of the same region of interest in the healthy lung
over a range of distending pressures (Figure 4A). To demonstrate the
accuracy of the registration, we warp them back to the reference
configuration at 2 cmH2O (Figure 4B). We observe that the areal
strain varies substantially on the length scale of an individual
alveolus, with airspaces stretching much more than the septum
(Figure 4C). Likewise, we see that the stiffness varies on a similar
length scale, and we report for the first time, a noninvasive
measurement of the absolute stiffness of the lung’s surface both
in the airspace and in the septum; stiffnesses within the airspace are
close to 1–2 kPa, while stiffnesses in the septum commonly reach as
high as 15 kPa at higher pressures (Figure 4D). These values are
consistent with measurements taken using other techniques like
atomic-force microscopy (AFM), for which estimates for the lung’s
shear modulus commonly range from 0.5 to 3 kPa (Polio et al., 2018;
Jorba et al., 2019). Another study (Perlman andWu, 2014) predicted
that the Young’s modulus of the septum ranges from 12 kPa at low
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transpulmonary pressures to 140 kPa at high transpulmonary
pressures; the lower bound is very close to our estimate, while
the upper bound is of the same magnitude as ours (Figure 4D).

Perhaps most significantly, we observe that the pattern of stiffnesses
throughout the domain is conserved across the entire range of
pressures. Finally, we note that the mean stiffness of the tissue

FIGURE 3
End-to-end validation of the whole-organ andmicroscale models. The validation includes applying the multiscale model to a finite-element model
whose material field contains an inclusion representing a cancerous tumor. (A) The material field superposed over the deformed geometry of the finite-
element model across a range of distending pressures. (B) The total areal strain at a subset of these same pressures. (C) The ground-truth stiffness
distribution throughout the finite-element model determined from material field, the hyperelastic constitutive equation, and the state of
deformation. (D) The corresponding stiffnesses in absolute units (kPa) throughout the domain determined by our model based on the simulated
displacements. (E) The cumulative areal strain and the absolute stiffness change nonlinearly with the distending pressure. (E) (i) The average, nominal areal
strain inside the tumor is consistently lower than the same outside the tumor. (E) (ii) The mean value of the ground-truth stiffness distribution is strongly
correlated with the stiffness distribution predicted by the multiscale model.
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FIGURE 4
Providing the alveolus-scale stiffness map during the full breathing cycle in the healthy lung. (A) The same region of interest within a healthy lung
from a transgenic, mTmG mouse expressing the tdTomato fluorescent label at four different distending pressures. (B) The result of computationally
deforming these images back to the lung’s geometry at 2 cmH2O using the registered displacements. The displacement maps used to deform these
images were subsequently used as inputs to the multiscale model to determine the distribution of stiffnesses throughout the healthy tissue. (C) The
areal strain relative to the geometry at 2 cmH2O. We observe that the qualitative pattern in the computed strains is largely conserved across all pressures.
Row (D) depicts the corresponding stiffnesses in absolute units throughout the domain determined by applying our model to these images. As with the
areal strain maps, the stiffness maps are qualitatively similar across the whole range of pressures. (E) The histogram and corresponding Gamma
distribution of the stiffnesses throughout the domain, demonstrating that the mean and the heterogeneity in the lung’s stiffness increase with distension.

(Continued )
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rises linearly up to 7 cmH2O, and then the stiffness quickly plateaus
with increasing transpulmonary pressure (Figures 4E, F). Based on
the scheme previously described in the methods (Supplementary
Figure S6), p-values computed using Student’s t-test indicate that the
change in strain across pressures is statistically significant with p <
0.05 from 5-7 cmH2O, 7–12 cmH2O, and 12–18 cmH2O
(Figure 4F). On the other hand, the change in stiffness is only
statistically significant at lower pressures, owing to higher variance
in the stiffness and its apparent plateau at higher pressures (Figures
4E, F). We also predict that the variance in the lung’s stiffness
increases with distension (Figure 4F); this prediction is consistent
with our previous, independent measurement of the lung’s strain-
stiffening behavior from manual measurements of alveolar areas
across different pressures (Banerji et al., 2023). To our knowledge,
this is the first time that the lung’s stiffness, and its change with
distension, has been measured under ex vivo conditions with
physiologically realistic boundary conditions in absolute units
and at alveolar resolution.

