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The study of specific physiological processes from the perspective of network
physiology has gained recent attention. Modeling the global information
integration among the separated functionalized modules in structural and
functional brain networks is a central problem. In this article, the preferentially
cutting–rewiring operation (PCRO) is introduced to approximatively describe the
above physiological process, which consists of the cutting procedure and the
rewiring procedure with specific preferential constraints. By applying the PCRO
on the classical Erdös–Rényi random network (ERRN), three types of isolated
nodes are generated, based on which the common leaves (CLs) are formed
between the two hubs. This makes the initially homogeneous ERRN experience
drastic changes and become heterogeneous. Importantly, a statistical analysis
method is proposed to theoretically analyze the statistical properties of an ERRN
with a PCRO. Specifically, the probability distributions of these three types of
isolated nodes are derived, based on which the probability distribution of the CLs
can be obtained easily. Furthermore, the validity and universality of our statistical
analysis method have been confirmed in numerical experiments. Our
contributions may shed light on a new perspective in the interdisciplinary field
of complexity science and biological science and would be of great and general
interest to network physiology.
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1 Introduction

The collective behaviors that emerged on different kinds of complex systems have
become the central topics under investigation since the seminal “small-world” and “scale-
free” network models were successively proposed by Strogatz and Barabási (Watts and
Strogatz, 1998; Barabási and Albert, 1999). Several typical types of spatiotemporal
dynamical behaviors, such as synchronous phenomena (Wu et al., 2012; Walter et al.,
2014; Zhang et al., 2015; Andrzejak et al., 2017; Rybalova et al., 2020; Ghosh et al., 2023),
self-sustained oscillations (Roxin et al., 2004; Sinha et al., 2007; Qian et al., 2010a; Qian et al.,
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2010b; Isele and Schöll, 2015; Fretter et al., 2017), and chimera and
chimeralike states (Hagerstrom et al., 2012; Omelchenko et al., 2013;
Semenova et al., 2016; Kachhara and Ambika, 2021; Lei et al., 2022;
Lei et al., 2023; Zhang H. et al., 2024), have been reported. For
example, Rybalova et al. (2020) exposed the relay and complete
synchronization in heterogeneous multiplex networks of chaotic
maps. Sinha et al. (2007) discussed the emergence of self-sustained
patterns in small-world excitable media. Kachhara and Ambika
revealed the frequency chimera state induced by differing
dynamical timescales (Kachhara and Ambika, 2021). Lei et al.
(2023) and Zhang H. et al. (2024), respectively, uncovered the
chimeralike oscillation modes on excitable scale-free networks
and the alternate attractor chimeralike states on rings of chaotic
Lorenz-type oscillators.

One of the most classical network models, the Erdös–Rényi
random network (ERRN), was proposed by P. Erdös and A. Rényi
(Erdös and Rényi, 1959; Erdös and Rényi, 1960) and is utilized to
explore these issues. Many interesting phenomena were found, and
great achievements were realized by this paradigmatic network
model (Gong et al., 2005; Xu and Liu, 2008; Tattini et al., 2012;
Ferrari et al., 2013; Schmeltzer et al., 2014; Almeira et al., 2020;
Masoumi et al., 2022; Kartal and Kartal, 2023; Qian, 2014; Qian
et al., 2017; Qian and Zhang, 2017). For example, Gong et al.
discussed the synchronization of Erdös–Rényi networks (Gong
et al., 2005). Tattini et al. investigated the coherent periodic
activity on excitatory Erdös–Rényi neural networks and exposed
the key role of network connectivity (Tattini et al., 2012). Almeira
et al. (2020) discovered the scaling of percolation transitions on
Erdös–Rényi networks under centrality-based attacks. Kartal et al.
studied the complex dynamics of the COVID-19 mathematical
model on the Erdös–Rényi network (Kartal and Kartal, 2023).
Qian et al. first reported the emergence of the self-sustained
oscillations on excitable Erdös–Rényi random networks and
exposed the determinants (Qian, 2014; Qian et al., 2017) and
then revealed the effects of time delay and connection probability
on the corresponding oscillations and synchronization transitions
(Qian and Zhang, 2017).

