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Pulmonary fibrosis is a deadly disease that involves the dysregulation of
fibroblasts and myofibroblasts, which are mechanosensitive. Previous
computational models have succeeded in modeling stiffness-mediated
fibroblasts behaviors; however, these models have neglected to consider
stretch-mediated behaviors, especially stretch-sensitive channels and the
stretch-mediated release of latent TGF-β. Here, we develop and explore an
agent-based model and spring network model hybrid that is capable of
recapitulating both stiffness and stretch. Using the model, we evaluate the
role of mechanical signaling in homeostasis and disease progression during
self-healing and fibrosis, respectively. We develop the model such that there
is a fibrotic threshold near which the network tends towards instability and fibrosis
or below which the network tends to heal. The healing response is due to the
stretch signal, whereas the fibrotic response occurs when the stiffness signal
overpowers the stretch signal, creating a positive feedback loop. We also find that
by changing the proportional weights of the stretch and stiffness signals, we
observe heterogeneity in pathological network structure similar to that seen in
human IPF tissue. The system also shows emergent behavior and bifurcations:
whether the network will heal or turn fibrotic depends on the initial network
organization of the damage, clearly demonstrating structure’s pivotal role in
healing or fibrosis of the overall network. In summary, these results strongly
suggest that the mechanical signaling present in the lungs combined with
network effects contribute to both homeostasis and disease progression.
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Introduction

Fibroblasts and myofibroblasts play an essential role in tissue
healing and are disrupted in pulmonary fibrosis (PF), a deadly
disease. While healing represents the process whereby tissue returns
to its homeostatic condition, PF involves the aberrant remodeling of
parenchymal tissue, which produces diverse characteristic structures
such as honeycombing and dense fibrotic patches (Tanabe et al.,
2020). The rate at which PF progresses is also diverse. For example,
idiopathic pulmonary fibrosis (IPF) results in an average lifespan of
3–5 years after diagnosis and has no treatment (Nathan et al., 2011).
In contrast, severe post-COVID pulmonary fibrosis (PCPF)
sometimes resolves (Lorx et al., 2022), and PF caused by
ventilation-induced injuries during acute respiratory distress
syndrome can also heal either partially or completely (Herridge
et al., 2011). Nevertheless, the mechanisms leading to these different
forms of PF, and exactly how fibroblasts and myofibroblasts are
involved, are still not fully understood.

It is well established that substrate stiffness can affect how
fibroblasts deposit collagen and proliferate, which can result in
positive feedback leading to fibrosis (Liu et al., 2010; Moore and
Herzog, 2013; Lin et al., 2017; Tschumperlin et al., 2018). In a
mechanically dynamic organ such as the lung, the mechanical
stimulus provided by cyclical stretch also affects fibroblast
behavior by, for example, activating stretch-regulated channels
in the cell membrane (Murata et al., 2014). Stretch also
contributes to the release of latent TGF-β (Klingberg, F. et al.,
2014; Ezzo and Hinz, 2023; Hinz, 2009), a cytokine essential for
wound healing that is involved in the transformation from
fibroblasts to myofibroblasts (Hinz, 2009). Signaling pathways
such as YAP and MRTF-A have also been linked to fibroblast
proliferation in response to cyclical stretch (Cui et al., 2015). YAP
is essential in regulating ECM deposition (Liu et al., 2015), while
MRTF-A contributes to the transition of fibroblasts into a
myofibroblast phenotype (Wagner et al., 2020). These various
mechanotransduction mechanisms are not only important
regulators of fibroblast differentiation and behavior, but also
contribute to disease progression in PF.

The above considerations suggest that lung parenchymal
homeostasis is maintained via a balance of
mechanotransduction signals related to substrate stiffness and
stretch, and that when the system is perturbed sufficiently, the
self-healing nature of tissue is overpowered by progressive
stiffening, leading to PF. We have previously developed several
computational models of PF pathogenesis that support this
hypothesis (Wellman et al., 2018; Suki et al., 2020; Suki et al.,
2020; Hall et al., 2023). In these models, elastic spring networks
mimic the structure and mechanics of the parenchymal tissue,
while autonomous agents mimic the cellular processes that act on
the tissue. These previous models, however, have not investigated
how mechanical stretch affects fibroblast and myofibroblast
behavior and the emergent pathology that results, and therefore
they fail to capture critical features of a dynamic organ like the
lung. Therefore, in the present study, we developed an agent-based
model (ABM) operating on a non-uniform network of elastic
springs to investigate how stretch and substrate stiffness
interact to influence fibroblast and myofibroblast behavior, and
how this potentially leads to the development of PF.

Materials and methods

We developed a computational model in which agents, which
represent fibroblasts, move around randomly on a spring network
that represents the extracellular matrix (ECM) of the lung. Agents
become activated according to the strains and stiffnesses of the
springs they traverse during their travels. Positive activation causes
an agent to increase the stiffness of any spring it crosses
(representing deposition of collagen). A positively activated agent
also has a higher likelihood of proliferating. Negative activation
causes an agent to reduce the stiffness of any spring it crosses
(representing digestion of collagen), and to have a higher likelihood
of death. An activation of zero corresponds to an agent at
equilibrium.

First, a set of discrete difference equations were developed to
drive the behavior of the agents, and the behavior of these equations
was evaluated independent of a network. Then, these equations were
applied to agents on a network to observe what emergent properties
the network would provide.