Having applied themodel to the healthy lung, we do the same for
images of the lung with cancer (Figure 5A) to characterize the effect
of cancer on the lung’s material properties. As with the previous
figure, the second row (Figure 5B) shows the result of deforming
these images back to the geometry of the lung at 2 cmH2O using the
registered displacements. Here, we observe that the strain inside the
tumor is substantially lower than the strain outside the tumor across
all measured pressures (Figure 5C). Consistent with these
observations, the estimated stiffness inside the tumor is
substantially higher than the stiffness outside at lower pressures
(Figure 5D). Whereas the majority of stiffnesses in the healthy lung
are below 5 kPa at pressures up to 10 cmH2O, a large fraction of the
tumor exceeds these stiffnesses at these same pressures (Figure 5F).
Using the method described previously (Supplementary Figure S6),
p-values computed using Student’s t-test indicate that the change in
strain across pressures within the lung tissue is statistically
significant with p < 0.05 from 5-7 cmH2O, 7–12 cmH2O, and
12–18 cmH2O, while changes in the strain within the tumor are
insignificant at 7–12 cmH2O and 12–18 cmH2O (Figure 5F). Once
again, in both types of tissue, the change in stiffness becomes
insignificant at higher pressures. On the other hand, at the same
pressure, the difference in strain and stiffness across groups
(i.e., lung or tumor) is statistically significant with p <
0.05 across all pressures.

Relative to the healthy case, we also observe that the stiffness of
the tissue outside the tumor is depressed by about 20%, suggesting
that the tumor may remodel the lung even in regions that are not
visible by light microscopy alone; whether that remodeling is due to
the tumor visible in the images or due to other tumors that are below
the lung’s surface is not clear. Moreover, while the mean stiffness of
the lung tissue increases in nonlinear fashion as in the case of the
healthy lung, the mean stiffness of the tumor increases much more

quickly (Figure 5E). In summary, this measurement represents the
first measurement of the absolute stiffness of a lung tumor under
physiologically realistic boundary conditions and at alveolar
resolution, and we see evidence of remodeling beyond the visible
bounds of the tumor. (Supplementary Figures S7–S9) depict these
same maps across the entire range of transpulmonary pressures.

3.4 A hypothesis explaining the
experimental data

To explain the preceding observations, we briefly reflect on the
biochemical structures and physical principles that determine the
material properties of the lung and solid tumors. The primary load-
bearing elements of the extracellular matrix are elastin, collagen
type-1, and collage type-3 (https://www.frontiersin.org/journals/
network-physiology/articles/10.3389/fnetp.2023.1142245/full) (Shi
et al., 2022). Although two isolated collagen helices with the
same geometric configuration should exhibit identical material
properties, determined by the interplay between intramolecular
and intermolecular forces between monomeric subunits of the
triple helix (In’T Veld and Stevens, 2008), it is well-known that
collagen arranges itself into more complex, hierarchical structures
(Fratzl, 2008).Within these structures, greater cross-linking between
individual collagen helices increases the stiffness at the tissue scale
(Fratzl, 2008). Furthermore, given that entropic effects largely
dominate in determining the material properties of rubber-like
polymer networks, the current geometric configuration of a
polymer network influences its current stiffness (James and Guth,
1944; Treloar, 1974; Holzapfel and Simo, 1996; Boyce and Arruda,
2000; Treloar, 2005). Finally, recalling that networks of parallel
springs are stiffer than networks of springs in series (In’T Veld and
Stevens, 2008), we observe that the stiffness of such a network largely
depends on its topology. Variations in any of these three
contributors can therefore lead to variations in tissue stiffness at
cellular, alveolar, and organ length scales.

Based on the biochemical structure of the extracellular matrix,
there are thus four obvious reasons why the tumor should be stiffer
than the surrounding tissue. First, unlike the healthy lung which
contains airspaces, solid tumors are generally aggregates of cells and
extracellular matrix lacking holes or gaps at the cellular length scale;
their simply connected structure therefore elevates their stiffness
relative to the multiply connected structure of the healthy
parenchyma. Second, even if we ignore the airspaces,
pathologically elevated deposition of extracellular matrix within
the tumor increases the matrix’s density compared to healthy
tissue, and greater density is naturally associated with elevated
stiffness essentially because there are more load-bearing elements
at the molecular level (Nia et al., 2020a). Third, pathologically
elevated cross-linking also increases the stiffness of the

FIGURE 4 (Continued)