In addition to the collective behaviors that can self-organize to
emerge on ERRNs consisting of different types of local units, the
statistical properties of the ERRN are also an important issue. For
example, Erdös and Rényi were the first to study the distribution of
the maximum and minimum degree in a random graph (Erdös and
Rényi, 1959), and the full degree distribution was derived later by
Bollobás (1981). Chung and Lu discussed the diameter of sparse
random graphs (Chung and Lu, 2001). Martin and S�ulc (2010)
investigated the return probabilities and hitting times of random
walks on sparse Erdös–Rényi graphs. Bizhani et al. (2011) explored
the random sequential renormalization and agglomerative
percolation on Erdös–Rényi networks. Hartmann and Mézard
(2018) first studied the distribution of diameters for Erdös–Rényi
random graphs and then discussed the distribution of shortest path
lengths of subcritical Erdös–Rényi networks (Katzav et al., 2018).
However, whether the statistical properties of an ERRN with specific
operation can be theoretically derived is still unknown.

Nowadays, investigating the physiological processes from the
perspective of network physiology is an important topic in the
interdisciplinary field of complexity science and biological science.
Several excellent contributions were achieved in this field (Ivanov,

2021; Shi et al., 2022; Sinha et al., 2022; Goodfellow et al., 2022;
Schöll et al., 2022; Venkadesh et al., 2024; Rosenblum, 2024; Zhang
Z. et al., 2024; Qian et al., 2024a). For example, Ivanov (2021)
summarized the new field of network physiology, that is, building
the human physiolome. Sinha et al. (2022) discussed the perspectives
on understanding aberrant brain networks in epilepsy. Schöll et al.
(2022) reviewed the adaptive networks in functional modeling of
physiological systems.

As we know, there exists a cost-efficiency trade-off between the
physical cost of the network and the information integration among the
whole system in organizing structural and functional brain networks.
To save wiring costs, brain networks tend to build module structures to
implement localized functions. To achieve global information
integration among the separated functionalized modules, long-range
synapses can be created via synaptic plasticity on these local structures.
More importantly, the newly reshaped long-range synapses will
preferentially connect to specific hub regions to fulfill special
physiological functions among the whole brain systems. So we
would ask whether the appropriate functional model can be
proposed to describe this physiological process from the perspective
of network physiology?We think this is an important issue of great and
general interest to network physiology.

In this article, the preferentially cutting–rewiring operation
(PCRO) is proposed to approximatively describe the above
physiological process. We have found that, by applying the
PCRO on the ERRN with certain preferential constraints, the
topological feature of the given network will change dramatically.
Then, the theoretical statistical properties of the operated ERRN are
studied. The remainder of the article is organized as follows. Section
2 introduces the cutting and rewiring procedures of the PCRO. In
Section 3, we apply the PCRO to the classical ERRN. The statistical
analysis method proposed in Section 4 supports studying the
theoretical statistical properties of an ERRN with a PCRO. The
validity and the universality of our statistical analysis method are,
respectively, confirmed in Sections 5, 6. Finally, we give the
conclusion in the last section.

2 The cutting and rewiring procedures
of a PCRO

In this part, we first introduce the PCRO, which is adopted to
regulate the structure of a given network. The PCRO proposed in the
present article contains two different stages: the cutting procedure
and the rewiring procedure with specific preferential constraints,
which are denoted by k1, k2 (the preferential constraint indicators
used in the cutting procedure) and k3 (the constraint indicator in the
rewiring procedure), respectively.The schematic diagram of the
PCRO is presented in Figure 1, and the specific preferential
constraints are selected as k1 � 1, k2 � 〈k〉AV, and k3 � kMax′ .
Here, 〈k〉AV presents the actual value of the average degree in
the network before the cutting procedure, and kMax′ is the maximum
degree in the corresponding network after the cutting procedure.
Figure 1A displays the initial structure without a PCRO, which
consists of 16 nodes. The seven green cells i � 2, 3, 5, 9, 12, 14, and
15 denote the nodes possessing degrees within k1 ≤ ki ≤ k2, which
satisfy the preferential constraint in the cutting procedure.
Consequently, these seven green cells are considered candidates
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for performing the following cutting operation. To do this, we
introduce the PCRO probability condition PPCRO to determine
whether each selected candidate will be operated or not in the
cutting operation. Specifically, for each green candidate, we execute
the cutting operation with probability p. If the PCRO probability
condition is satisfied (i.e., p≤PPCRO), all the connections of this
candidate will be discarded; otherwise (i.e., p>PPCRO), they will be
reserved completely. The yellow cell i � 10 denotes the isolated node
that initially existed in the network, which is named the naturally
isolated node (NIN). The other gray cells indicate the remainder of
ordinary nodes without any operation in the cutting procedure.