Agent-spring interactions

The springs in our network model of ECM are Hookean, each
with its own spring constantK. If we assume that the value ofK for a
given spring is proportional to its cross-sectional area, A, as would
be the case for a strip of lung tissue, then

K � EA

L0
(1)

where E is Young’s modulus and L0 is the resting length of
the spring.

Whenever an agent traverses a spring during a time step, it
evaluates K for that spring (corresponding to the way that cells
probe substrate stiffness via their integrins). K then makes a
contribution to the agent’s level of activation, aK, for the
subsequent time step according to

aK � K( )β
K( )β + 1

�
EA/Lo
EAt/Lo

( )
β

EA/Lo
EAt/Lo

( )
β

+ 1
(2)

where At is a cross-sectional area constant near which the system
becomes unstable. We assume E and L0 are both constant so that
variations in spring stiffness are determined solely by variations in
cross-sectional area. The uniform L0 arises from the assumption that
the cells themselves all have similar length, and regardless of the
length of the fibers they are interacting with, the length that the cells,
and hence the corresponding agents, perceive is limited to their own
length, L0, which is constant. With these assumptions, Eq. 2
simplifies to

aK �
A
At
( )β
A
At
( )β + 1

(3)

Eq. 3 is a Hill function (Hill, 1910), which makes aK self-limited.
Thus, although aK is always positive, it cannot increase without
limit, as must be the case since fibroblasts have finite resources.
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Similarly, the strain, ε, of the spring that an agent traverses also
makes a contribution to the level of agent activation, representing
activation via the release of ECM-bound latent TGF-beta, (Hinz,
2009; Ezzo and Hinz, 2023), stretch-sensitive channels (Murata
et al., 2014), and signaling pathways such as YAP and MRTF-A
(Cui et al., 2015). This contribution is proportional to

aε �
ε
εs
( )γ
ε
εs
( )γ + 1

(4)

where εs is the target (homeostatic) strain at steady-state and we
arbitrarily set γ � 1.

The total activation of an agent when it traverses a spring of
stiffness K and strain ε is a weighted sum of the contributions from
stiffness and strain thus:

a � w1aε + w2aK − c (5)
where c is a constant that causes a = 0 when ε = εs and A = A0, and
the weighting factors w1 and w2 determine the relative influences of
strain and stiffness, respectively, on agent activation, and can be
considered as reflecting genetic and/or environmental
predispositions towards different forms of fibrosis. For all the
simulations in the present study, we set w1 � 1 and varied w2 .
The total activation can thus be either positive or negative described
by a Hill function that is self-limited.

At homeostasis, ε � εs, A � A0, and a � 0. Substituting Eqs 3, 4
into Eq. 5 under these conditions gives the constant c as thus:

c � w1

εs
εs
( )γ
εs
εs
( )γ + 1

+ w2

A0
At
( )β
A0
At
( )β + 1

� 1
2
w1 + w2

A0
At
( )β
A0
At
( )β + 1

(6)

The tissue at homeostasis is well below the fibrotic threshold,
meaning A0 ≪At, in which case the second term in Eq. 5 is much
less than the first term (for values of w2 that are of a similar order of
magnitude to w1). This gives c ≈ 0.5. We found by trial and error
during initial testing that the stiffness Hill function (Eq. 3) needs to
be steep at low values of A in order to obtain both the healing and
fibrotic responses, so we set β � 3.

At each time step, j, each agent modifies the value of A for the
spring it traverses, so A is updated according to

Aj+1 � Aj + PDjaj (7)

where P is a scaling constant, and Dj is the current density of
agents on the network, defined as the average number of agents
per spring. Note that in the difference equations, Dj is modeled
explicitly (see Eq. 10 below), while in the network model, Dj

changes through the probabilistic appearance and disappearance
of discrete agents. Each spring in the network model has an
individual Aj, and each agent has an individual aj that is
modulated by the spring it crosses, so Dj can be considered as
the probability that an agent will cross a spring in the network
during a given iteration. The values of a for springs not traversed
by an agent during the j th time step do not change.

Since a may be either positive or negative, ΔAj � PDjaj may
also be positive (corresponding to collagen deposition) or negative
(corresponding to tissue digestion). If repeated application of Eq. 7
ever produces the condition Aj ≤ 0, the spring in question is
considered to have ruptured and is removed from the network so

that it no longer provides a migration pathway for agents. Isolated
springs around which all connecting springs have ruptured are also
removed. Similarly, agents are removed if they become stranded on
nodes that are unconnected to any springs.

For the set of difference equations, it is necessary to model the
strain of a hypothetical spring. Therefore, a spring under a constant
external force was utilized, and the strain at any given step for a
change in Aj was modeled thus:

εj+1 � εj + A0εs
Aj

(8)

The corresponding agent activation at the j th time step is, from
Eq. 5, updated according to

aj+1�aj+r w1aε,j+w2aK,j−aj− c( )�aj 1−r( )+r w1aε,j+w2aK,j− c( )
(9)

where aK,j and aε,j are given by Eqs 3, 4, respectively, for each agent
according to the stiffness and strain of the spring they just crossed.
The constant 0≤ r≤ 1 defines the memory of the agent (Wellman
et al., 2018; Suki et al., 2020). Having r � 1 means that activation is
updated to a new value that depends only on the current values of
spring stiffness and strain. When r< 1, activation remembers a
fraction of its previous value. For this model, we used r � 0.5. (For
further details, see Supplementary S.1–S.5).