(F) The nonlinear change in mean strain andmean stiffness with the distending pressure. The error bars represent the standard error from themean,
computed by discretizing the domain into a coherence length of 50 × 50 pixel patches (See Supplementary Figure S6). Computed using Student’s t-test,
p-values are shown for the change in strain (and for the change in stiffness) from 5-7 cmH2O, 7–12 cmH2O, and 12–18 cmH2O; the strains are
consistently statistically significant, while the stiffnesses are begin statistically significant and then decrease in significance. We further observe that
the variance in the stiffness increases with transpulmonary pressure, which is consistent with our previous finding on relative stiffness (Banerji et al., 2023).
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FIGURE 5
Applying the model to the lung with cancer. (A) The same region of interest within a lung presenting with primary cancer from a transgenic, mTmG
mouse expressing the tdTomato fluorescent label at four different distending pressures. These images were used as inputs to the multiscale model to
determine the distribution of stiffnesses throughout the tumor and its surroundings. (B) The result of computationally deforming these images back to the
geometry at 2 cmH2O using the registered displacements. (C) The corresponding areal strain, relative to the geometry at 2 cmH2O, induced by the
given increase in transpulmonary pressure. As with healthy tissue, the range of areal strains decreases with increasing transpulmonary pressure, indicating
an increase in tissue stiffness. Unlike healthy tissue, the tumor clearly exhibits much lower stretch than the surroundings. (D) The corresponding
stiffnesses in absolute units throughout the domain determined by applying our model to these images. At lower pressures, the tumor is significantly
stiffer than its surroundings. The intratumor and extratumor stiffnesses both increase with transpulmonary pressure. (E) The stiffness distributions show

(Continued )
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extracellular matrix. Fourth, while the polyhedral topology of the
parenchyma essentially forces the alignment of collagen fibrils
within the mid-plane of the septum and reduces the entropy of
the extracellular matrix, the collagen fibrils within solid tumors can
be arranged in arbitrary orientations; stretching a solid tumor by the
same distance should therefore affect the quantity of work required
to produce the same stretch.

Next, we discuss the physical source of strain stiffening. First, we note
that statistical thermodynamics predicts that single polymer molecules
exhibit strain-stiffening behavior; as the molecule stretches, the number
of available geometric configurations decreases, the change in entropy
between successive states of elongation increases, and thus the force
required to produce the same distension monotonically increases with
stretch (James andGuth, 1944; Treloar, 1974; Beatty, 1987; Holzapfel and
Simo, 1996). Indeed, recent Steered Molecular Dynamics simulations of
individual collagen helices predicted that these polymers exhibit strain-
stiffening, with their stiffnesses ranging from 5 kPa to 15 kPa (In’T Veld
and Stevens, 2008). At higher levels of organization, AFMstudies confirm
that individual collagen fibrils also grow stiffer with strain (Sherman et al.,
2015; Halvorsen et al., 2023), and that collagen-based biomaterials
likewise exhibit the same behavior (Fratzl, 2008; Sherman et al.,
2015). Most likely, then, the strain-stiffening behavior at the tissue
scale directly follows from the strain-stiffening behavior of individual
collagen helices at the molecular scale. This is, essentially, the central
hypothesis underpinning classical derivations of constitutive equations
for hyperelastic materials, and it motivates our choice of a hyperelastic
material law (Vawter et al., 1979; Boyce and Arruda, 2000).

The theory of percolation (Suki and Bates, 2011), which predicts
that stretch produces gradual straightening and alignment of initially
wave collagen fibers, may seem to imply that the lung’s stiffness should
grow increasingly homogeneous with increasing stretch. But our
observation that stiffness heterogeneity increases with pressure, an
effect referred to as heteroscedasticity in the statistics literature
(Bishop, 2006), directly contradicts this hypothesis. Several studies
agree with our prediction across multiple length scales. First, studies
on the strain-stiffening behavior of individual collagen fibrils have also
reported that the variance in fibril stiffness increases with strain
(Sherman et al., 2015; Halvorsen et al., 2023). Second, at the alveolar
length scale, both spring-network studies (Maksym et al., 1998;
Cavalcante et al., 2005) and finite-element analysis studies (Sarabia-
Vallejos et al., 2019) have consistently predicted an increase in septal
stiffness heterogeneity with pressure. Finally, at the organ scale,
registration-based studies (Mariappan et al., 2014; Mariano et al.,
2020) have reported the same. However, one recent multiscale, AFM
study (Jorba et al., 2019) measured heteroscedasticity in macroscopic
slices of decellularized lung tissue, but that same study did not observe
the same trend for microscopic slices. One possible explanation for this
disagreement is that tissue resection disrupts this phenomenon.
Another possible explanation is that our method computes the