By applying the cutting procedure with a specific PCROprobability
PPCRO, the structure of the initial networkwill change dramatically, and
the corresponding result is illustrated in Figure 1B. In the current case,
the initially green candidates i � 2, 5, 12, 14, and 15 satisfy the PCRO
probability condition, and their corresponding connections are all
discarded. These operated candidates are called actively deleted
isolated nodes (ADINs) and are colored pink. Meanwhile, the green
candidates i � 3 and 9 do not meet the PCRO probability condition; all
their links are reserved, and they turn into gray ordinary nodes.
Furthermore, after the cutting procedure, the originally ordinary
gray cell i � 4 becomes an isolated node due to its links connecting
to the initially green candidates i � 5 and 14, which are deleted in the
cutting procedure. This type of newly generated isolated node is
defined as a passively deleted isolated node (PDIN) and is colored
orange. Moreover, the red cells i � 1 and 6 present the two nodes
satisfying the preferential constraint in the rewiring procedure, that is,
the nodes possessing degree ki � k3 after the cutting procedure, which
are selected as the target nodes to be rewired in the following
rewiring procedure.

As the cutting procedure is completed, the second stage of the
PCRO starts, that is, the rewiring procedure. In this stage, the above

three types of isolated nodes, that is, the yellow NIN, the pink ADIN,
and the orange PDIN, will be rewired to the two red target nodes. In
the following discussion, these rewired nodes are called the common
leaves (CLs) and are colored blue. Figure 1C shows the network
structure after the rewiring operation, in which many blue CLs are
formed between the two red target nodes. This makes the two target
nodes possess relatively large degrees, which are consequently called
hubs. Based on the illustrations shown in Figure 1, we can conclude
that the PCRO is an effective method of regulating the structure of
the given network, by which many CLs can be formed between the
two hubs. The initially homogeneous network will become
heterogeneous by applying the PCRO.

3 The ERRNs with a PCRO

The classical ERRN is utilized to test the effects of the PCRO. A
classical ERRN can be constructed only based on a simple rule, that
is, the connections between every pair of nodes in the ERRN are
linked with a specific connection probability. In the present article,
the initially homogeneous ERRN without a PCRO is composed of
N � 100 nodes and is constructed with connection probability
PER � 0.05. Consequently, the total number of connections in the
ERRN is expected to be PERN(N − 1)/2. Here, we should mention
that by manipulating the connection probability PER, one can
produce a number of ERRNs with different properties. There are
many network realizations for a given connection probability PER.
Furthermore, these two network structure parameters, that is, N �
100 and PER � 0.05, will be used in the following if there are no
special instructions.

Figures 2A–D display the heterogeneous ERRNs constructed for
four different parameters of the PCRO, that is, four different PCRO

FIGURE 1
(Color online) The schematic diagram of the preferentially cutting–rewiring operation (PCRO) proposed in this article. Three indicators, k1, k2, and
k3, are, respectively, utilized to represent the preferential constraints in the cutting procedure (denoted by k1 and k2) and rewiring procedure (only by k3) of
the PCRO. Here, a network consisting of 16 nodes is used as an example to introduce the PCRO procedures. The specific preferential constraints are
selected as k1 � 1, k2 � 〈k〉AV , and k3 � kMax′ . Here, 〈k〉AV presents the actual value of the average degree in the network before the cutting procedure,
and kMax′ is the maximum degree in the corresponding network after the cutting procedure. (A) The initial structure without the PCRO. The green cells
denote the nodes satisfying the preferential constraint in the cutting procedure (i.e., the nodes possessing degrees within k1 ≤ ki ≤ k2), which are
considered candidates for performing the following cutting operation. (B) The network structure gained after the cutting procedure. The connections of
the initially green candidates satisfying the PCRO probability condition are all discarded. The red cells represent the two nodes satisfying the preferential
constraint in the rewiring procedure (i.e., the nodes possessing degree ki � k3 after the cutting procedure), which are selected as the target nodes to be
rewired in the following rewiring procedure. (C) The network structure obtained after the rewiring procedure. The three types of isolated nodes after the
cutting procedure [i.e., the yellow, pink, and orange nodes in panel (B)] are rewired to the two red target nodes.
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probabilities PPCRO � 0.25 [Figure 2A], PPCRO � 0.50 [Figure 2B],
PPCRO � 0.75 [Figure 2C], and PPCRO � 1.00 [Figure 2D]. These
figures clearly show three types of nodes: red hubs, blue CLs, and
gray ordinary cells. Importantly, they can visualize the increasing
heterogeneity of the network with increasing PCRO probability. The
four network structures shown in Figures 2A–D are obtained from
the initial homogeneous ERRN by a PCRO with the same
preferential constraints utilized in Figure 1 (i.e., k1 � 1,
k2 � 〈k〉AV, and k3 � kMax′ ). This further confirms that the
PCRO method proposed here has the effect of regulating the
structure of the given network, such that the initially
homogeneous network structure becomes heterogeneous in a
controlled way.