Although we do not define agents as corresponding explicitly to
either fibroblasts or myofibroblasts, agents with a close to zero are
considered to be fibroblasts, while agents with a approaching the
maximum possible value are considered to be myofibroblasts.
Agents with intermediate values of a are considered to be in
transition. Both fibroblasts and myofibroblasts increase in
number in PF (Moore and Herzog, 2013), although the source of
myofibroblasts is still debated (Moore and Herzog, 2013). For
simplicity, we assumed that myofibroblasts arise only via
differentiation of fibroblasts, while fibroblasts can migrate into
the lung tissue from surrounding regions. Accordingly, agent
density is updated according to (see Supplement for further details):

Dj+1 � Dj + p1n

s
+ p3aj − p2[ ]Dj (10)

where p1 is the probability that an agent will appear spontaneously
at any given node in a given time step (representing migration from
outside the tissue), n is the number of nodes in the network, s is the
number of springs in the network, p2 is the probability that any
given agent will die at a given time step, and p3 is the probability that
an agent will divide into two agents. (For further details, see
Supplementary S.6–S.11). This equation has two steady-states for
which the change inDj is zero, one for the fibrotic response and one
for the self-healing response. When aj � 0, the change in Dj

approaches zero exponentially for the homeostatic state. If aj is
at its maximum value, the change in Dj will also approach zero for
the fully fibrotic state, representing how activated myofibroblasts
resist apoptosis (Ezzo and Hinz, 2023). The upper limit on Dj

represents the finite carrying capacity of tissue for
fibroproliferative cells.

Eqs 7–10 comprise a set of coupled finite difference equations
that represent the interactions between a collection of agents and the
springs they traverse.
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Spring network representation of ECM

At each time step as themodel is run, these equations are applied to
each agent and to each spring that is traversed by an agent. Of course,
not all springs in the network are necessarily visited by an agent in a
given time step, but all springs will be modified if the model is run for
long enough. The overall behavior of the model, therefore, is
determined not only by the dynamics inherent in Eqs 7–10 but also
by the local dynamics of agent movement over the network.

We created a non-uniform spring network to represent the
parenchymal tissue using a method we have described previously
(Hall et al., 2023). Briefly, Poisson Disk Sampling was used to create
a semi-organized 2D Voronoi diagram. The edges of the diagram
represented springs with uniform values of A and E, with L0
proportional to edge length, allowing K for each spring to be
calculated from Eq. 1. This produced a network with uniform strain.
This initial configuration of the network was not at equilibrium,
however. The equilibrium configuration was found by simulated
annealing in which the nodes were moved in random directions by
progressively decreasing amounts until the net force on each node was
minimized, similar to the energy optimization method we have
described previously (Cavalcante et al., 2005; Hermann, 2021; Hall
et al., 2023) As the model simulations progressed, the continually
changing values of A throughout the network caused its equilibrium
configuration to change. Simulated annealing was used to determine the
new configuration at each time step.

In the network, the strain on each spring is a result of the solved
equilibrium state of the network, and is solved at each iteration. This
static strain is used as an approximation of the cyclical strain to limit
computational requirements. This equilibrium strain is different from
the single element approximation from Eq. 8 due to heterogeneity in
strain caused by network effects. In order to recapitulate the reduction
in lung volume that occurs in PF as the lungs get stiffer (Plantier et al.,
2018), we applied non-fixed boundary conditions to the network by
applying external forces to the boundary of the network that were equal
to the reaction forces of the pre-stressed network. These reaction forces
were kept constant throughout the simulations. Tissue injury was
simulated by modifying the value of A for a given percent of
springs in the network.

Network functionality was quantified in terms of a strain-energy
function previously described in Kim et al., 2023. Briefly, the network
underwent 5 accumulating stretches of 2% strain each, and the energies
in each spring in the network following each stretch were summed. The
resulting strain-energy plot was fit with a second-order polynomial
function, and the second order constant was as a measure of overall
network stiffness. Each network was normalized by its initial stiffness
such that the changes in stiffness across all networks were comparable.

We created synthetic histologic images of lung tissue by drawing
the networks with edge thicknesses proportional to A. The synthetic
images were compared to histologic images of lung tissue with IPF
obtained from Tanabe et al., 2020.

At least nine network were run for each w2 value. Each model
simulation was run for 2000 iterations, which corresponds to a
duration in real time of approximately 5 months (Supplementary
Eq. S12) based on measured migration speeds of fibroblasts on two-
dimensional gels (Tschumperlin, 2013). Table 1 lists all the model
parameters, including those assigned values following initial model
testing based on the recapitulation of reasonable physiologic

behavior. Those not assigned specific values as discussed above
were assigned values following initial model testing based on the
recapitulation of reasonable physiologic behavior.

Results

In order to understand the dynamics inherent to the difference
equations (Eqs 7–10), the initial conditions provided in Table 1 were
used, and the system was run for 2000 iterations. Injury was inflicted by
altering the value of A to make the spring either softer or stiffer. We
found that this simple system is capable of exhibiting both self-healing
and fibrotic responses, as shown in Figure 1. When the system is in the
process of healing, the key variables K, a, ε, and D all return
asymptotically to their steady-state (homeostatic) values at rates that
depend on the severity of injury. This applies when injury involves
either stiffening or softening of the spring. However, there is a threshold
level of fibrotic injury above which the system does not heal. Instead, a
approaches an elevated maximum value that depends on the values of
w1 and w2 in Eq. 7. In addition, A grows without limit, ε drops toward
zero, and D approaches its maximum allowable value. We found this
bifurcation behavior to be qualitatively similar for three different weight
values of w2, demonstrating a degree of model robustness in terms of
the relative influences of genetic and environmental factors on fibrosis
development (Eq. 8). However, we found the system becomes unstable

TABLE 1 List ofmodel parameters and variables. Values are given to symbols
representing parameters.