variance over the stiffness both in the airspace and in the septum,
but that does not explain why the aforementioned studies have reported
the same phenomenon. Although we cannot discount that the
geometric configuration of the individual polymers within the
network somehow contributes to this behavior, the heteroscedasticity
at the tissue scale may arise, at least in part, from the heteroscedasticity
of the individual collagen fibrils comprising the extracellular matrix.
The precise explanation for the source of heteroscedasticity at the fibril
scale is beyond the scope of this work.

3.5 Addressing assumptions in our model

Although these findings represent a significant advance in our
ability to quantify the lung’s mechanical properties at cellular resolution
in both health and disease, the model makes several simplifying
assumptions that we should acknowledge. These assumptions, which
vary in the magnitude of their potential impacts, include (i)
approximating the Jacobian as (λ1λ2)1.5 when solving the inverse
elasticity problem, (ii) adopting the same constitutive equation at the
alveolar and organ length scales, (iii) assuming that the Poisson ratio is
0.2 at both length scales, (iv) neglecting higher-order features of the
lung, such as interlobular fissures and airways, when constructing the
finite-elementmodel’s geometry, (v) assuming that the lung’s stiffness is
generally homogeneous at the organ scale, (vi) treating the airspace as a
tensile element when solving the inverse problem, (vii) assuming
isotropicity when solving for the Young’s modulus, and (viii)
neglecting the influence of gravity on the lung’s deformation.

In Supplementary Figure S8, assumption (i) was shown to exert a
relativelyminor effect, typically introducing less than 10% error into our
approximation of the Jacobian determinant. To address assumption (ii),
we observe that the extracellular matrix is the primary determinant of
the lung’s material properties across all length scales (https://www.
frontiersin.org/journals/network-physiology/articles/10.3389/fnetp.
2023.1272172/full, https://www.frontiersin.org/journals/network-
physiology/articles/10.3389/fnetp.2024.1396383/full). While studies
have shown that the lung’s macroscale stiffness is significantly less
than the stiffness of individual lung cells (Sicard et al., 2018), owing to
the porosity of the tissue, our approach ensures that the average
stiffness, computed across many alveoli over both the airspace and
the septum, matches the organ-scale stiffness. As the number of alveoli
in the calculation approach the total number of alveoli in the lung, this
average must approach the whole lung’s average stiffness.
Consequently, we argue it is reasonable to enforce equality between
these quantities. This same reasoning also justifies assumption (iii).

Assumption (iv) is, in part, justified on the basis that parenchyma
comprises over 95% of the lung’s total volume (West and Luks, 2020),
which implies that the effect of stiffer airways on the deformation
should be small in the distal parts of the lung. On the other hand,

FIGURE 5 (Continued)

that the tumor is consistently stiffer surrounding tissue across all pressures, with tumors having higher maximum stiffness and greater variability in
stiffness. (F)Compared to surrounding tissue, the tumor deforms less with increasing transpulmonary pressure ((F) (i)); stiffensmore ((F) (ii)), notably being
4.8 times stiffer at 18 cmH2O; and exhibits greater variance in stiffness, mirroring trends seen in earlier figures. Computed using Student’s t-test, p-values
are shown for the change in strain (and for the change in stiffness) from 5-7 cmH2O, 7–12 cmH2O, and 12–18 cmH2O. Additionally, p-values are
shown comparing the strain and stiffness of the lung tissue versus the tumor tissue at pressures 7 cmH2O, 12 cmH2O, and 18 cmH2O; the differences
between classes are statistically significant for all pressure changes.
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evidence suggests (Lee et al., 1983) that the interlobular fissures relieve
stress that may develop on the surface of the lung in their absence. This
assumption, therefore, may affect the accuracy depending on the
proximity to a fissure.