4 The statistical analysis method

Now, we would ask whether the statistical properties of the
ERRN with a PCRO can be theoretically derived, especially the
probability distribution of CL formed in the cutting and rewiring

procedures. A statistical analysis method is proposed to explore this
issue. As shown in Figure 1B, three types of isolated nodes exist in an
ERRNwith a PCRO: the yellow NIN, the pink ADIN, and the orange
PDIN. The rewiring procedure of these isolated nodes with a certain
preferential constraint changes them into the CLs between the two
hubs. The probability distributions of NIN, ADIN, and PDIN
(denoted by PNIN, PADIN, and PPDIN, respectively) are the vital
tasks we aim to analyze first, based on which the theoretical analysis
of the probability distribution of CL (indicated by PCL) can be
realized. Furthermore, as these three probability distributions of the
isolated nodes are related to the node satisfying the preferential
constraint in the cutting procedure (NSPCCP) [colored in green in
Figure 1A], we first give the deduction of the analytical expression of
the probability distribution of the NSPCCP (denoted by PNSPCCP).

4.1 The probability distribution of NSPCCPs

For an arbitrary ER random network with a specific system size
and connection probability (N,PER), we assume that the probability

FIGURE 2
(Color online) The Erdös–Rényi random networks (ERRNs) obtained by the PCRO with the same preferential constraints utilized in Figure 1
(i.e., k1 � 1, k2 � 〈k〉AV , and k3 � kMax′ ) for different PCRO probabilities, that is, PPCRO � 0.25 [(A)], PPCRO � 0.50 [(B)], PPCRO � 0.75 [(C)], and PPCRO � 1.00
[(D)]. The initial ERRNs without PCROs contain N � 100 nodes and are constructed with connection probability PER � 0.05. The above preferential
constraints in the cutting and rewiring procedures of PCROs and the network structure parameters utilized to construct the initial ERRNs are utilized
in Figures 2–5. The red, blue, and gray circles in each panel, respectively, denote the hubs, the common leaves (CLs), and the ordinary cells in the
operated ERRNs.
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for each actual value of an edge L in the network to be pL. So the edge
distribution in the given ER random network pL satisfies the
following binomial distribution:

pL �
N N − 1( )

2
L

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ · PER( )L · 1 − PER( )N N−1( )
2 −L.

By calculating the statistical average for all possible L, the
expectation value of average edge in the network 〈L〉EV can be
obtained as

〈L〉EV � ∑
N N−1( )

2

L�0
L · pL � PER · N N − 1( )

2
.

The actual value of the average degree 〈k〉AV for each edge L in the
network obeys

〈k〉AV � 2L
N
.

Similarly, for the same ER random network with (N,PER), the
probability distribution for the degree k of an arbitrary node in the
given ER random network pk can also be described by the following
binomial distribution:

pk � N − 1
k

( ) · PER( )k · 1 − PER( )N−1−k. (1)

By calculating the statistical average for all possible k, we can gain
the expectation value of average degree 〈k〉EV in the network as

〈k〉EV � ∑N−1

k�0
k · pk � PER · N − 1( ).

This indicates that for a given ER random network with N nodes,
〈k〉EV is determined by the connection probability PER.