Parameter Meaning Value

a Activation ~

A Cross-sectional Area ~

Ao Initial cross-sectional area 1

AT Cross-sectional area fibrotic threshold 10

D Agent Density (agents/node) ~

Do Initial Agent Density 0.3

Dmax Maximum Agent Density 3

ε Spring Strain ~

εo Initial Spring Strain 1

εs Target Spring Strain 1

w1 Strain weight 1

w2 Stiffness weight 1–3

r Agent Memory 0.5

γ Steepness of Strain Hill Function 1

β Steepness of Stiffness Hill Function 3

c Steady-State Constant ~

P Production Constant 0.2

p1 Probability of new Agent appearing 0.01

p2 Probability of Agent Dying ~

p3 Probability of Agents Dividing ~
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when w2 � 0.5 because this causesD to grow infinitely due to dividing
by zero in the p3 parameter (Supplementary Eq. S11). On the other
hand, w2 < 0.5, the system always heals because the fibrotic response is
always weaker than the healing response. Thus, for the model to have
the capacity to exhibit both fibrotic and self-healing responses to injury,
we must have the condition that w2 > 0.5 (w1 being maintained at a
value of 1).

Next, we evaluated the behavior of the complete spring network
model with the difference equations applied to mobile agents. As with
the difference equations, we found that the complete model is also able
to self-heal or become fibrotic depending on the severity of the tissue
injury, with dynamics that depend on both the amount and severity of
injury (Figures 2A–C). The Network heals following all softening
injuries and those minor stiffening injuries that are well below the
fibrotic threshold, while the network becomes progressively fibrotic for
major stiffening injuries clearly above the fibrotic threshold.

While the difference equations exhibit a sharp bifurcation
behavior between healing and fibrosis, the network model has a
range of moderate injury that can lead to either healing of fibrosis. A
fibrotic response in this range can be caused, for example, by some
springs that are initially very close to the fibrotic threshold being
pushed over the threshold by the evolving behavior of nearby
springs, as illustrated in Figures 2B–F.

We found that w2 has a marked effect on fibrotic phenotype as
characterized by fibrotic sparseness, honeycombing, and growth of
dense fibrotic patches. Figure 3 illustrates how these features progress as
w2 increases relative tow1. Figure 4 shows that these features are highly
reminiscent of histologic features seen in actual histologic images of
lung parenchyma at varying stages of disease progression.

Figure 5 shows that the progression of fibrosis in the model is
characterized by progressive increases in network stiffness (Figure 5A).
The networks that were weighted toward a greater fibrotic response
(greater values of w2 in Eq. 8) developed fibrosis more quickly. A
Kruskal-Wallis test determined that the populations of responses in
network stiffness obtained under the different conditions shown were
not of the same distribution (Figure 5B, p << 0.001). We also
determined the percentage of springs rupturing, relative to the initial
number of springs, as fibrosis progressed (Figure 5C), and found that
the final populations were not all of the same distribution (Kruskal-
Wallis test, p << 0.001, Figure 5D). Interestingly, the percentage of
broken springs does not exhibit a monotonic relationship with w2

(Figures 5C,D); there is little breakagewhen the propensity for fibrosis is
low (w2 is small), but breakage also decreases as w2 increases above a
certain level.

Figure 6 shows how agent activation level and density vary
across the network as a function of time. The parameters of all

FIGURE 1
Difference equations responses to perturbations. Each color represents a response to a pertrubationmodifying the cross-sectional area (A), ranging
from softening (blue) to stiffening (red). Each row corresponds to increasingly fibrotic reactions due to increasing stiffness weight (w2). The first column
shows the cross-sectional area responses to perturbations, the second column shows the activation (a) response, the third column shows strain (ε)
response, and the fourth column shows the agent density (D) response. In each response, we see healing, where the parameter returns to its initial
value, or fibrosis where the parameter either saturates to a non-initial value, or changes without bound. Examples of healing and fibrosis in the Moderate
Sensitivity are indicated by green arrows and red arrows respectively. These responses show the conditional stability of this self-healing model. The
orange arrows in the first column show the lowest injury modifier that results in fibrosis, and as the sensitivity increases, the lowest injury modifier
decreases, showing a lower threshold for a fibrotic response systems with a greater stiffness weight.
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agents across every simulation of matching w2 were pooled for
analysis in Figures 6A,C, E. In the networks with the smallest
values of w2, agents remained in low activation (Figure 6A).
There were too few highly-activated agents to generate any
particular assembly pattern across the tissue (Figure 6B). For
intermediate values of w2, a more substantial secondary
population of highly activated agents appeared (Figure 6C),
and these were concentrated near fibrotic regions of the
network (Figure 6D). When the value of w2 was high, the

population of low-activation agents essentially disappeared,
while the activated population increased both in number and
activation level (Figure 6E) and were so numerous that again
no particular clustering pattern was evident (Figure 6F). The
residual low-activation agents are largely a result of the agents
appearing spontaneously at nodes. In an analysis of the final
population of agents across all models, a Kruskal-Wallis test
determined the populations were not of the same distribution
with p << 0.001 (Figure 6H).