Assumption (v) is challenged by MRE studies (Marinelli et al.,
2017) that reveal significant regional variation in lung compliance at the
organ scale. For healthy individuals, this study reported that the mean
shear modulus was 0.849 ± 0.250 kPa at residual volume and 1.33 ±
0.195 kPa at total lung capacity. Consequently, the standard deviation
decreases from about 30% of themean value at residual volume to about
15% of the mean at total lung capacity. Thus, we may expect our
stiffness maps to incur similar errors due to this assumption. To model
the effect of regional variations in lung stiffness, future studies may
adapt this model in two ways, either (a) modeling spatial heterogeneity
in parenchymal stiffness by adjusting the material field modeling (e.g.,
Figures 3A, B) finer geometric features like fissures and conducting
airways. Because our images are collected within microns of the pleural
surface, we suspect that the airspace region in the images effectively
exhibits some resistance to deformation, justifying assumption (vi);
even if the airspace lacks effective stiffness, that should be reflected by a
low value in the stiffness mapping, which is exactly what is shown in
Figures 4, 5. Finally, in support of assumption (vii), we performed
simulations of the finite-element model with an embedded inclusion,
and we found that assuming isotropicity (Supplementary Figure S10)
led to similar results as assuming orthotropicity (Supplementary Figure
S11), with both models in reasonable agreement with the ground truth
(Supplementary Figure S12).

Assumption (viii), the decision to neglect gravity in modeling the
lung, was addressed previously in themethods. Briefly, although previous
studies (Tawhai et al., 2009; Shi et al., 2022) have shown that gravity
significantly influences the mechanics of the human lung, similar studies
have not been done in the mouse. We offer two arguments, however, in
support of our position. First, these previous studies on the human lung
suggest that gravity is insignificant to the solid mechanics of the mouse
lung. One recent theoretical analysis (Shi et al., 2022) on the human lung
distilled the influence of gravity on alveolar mechanics to the weight of
tissue below a given alveolus; consequently, the study found that the
effects of gravity aremore significant near the apex than the base. Because
the weight of themouse lung is about 1 G, and because the stiffness of the
mouse lung is similar to that of the human lung, its weight according to
this model should not significantly influence its mechanical behavior.
Using CT images to measure regional variations in lung density, another
study (Tawhai et al., 2009) showed that gravity causes the density of the
human lung to increase linearly with vertical displacements toward the
Earth; critically, the study showed that lung density only changes by a few
percent of the mean with displacements near 1 cm. Because the density
and stiffness of the mouse lung is similar to that of the human lung, we
likewise expect gravity to have only a modest influence on tissue density
in the mouse. Second, as described earlier in the methods, dimensional
analysis (Munson et al., 2012) reveals that the stresses developed within
themouse lung are significantly larger than the hydrostatic stresses arising
due to gravity.

4 Conclusion

We have built the first model capable of measuring the absolute
stiffness of the lung at microscale resolution and under physiologically

realistic boundary conditions. We have shown that our model can
measure the nonlinear stiffening of the lung with increasing stretch, and
that the relative stiffness distribution throughout the domain is, at least
in the case of the healthy lung, largely conserved across a range of
pressures, giving further confidence that our prediction corresponds to
reality since these stiffness maps have been produced by completely
different displacement maps. Furthermore, we have shown that our
model’s quantitative predictions are consistent with state-of-the-art
measurements based on AFM. Finally, we have demonstrated the
capability of our model to identify and measure the stiffness of
tumors within the lung tissue. Here, we have shown, for the first
time, that the tumor exhibits similar strain-stiffening behavior to the
lung tissue itself, but that the tumor stiffens more substantially than the
surroundings; in the state of greatest distension, for example, the
tumor’s mean stiffness is 4.8 times greater than that of the
surroundings. Additionally, because the variance in the stiffness
increases with transpulmonary pressure, we have shown that the
heterogeneity in the stiffness distribution likewise increases with
pressure, with greater heterogeneity in the tumor than in the
surroundings. Although applied here to a mouse model of the lung,
the theoretical framework introduced in this study is applicable to other
species and to other imaging modalities. In the research setting, for
example, the crystal ribcage and this analytic methodology may be
applied to transplant-rejected human lungs, whichwould in turn enable
the first real-time visualization and mechanical characterization of the
human lung at alveolar resolution across its entire surface. In the clinical
setting, the model could be calibrated against CT or MRI images of the
lung during the ventilation cycle, allowing clinicians to accurately and
quantitatively measure the stiffness of solid tumors for diagnosis,
staging, evaluation of treatment response, and longitudinal
monitoring of disease progression.
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