We further introduce an approximation that, for a given ER
random network with N nodes, there exists an equivalent
connection probability PECP that can lead to the expectation
value of average degree 〈k〉EV approximatively equals to the
actual value of average degree 〈k〉AV; that is,

〈k〉AV ≈〈k〉EV.

With this approximation, one can conveniently obtain the
relationship between the actual value of an edge L in the network
and PECP as

L ≈ PECP · N N − 1( )
2

.

In this case, PECP can be considered the equivalent connection
probability of an ER random network to acquire the actual value
of edge L we wanted. Moreover, for each actual value of edge L,
there exists a corresponding equivalent connection
probability PECP.

Based on the above approximation, we can apply the equivalent
connection probability PECP to approximatively obtain the
conditional degree distribution of an ER random network with N
nodes and L edges. In this case, the conditional probability for an
arbitrary node in the network being the NSPCCP obeys

p k1 ≤ k≤ k2 | L( ) � ∑k2
k�k1

N − 1
k

( ) · PECP( )k · 1 − PECP( )N−1−k.

Now, we assume that there existNNSPCCP NSPCCPs in the given ER
random network. Therefore, the conditional probability distribution
of NNSPCCP for a given L should satisfy the following binomial
distribution:

P NNSPCCP | L( ) � N
NSPCCP

( ) · p k1 ≤ k≤ k2 | L( )NNSPCCP

· 1 − p k1 ≤ k≤ k2 | L( )[ ]N−NNSPCCP .

By calculating the statistical average for all possible L, the
distribution of NSPCCPs in an ER random network can be
derived as

PNSPCCP � ∑
N N−1( )

2

L�0
P NNSPCCP | L( ) · pL.

4.2 The probability distribution of ADINs

The probability distribution of ADINs can be conveniently
obtained based on the PNSPCCP. The ADINs are those nodes
satisfying the preferential constraint in the cutting procedure,
and they belong to the category of NSPCCP. They are selected
by the given PCRO probability PPCRO, and all links of these ADINs
are deleted in the cutting procedure. Here, we assume that an ER
random network with a given (N, L) contains NNSPCCP NSPCCPs,
among which there exist NADIN ADINs. For a given NNSPCCP, the
conditional probability of NADIN should satisfy the binomial
distribution

P NADIN | NNSPCCP( ) � NNSPCCP

NADIN
( ) · PPCRO( )NADIN

· 1 − PPCRO( )NNSPCCP−NADIN .

By calculating the statistical average for all possible NNSPCCP, the
probability distribution of ADINs in an ER random network can be
derived as

PADIN � ∑N
NNSPCCP�0

P NADIN | NNSPCCP( ) · PNSPCCP.

4.3 The probability distribution of PDINs

We can further solve the probability distribution of PDINs with
the aid of PNSPCCP. Here, we first explore the conditional probability
distribution of PDINs in an ER random network with a given
(L,NNSPCCP). Consider an arbitrary node i with degree ki in the
network. We focus on an edge connected to node j with degree kj.
The conditional degree distribution of node j (denoted by pkj) obeys
the following binomial distribution

pkj � N − 2
kj − 1( ) · PECP( )kj−1 · 1 − PECP( )N−kj−1. (2)
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Here, PECP is the equivalent connection probability of obtaining an
ER random network with a given L. Because of the homogeneity of
the ER network, the conditional degree distributions of the other
remainder ki − 1 neighbors of the i-th node (except neighbor j)
should be the same and are described by Equation 2. If all of the i-th
node’s neighbors are selected by a given PCRO probability PPCRO

and all links of these selected neighbors are deleted in the cutting
procedure, the i-th node would become a PDIN. To realize this
situation, the following three conditions should be satisfied
simultaneously.

Condition I:
The i-th node does not belong to the ADIN and NIN categories.

The conditional probability in realizing condition I PCP1 includes
two cases. (i) When the degree of the i-th node k1 ≤ ki ≤ k2, the i-th
node is not selected in the PCRO with probability PCP1 � 1 − PPCRO;
(ii) When the degree of i-th node 1≤ ki < k1 or ki > k2, PCP1 � 1.

By combining (i) and (ii), PCP1 can be written by the following
piecewise function:

PCP1 �
1 1≤ ki < k1,
1 − PPCRO k1 ≤ ki ≤ k2,
1 ki > k2.