FIGURE 2
Diverging behavior resulting from network effects. (A) Result of 20 networks where 20% of springs were stiffened to a cross-sectional area (A) 5x the
initial cross-sectional area. Green plots indicate self-healing, returning near to the original stiffness, red plots indicate fibrotic responses. (B) and (C)
Examples of networks with fibrotic and healing responses respectively. Left shows networks at injury, and right shows networks at 2000 iterations. (D–I)
show network phase diagrams corresponding to the networks shown in (B) and (C), where green is self-healing phase, pink is fibrotic phase, yellow is
mixed-behavior phase, and steady-state is at the point (1,1). Each red star represents the state of a given spring, and the black line represents the behavior
of the difference equations. (D) and (G) show spring states at injury, where injured springs are shown in red boxes. (E) and (H) show these red boxes
indicated in panels (D) and (G), and the red arrow indicates a spring that has crossed into the fibrotic phase, causing that network to become fibrotic at
2000 iterations. (F) and (I) show spring state progressions in panels (D) and (G) at 2000 iterations. (D) has turned fibrotic, as many springs can be seen in
the fibrotic phase and away from steady-state, while (I) has healed, as all the springs have returned to near the steady-state. For additional details related
to panel D, see Supplementary Figure S4.
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Discussion

Pulmonary fibrosis is a deadly disease characterized by
micromechanical tissue changes. The prevailing hypothesis
identifies fibroblasts and myofibroblasts as the key mechanosensory
cells involved in disease progression. These cells respond to tissue
stiffening by activation, leading to extracellular matrix (ECM)
deposition. Less well known is the cellular responses to stretch.
Accordingly, we developed an ABM-spring network hybrid model
that includes both stiffness and stretch motivated behaviors, and
evaluated the resulting structural and mechanical properties of the
resulting networks. The main results can be summarized as follows: 1)
strain-driven mechanotransduction is important in the inherent self-
healing ability of the tissue; 2) sufficient regional stiffening
prohibits self-healing and the tissue becomes fibrotic via a
positive feedback loop; 3) there is a bifurcation in the system
because, depending on the initial configuration of regional
stiffening, the system can self-heal or turn fibrotic; and 4)
fibrotic phenotype depends on the balance between stiffness-
dependent and stretch-related mechanosensitive pathways.

Comparison to previous models

Within the processes of self-healing and fibrosis are myriad
interactions between cell types and systems that result in the
behaviors and structures observable in tissue (Ezzo and Hinz,
2003; Moore and Herzog, 2013; Pally and Naba, 2024). Many of
these interactions are not fully understood, therefore in this paper
we did not endeavor to include each of these, but instead created a
lumped-parameter model (Brown et al., 2011) that focuses on broad
behaviors such as the deposition and digestion of tissue in response
to stiffness and stretch. We also focused primarily on 2 cell types,
specifically the transition of fibroblasts into myofibroblasts. This
lumped-parameter model serves as a means of broadly
understanding the contribution of stretch-mediated behavior in
addition to the previously established stiffness-mediated
behaviors in fibroblast-like agents (Wellman et al., 2018).

In a previous PF model, Wellman et al., 2018 developed a
stiffness-motivated migration ABM on a 2D hexagonal spring
network with agents’ behavior defined by spring stiffness. The
Wellman model included wall rupture, and found that the
distribution of Low Attenuation Areas (LAAs) matched that in
CT scans, however, it was not able to heal itself or maintain steady-
state; that is to say, the Wellman model could only progress towards
fibrosis. Suki et al., 2020 developed a self-healing model on a 2D
hexagonal network, however induced fibrosis required a constant
perturbation of the agents, rather than fibrosis induced from a single
insult. Bates et al., 2007 and Hall et al., 2023 explored fibrosis on 2D
hexagonal networks and 3D non-uniform networks, respectively,
and both observed clustering and mechanics seen in PF, but neither
included rupture, gradient in agent behavior, or self-healing.

While many of these previous studies have utilized uniform
networks, such as square and hexagonal lattices, it has been shown
that non-uniform networks have more geometric and mechanical
similarity to lung tissue (Hall et al., 2023), therefore a non-uniform
network was used for this model. Comparison of broad
characteristics of this fibrotic model appeared similar between

non-uniform and hexagonal networks (Supplementary Figure S3).
Furthermore, previous models have modeled agents as
preferentially migrating towards stiffer substrates based on
fibroblast behavior (Liu et al., 2010; Wellman et al., 2018),
however, there is the potential for cells to migrate towards
high-strain or injured tissue (López-Martínez et al., 2018). To
maintain the simplicity of the model, random migration was used
in all cases.

Each of these previous models contributed key insights into the
mechanics of lung tissue and PF pathogenesis, however, each had
key limitations. Furthermore, no previous computational models
have investigated how mechanical stretch affects fibroblast and
myofibroblast behavior, and the resulting emergent structural
behaviors. This indicates that a model that only includes
behavior defined by stiffness does not capture all the mechanical
properties inherent to a dynamic organ like the lung. The
model developed in this work was able to recapitulate many of
the essential behaviors, such as both healing and fibrosis, and
structures such as honeycombing and fibrotic clustering, while
introducing new behaviors, such as shrinkage and clear
differentiation. These behaviors are explored more thoroughly in
the following sections.