⎧⎪⎨⎪⎩
Condition II:
The degrees of the neighbor nodes {j} of the i-th node satisfy the

preferential constraint in the cutting procedure, that is, k1 ≤ kj ≤ k2.
According to Equation 2, the conditional probability II PCP2

should satisfy

PCP2 � p k1 ≤ kj ≤ k2( )[ ]ki
� ∑k2

kj�k1

N − 2
kj − 1( ) · PECP( )kj−1 · 1 − PECP( )N−kj−1⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ki .

Condition III:
All the neighbor nodes of the i-th node are selected by the

given PPCRO, and all the links of these neighbors are deleted in the
cutting procedure. The conditional probability III PCP3 can be
calculated as

PCP3 � PPCRO( )ki .

By multiplying the above three conditional probabilities, we can
obtain the conditional probability for the i-th node being the PDIN
in the case of specific (L,NNSPCCP, ki)

p i ∈ PDIN | L,NNSPCCP, ki( )[ ] � PCP1 · PCP2 · PCP3.

As the i-th node is an arbitrary element in the given ERRN, its degree
distribution pki should also satisfy the conditional binomial
distribution of Equation 2. By calculating the statistical average
for all possible ki of the i-th node, the above conditional probability
for a given (L,NNSPCCP) can be obtained as

p i ∈ PDIN | L,NNSPCCP( )[ ]
� ∑N−1

ki�1
p i ∈ PDIN | L,NNSPCCP, ki( )[ ] · pki

� ∑N−1

ki�1
PCP1 · PCP2 · PCP3( )·pki

� ∑N−1

ki�1
PCP1 · p k1 ≤ kj ≤ k2( )[ ]ki{

· PPCRO( )ki } · pki

� ∑k1−1
ki�1

1 +∑k2
k1

1 − PPCRO( ) + ∑N−1

ki�k2+1
1⎡⎢⎣ ⎤⎥⎦

· ∑k2
kj�k1

N − 2
kj − 1( ) · PECP( )kj−1 · 1 − PECP( )N−kj−1⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ki

· PPCRO( )ki · pki.

By further calculating the statistical average for all possible L and
NNSPCCP, the probability for an arbitrary node in the ERRN being
the PDIN can be derived as

pPDIN � ∑
N N−1( )

2

L�1
pL · ∑N

NNSPCCP�1
p i ∈ PDIN | L,NNSPCCP( )[ ] · P NNSPCCP | L( )

� ∑
N N−1( )

2

L�1
pL · ∑N

NNSPCCP�1
∑k1−1
ki�1

1 +∑k2
k1

1 − PPCRO( ) + ∑N−1

ki�k2+1
1⎡⎢⎣ ⎤⎥⎦

· ∑k2
kj�k1

N − 2
kj − 1( ) · PECP( )kj−1 · 1 − PECP( )N−kj−1⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ki

· PPCRO( )ki · pki · P NNSPCCP | L( ).

Based on the above pPDIN, the probability distribution of
PDINs in an ER random network can be easily obtained
according to the binomial distribution. Here, we assume that
NPDIN PDINs exist in the network. The probability distribution
of PDINs then follows

PPDIN � N
NPDIN

( ) · pPDIN( )NPDIN · 1 − pPDIN( )N−NPDIN .

4.4 The probability distribution of NINs

Here, we discuss the last type of isolated node, that is, the NINs
colored in yellow in Figure 1B. For an arbitrary ER random network
with a given (N,PER), an NIN can be considered the node with
degree k � 0. According to the degree distribution in the given ER
random network of Equation 1, the probability that an arbitrary
node in the network is a NIN can be obtained as

pNIN � pk�0 � N − 1
0

( ) · PER( )0 · 1 − PER( )N−1−0 � 1 − PER( )N−1.

Here, we assume that NNIN NINs exist in the ER random network.
So the probability distribution of NINs obeys the following binomial
distribution:

PNIN � N
NNIN

( ) · pNIN( )NNIN · 1 − pNIN( )N−NNIN .

4.5 The probability distribution of CLs

Thus far, the probability distributions of NINs, ADINs, and
PDINs have been derived analytically. Furthermore, these three
types of isolated nodes are rewired in the rewiring procedure with a
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certain preferential constraint and become the CLs between the two
hubs. As PNIN, PADIN, and PPDIN are uncorrelated with each other,
the probability distribution of CLs PCL can be gained based on the
superposition principle as

PCL � ∑
NCL�NNIN+NADIN+NPDIN

PNIN · PADIN · PPDIN.

5 The validity and applicability of the
statistical analysis method

In this section, we try to apply the statistical analysis method on
an ERRN with a PCRO to verify the correctness of the above
conclusions. The preferential constraints k1 � 1, k2 � 〈k〉AV, and
k3 � kMax′ , and the network structure parameters N � 100 and
PER � 0.05, which are used as the example in Figure 2, are still
utilized in this part.

We first test the probability distributions of ADINs, PDINs,
NINs, and CLs in the operated ERRNs with a specific PCRO

probability. The corresponding results for PPCRO � 0.50 are
respectively displayed in Figures 3A–D, where the numerical
simulations (blue circles) and theoretical predictions (red curves)
coincide very well. In simulations, S � 106 samples are performed
for each set of parameters, and this standard will also be
implemented in the following tests. The consistency of the results
exposed in Figure 3 confirms the correctness of the statistical
analysis method proposed in the present article.

Now, we further verify the statistical analysis method for other
PCRO probabilities. Here, we only utilize the probability
distribution of CLs as the example, which is derived based on the
probability distributions of ADINs, PDINs, and NINs. Figures 4A–C
respectively, reveal the numerical results (blue circles) and
theoretical predictions (red curves) of the probability distribution
of CLs in the operated ERRNs for different PCRO probabilities
PPCRO � 0.25 [Figure 4A], PPCRO � 0.50 [Figure 4B] and PPCRO �
0.75 [Figure 4C]. It is displayed explicitly in Figure 4 that, even for
different PCRO probabilities, the theoretical predictions can still
match well with the experimental data. This strongly confirms the
validity and applicability of our statistical analysis method.

FIGURE 3
(Color online) The numerical results (blue circles) and theoretical predictions (red curves) of the probability distributions of actively deleted isolated
nodes (ADINs) [(A)], passively deleted isolated nodes (PDINs) [(B)], naturally isolated nodes (NINs) [(C)], and CLs [(D)] in the operated ERRNs with PCRO
probability PPCRO � 0.50. In numerical simulations, S � 106 samples are performed for each set of parameters, and this standard will also be implemented
in the following figures.
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Based on the above results, we can now apply the statistical
analysis method to forecast the average number of CLs in the
operated ERRN, which are formed in the cutting and rewiring
procedures of the PCRO and largely determined by the PCRO
probability condition. Figure 5 presents the numerical results
(blue circles) and theoretical predictions (red curves) of the
average number of CLs �NCL in the operated ERRN on the PCRO
probability PPCRO. The numerical and theoretical numbers of CLs
both increase significantly as the PCRO probability increases,
confirming not only the effectiveness of the statistical analysis
method proposed here but also the effects of the PCRO in
regulating the structure of the given network. At this point, the

validity and applicability of the statistical analysis method have been
verified in the ERRNs with a PCRO.

6 The universality of the statistical
analysis method

It is necessary to inspect the universality of our statistical
analysis method. The average number of CLs �NCL in the
operated ERRNs with a PCRO is still utilized as an example to
explore this issue. Based on the preferential constraints and the
network structure parameters utilized in Figure 2, we first test our
method with other preferential constraints in the PCRO. The
corresponding results are respectively displayed in Figure 6A
(k1 � 〈k〉AV, k2 � kMax, and k3 � kMax′ , that is, only the
preferential constraint in the cutting procedure is changed);
Figure 6B (k1 � 1, k2 � 〈k〉AV, and k3 � 〈k〉AV′ , that is, only the
preferential constraint in the rewiring procedure is changed); and
Figure 6C (k1 � 〈k〉AV, k2 � kMax, k3 � 〈k〉AV′ , that is, both the
preferential constraints in the cutting and rewiring procedures are
changed). Here, 〈k〉AV and 〈k〉AV′ present the actual values of the
average degree in the network before and after the cutting procedure.
kMax and kMax′ are the maximum degrees in the corresponding
network. The theoretical predictions (red curves) revealed with
other preferential constraints coincide well with the numerical
results (blue circles). This confirms that the statistical analysis
method proposed here is irrelevant to the preferential constraints
in the PCRO.