Stretch optimization and structural
heterogeneity

A fibroblast’s primary function is the maintenance of the
extracellular matrix (D’Urso and Kurniawan, 2020) through the
strategic deposition and digestion of tissue. A key mechanism by
which fibroblasts communicate with, migrate through, deform, and
are deformed by their environment is through focal adhesions
(Mierke et al., 2017; Stutchbury et al., 2017; Tschumperlin et al.,
2018). It is known that fibroblasts are able to react in response to a
material’s stiffness by depositing more material, and it is
hypothesized that the cell is able to measure local tissue stiffness
by active contraction (Engler et al., 2006). Together, this led to our
first rule: the agent activation has a positive relationship with local
stiffness. We also assume that fibroblast cannot perceive anything
beyond the grasp of its focal adhesions. In the context of a spring,
this means that the agent cannot perceive the length of the whole
spring, only the length of the cell. Therefore, for a measured spring
constant, the perceived L0 would be approximately the length of the
fibroblast itself, and can be considered as a constant for all agents.
Furthermore, for simplicity, we make an assumption that the
composition of the tissue is mostly collagen, and that therefore
the Young’s modulus E of the tissue is uniform. This is what leads to
the simplification from Eqs 3, 4.

Next, we must also consider the fibroblast’s ability to perceive
stretch. Fibroblasts are affected by stretch via the release of ECM-
bound latent TGF-beta, which supports the transition from
fibroblasts to myofibroblasts (Hinz, 2009; Ezzo and Hinz, 2023),
activates stretch-sensitive channels (Murata et al., 2014), and affects
signaling pathways such as YAP and MRTF-A (Cui et al., 2015).
Therefore, higher stretch may increase cell activation and lead to
increase in collagen deposition (Tschumperlin et al., 2018). In the
lungs, the periodic stretching provides a constant signal to the
fibroblasts, and we hypothesize that there is an optimal range of
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stretch that the fibroblasts expect, such that when the stretch is too
high, collagen is deposited to stiffen the material and decrease
stretch, and when stretch is too low, the tissue is digested to
increase stretch, creating a negative-feedback healing response.
This led to our second rule: agents increase activation in
response to local stretch. This contrasts with the notion that
fibroblasts maintain the stiffness of a material. Previous models
that only included stiffness-mediated behaviors only turn fibrotic
without being able to heal (Wellman et al., 2018). Similarly, our

single-element models did not show any healing response to injury
when strain sensitivity was removed (Supplementary Figure S1).
Fibrosis also did not occur when the stiffness sensitivity was
removed (Supplementary Figure S2). Previous self-healing models
have been based on stiffness (Suki et al., 2020), however, the
mechanism of healing based on stiffness is not supported by the
positive feedback between stiffness and ECM deposition observed in
fibroblasts (Liu et al., 2010; Moore and Herzog, 2013; Lin et al.,
2017). These observations motivated the rationale that the self-

FIGURE 3
Examples of heterogeneous fibrotic structures. Initially, each of these networks had 10% of the springs stiffened to 10x the initial cross-sectional
area. Each row corresponds to increasingly fibrotic reactions due to increasing stiffness weight (w2). The first column (A, D, G, J andM) shows networks at
their initial healthy state. The second column (B, E, H, K and O) shows networks at 1000 iterations. The third column (C, F, I, L and P) shows networks at
2000 iterations. The third column exhibitsmany fibrotic structures, such as sparse fibrotic foci in (C), honeycombing in (I), and a dense fibrotic patch in (P).
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healing component of the current model is caused by stretch, and the
fibrotic component of the current model is caused by stiffness.

Diverging network responses

The lungs and other organs in general, are able to sustain minor
injuries and heal from them, but once fibrosis begins in diseases such as
IPF, the tissue is unable to return to a healing state. In terms of feedback

systems, these represent stable and unstable responses, respectively.
There are two criteria we consider for what determines the outcome of
an injury. The first is predisposition towards IPF, which can be caused
by factors such as age, genetics, and smoking habits (American Thoracic
Society, 2000), which is accounted for in Eq. 7 as the stiffness weight,w2.
The effect of this sensitivity is shown in Figure 3, where for the same
injury, a diverse set of responses is observed. The second criterion is the
severity of the injury. While we impose different injury states onto the
networks, the severity of an injury is not simple to quantify. Consider

FIGURE 4
Comparison of IPF histological images and spring networks. The first column shows histological slices of IPF tissue with differing structures, and the
second column shows enlarged sections from these slices (Modified with Permission from Tanabe et al., 2020). The third column shows spring networks
of varying sensitivity at varying stages of progression that are similar in structure to the images on the same row (A–C).
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two injuries, one where 20% of the lungs is stiffened by 5x (Figure 2),
and another where 10% of the lungs is stiffened by 10x (Figure 3). It is
difficult to predict which injurywill be worse, and if the results of similar
injuries will be consistent.

To evaluate these diverse behaviors, we developed a fibrotic
threshold, which accounts for both predisposition and
environmental factors to determine if a system will become
fibrotic. Thresholds such as this have been observed for
differentiation into fibroblasts (Hinz, 2009). In this model, this
threshold is defined as where the stable system becomes an
unstable system and occurs when the stiffness response in Eq. 7
overpowers the strain response; that is to say, for an increase in A,
the change in activation will increase, causing a positive-feedback
response. In the analysis of the difference equations, this threshold is
a single value, which depends on the stiffness sensitivity. In the first
column of Figure 1, we observe that the threshold for fibrosis lowers

as sensitivity increases, shown by the orange arrows, indicating that
for the same injury, a more sensitive subject would develop fibrosis.

In the network model, however, springs interact such that the
fibrotic threshold is a range of values, due to non-uniform strain.
This means that a network with many springs with a stiffness below
the threshold may appear to be fibrotic and much stiffer than a
healthy lung, but will be able to heal, as seen in ARDS and PCPF
(Herridge et al., 2011; Lorx et al., 2022). This also means that a
network with few springs injured beyond the fibrotic threshold may
be enough of a spark for the positive-feedback response. In Figure 2,
20% of springs were stiffened by 5x, and both healing and fibrotic
responses can occur in the same tissue as a result of network effects.
This diverging response cannot be predicted from just the injury or
the predisposition; it necessitates a structural analysis of the
network. Figure 2 demonstrates this fibrotic threshold as the
boundary between the green self-healing response and the pink

FIGURE 5
Analysis of mechanics in fibrotic network progression. Each network had 10% of the springs stiffened by 10x the initial cross-sectional area. Each
color represents a different stiffness weight (w2), and each sensitivity was tested with at least nine networks. (A) Network stiffness as progression occurs
(B)Box plot of final stiffness distributions. Populations not of same distribution, p <<0.001. (C) Percent ruptured springs as progression occurs (D)Box plot
of final ruptured springs distributions. Populations not of same distribution, p << 0.001.
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FIGURE 6
Differentiation of agents from early fibroblast to myofibroblast phenotype. (A, C, E) show activation distribution and number of agents as disease
progresses, where color indicates number of agents at a given activation. Each panel is the sumof all agents used in all networks for the listed sensitivity. In
(A), the majority of the population stays at the initial activation, indicating that most agents stay in a fibroblast phenotype. In (C) a second population of
higher-activated agents is present at 2000 iterations that indicates partial differentiation into myofibroblasts. In (E) the low-activation fibroblast
population nearly disappears by 2000 iterations, while the high-activation myofibroblast population has become dominant, indicating differentiation.
(B, D, F) Local activation plots superimposed on networks. As fibrosis progresses, it is clear that agents cluster in fibrotic regions and are highly activated.
(G) The density vs. iteration for all network simulations. Each color represents a different stiffness weight (w2). (H) Box plots of final agent densities.
Populations not of same distribution, p << 0.001.
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fibrotic region. Even though the injuries were all below the predicted
threshold from the difference equations, shown where the black
diagonal line crosses the pink-green boundary, the network effects
are enough in some cases to push the network to becoming fibrotic.
These results show that the network effects have an integral
contribution to the outcome of an injury. Such behavior
represents a microscopic bifurcation, and whether the fibrosis
percolates to the macroscale depends on the local correlation
structure of the injury. Hence, our model is able to recreate both
healing and non-healing responses to fibrotic perturbations in ways
similar to those observed in real diseases, providing insight into how
the severity and spatial distribution of the initial injury as well as
predisposition towards PF interact to either heal or not heal.

Fibroblast to myofibroblast differentiation

In PF, there is an observed increase in the population of
fibroblasts and myofibroblast populations (Moore and Herzog,
2013). There is debate over where myofibroblasts come from
during PF (Moore and Herzog, 2013), so for this lumped-
parameter model, we consider only myofibroblasts that occur
from differentiation from fibroblasts. Previous models have
typically maintained the number of agents for simplicity
(Wellman et al., 2018; Suki et al., 2020; Hall et al., 2023);
however, this model allows for the proliferation of agents.
Additionally, the activation parameter allows us to make a
distinction between fibroblasts and myofibroblasts based on their
activation. As shown in Figure 6, we were able to capture a diverse
set of differentiation responses based on the network’s sensitivity,
ranging from partial differentiation (Figure 6A) to full
differentiation (Figure 6E). We also analyzed the local activation
accumulation in the networks (Figures 6B,D,F), which can be
considered as an approximation of α-smooth muscle actin
resulting from myofibroblast differentiation. Not only do we
observe an increase in activation as fibrosis intensifies, we
observe in Figure 6D that these highly activated agents are
localized to fibrotic regions.

Structural heterogeneity

One of the hallmarks of PF is the diversity of structures observed
in the tissue, namely, honeycombing, fibrotic patches and
consolidated tissue (Tanabe et al., 2020). In Figures 3, 4, we
observe these structures in both networks and images of human
tissue. When the network images are compared to the histological
images in Figure 4, the similarities are obvious. Models with a high
w2, such as 2.5 and 3, show consolidation and dense patches, and
mid-sensitivity models, such as the w2 = 2, show clear
honeycombing structures. These structures were not directly
coded into the model, but are emergent properties arising from
the interactions of the agents with the mechanical model. While the
broad behavior of the overall networks can be predicted from the
difference equations, the structures that arise from these networks
cannot be predicted, showing the necessity of utilizing structural
networks in evaluating disease progression. The similarities between
the networks and tissue images also indicate that the rules that define

this model may closely match those that govern remodeling in
real tissue.

During the progression of fibrosis in the network models with
varying w2 values, it was not immediately clear if all the networks
had the same structures, just at different stages of progression. That
is to say, would Figure 3I eventually progress into Figure 3P Zero-
stiffness springs in the network have been digested such that A is
reduced to zero, and this can be considered as ruptured springs. This
is permanent remodeling and cannot be healed, as ruptured alveolar
walls cannot be remade. The number of these zero-stiffness springs
is therefore an indication of irreversible structural change and
structural difference within the network. Upon analysis of the
number of ruptured springs within the network, we found that
the honeycomb structure had more ruptured springs than the dense
fibrotic structure (Figure 5D). Because these springs cannot be
remade, this shows that these networks are clearly structurally
independent. The mechanism by which these structures arise is
interesting and novel.

In models with a fibrotic response, injuries were initially
individual patches randomly distributed through the tissue, as
shown in Figures 2, 3. As the disease progresses, fibrotic bridges
emerge between these patches forming larger fibrotic clusters. This
behavior can be seen in the Figure 3, w2 � 1.5 and 2 rows. We posit
that this is caused by two mechanisms: (1) the lasting memory of
highly-activated agents migrating away from fibrotic patches and (2)
over-stretching the tissue between fibrotic patches, increasing
activity and leading to over-deposition until the stiffness crosses
into the fibrotic region. In the case of high stiffness sensitivity, this
behavior continues until the whole region becomes fibrotic.
However, in the moderate stiffness weight networks, once these
bridges have formed, the characteristic rings seen in honeycombing
form, causing that region of tissue to contract. This creates a region
within the fibrotic ring that has both low stiffness and low strain,
causing low activation and digestion of the tissue, leading to the
rupture of the springs in that region, and creating honeycombing
(Figures 3G–I). This is an important result because it suggests that
remodeling is not only caused by over-stretching and breakage,
which was not included in this model, but that pathological
remodeling can be caused by the complex structural interactions
of fibroblasts and the ECM. Interestingly, the percentage of broken
springs does not exhibit a monotonic relationship with w2 (Figures
5C,D); there is little breakage when the propensity for fibrosis is low
(w2 is small), but breakage also decreases as w2 increases above a
certain level. Presumably because as weights increase there is an
increase in wall breakage, then as the fibrotic response becomes
stronger, the percent broken springs decreases. This appears to be in
agreement with the honeycombing and dense fibrosis observed in
Figure 3. Thus, the evolution of IPF tissue structure is a clear
manifestation of network phenomena that cannot be understood
by studying static cells in isolation.

This fibrotic bridging is similar in behavior to invasion
percolation. While 10% of the springs in the network are
stiffened by 10x, the initial stiffness of all networks is still near
the initial value (Figure 5A), and the final progression of low w2

networks show that the fibrotic regions are separated, and that the
pathological remodeling has not percolated the network (Figure 3C).
In the high w2 networks, the progression leads to network
percolation that leads to increased stiffness, and network
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configuration that results in the aforementioned pathological
structures. This percolation also is evident in the contraction of
the networks. Novel to the current network model is its ability to
contract in response to disease progression. Previous models have
had fixed boundaries that have held the network to a specific area or
volume (Wellman et al., 2018; Suki et al., 2020). The third column in
Figure 3 shows heterogeneity in final network area that is dependent
on the stiffness sensitivity of the model, with the most contracted
networks being percolated by fibrotic tissue, such as the dense
fibrotic patch in Figure 3P. These results are consistent with the
increased stiffness of these networks observed in Figure 5A and the
difference equations’ behaviors in Figure 1. Further investigation of
this percolation behavior is therefore warranted.

Limitations

This model has a number of limitations that are important to
address. First, this model approximates tissue as a set of linear
springs with a constant Young’s modulus. In reality, tissue shows
characteristic nonlinearity due to recruitment, and the Young’s
modulus changes as disease progresses (Marchioni et al., 2021).
Both of these characteristics add computational complexity to the
simulations. In this context, simplification of constant Young’s
modulus and use of linear springs are common assumptions in
previous and current spring-network models. Furthermore, spring
networks are typically two-dimensional and do not include airways
for the same reasons listed above. To further limit computational
complexity, the static strain of the network was used as an
approximation of the cyclic stretch. For agent-based models, it is
difficult to translate biological mechanisms into discrete values that
can be applied via agents, which is why lumped-parameter models
have been utilized to recreate broad behavior. The current model is
no exception, where rather than the precise processes of digestion
and deposition, we consider broad characteristic behaviors. The rate
at which the agents migrate was determined by discrete steps across
springs, rather than a specific speed or distance to cross in a given
time. The median time from diagnosis to death for IPF is ~3 years
(Nathan et al., 2011) whereas our model has an approximate time
of ~5 months, however we consider this model, given the
computational limitations, to be comparable to the time course
of physiological disease progression. Furthermore, we did not
consider the interactions of agents with the other fibrosis relevant
cell types such as inflammatory cells, epithelial cells and endothelial
cells. This simplification is also consistent with previous models that
only considered one agent type. Despite these limitations, the
current model appears robust and is able to recapitulate complex
behaviors comparable to those seen physiologically.

Conclusion

In this work, we developed amechanosensitive agent-basedmodel
and spring networkmodel hybrid that was capable of both fibrosis and
healing based on different injury conditions. The inclusion of
fibroblast-like-agents that were sensitive to both stiffness and
stretch recapitulated these behaviors, and the application onto a
network model led to the development of heterogeneous structures

typical of PF. These results suggest that the interactive mechanical
signals present in the lungs, i.e., stiffness and stretch, play a key role in
both homeostatic maintenance and disease progression.
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