The statistical analysis method is applicable to general ERRN
structures. The preferential constraints are the same as those in
Figure 2, and the PCRO probability PPCRO � 0.50 is employed for
the following discussion. The theoretical predictions (red curves)
and the numerical results (blue circles) obtained for other different
connection probabilities PER and system sizes N are displayed in
Figures 7A, B, respectively. Note good alignment between theoretical
predictions and numerical results. This further verifies the
universality of our statistical analysis method. Here, we should
also mention that the idea of the theoretical deduction can be
extended and applied to other paradigmatic network models,

FIGURE 4
(Color online) The numerical results (blue circles) and theoretical predictions (red curves) of the probability distributions of CL in the operated ERRNs
for different PCRO probabilities PPCRO � 0.25 [(A)], PPCRO � 0.50 [(B)], and PPCRO � 0.75 [(C)].

FIGURE 5
(Color online) The numerical results (blue circles) and theoretical
predictions (red curves) of the average number of CLs �NCL in the
operated ERRNs with PCRO probability PPCRO .
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such as homogeneous random networks, small-world networks, and
even scale-free networks. However, the corresponding formulas and
conclusions may not be the same.

7 Mimicking epileptic-seizure-related
synchronization phenomena in
brain systems

Modeling specific physiological processes and physiological
functions from the perspective of network physiology should be
discussed. In this part, we use the PCRO method proposed in this
article to mimic the epileptic-seizure-related synchronization
phenomena in pathological brain systems. This issue was first

studied from the perspective of network physiology by Gerster et al.
(2020) and Schöll (2021). They revealed that, in addition to the
empirical brain network, the small-world networks with
intermediate rewiring probability can also reproduce the epileptic-
seizure-related synchronization phenomena that closely resemble the
ones seen during epileptic seizures in humans (see Figure 7 in Gerster
et al. (2020) and Figure 3 in Schöll (2021)). In this case, the
corresponding network structure properties are found to be C �
0.25 (the average clustering coefficient) and L � 3.0 (the mean
shortest path length), by which the balance of regularity and
randomness of the given network is revealed. The authors claimed
that the network topology with a certain balance of regularity and
randomness is the key factor in determining the self-initiation and self-
termination of episodes of seizure-like synchronization.

FIGURE 6
(Color online) The numerical results (blue circles) and theoretical predictions (red curves) of the average number of CLs �NCL in the operated ERRNs
for other preferential constraints in the PCRO cutting and rewiring procedures. (A) k1 � 〈k〉AV , k2 � kMax , and k3 � kMax′ ; (B) k1 � 1, k2 � 〈k〉AV , and
k3 � 〈k〉AV′ ; (C) k1 � 〈k〉AV , k2 � kMax , and k3 � 〈k〉AV′ . Here, 〈k〉AV and 〈k〉AV′ present the actual values of average degree in the networks before and after
the cutting procedure, respectively. kMax and kMax′ are the maximum degrees in the corresponding networks, respectively.

FIGURE 7
(Color online) The numerical results (blue circles) and theoretical predictions (red curves) of the average number of CLs �NCL in the operated ERRNs
for other connection probabilities PER [(A)] and system sizes N [(B)]. The same preferential constraints used in Figure 2 and the PCRO probability
PPCRO � 0.50 are utilized here.
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Based on the discussions presented in the above sections, we can
conclude that the proposed PCRO method also has the effect of
regulating the network structure. By applying the PCRO to the
paradigmatic network models, the corresponding structures will
undergo a transition from homogeneous to heterogeneous. So we
would ask whether a similar balance of regularity and randomness
can also be induced by the PCRO, by which the same epileptic-
seizure-related synchronization phenomena can be mimicked by
our scenario.

An ERRN consisting of FitzHugh–Nagumo (FHN) neurons with
the rotational coupling scheme is utilized to address this issue. The
system size (N � 90) and the parameter setting of the FHN network
(α � 0.5, ε � 0.05, and φ � π

2 − 0.1) are all same as the ones adopted by
Gerster et al. (2020) and Schöll (2021) except for the coupling strength
σ � 0.07. The connection probability of the initial ERRN is chosen as
PER � 0.032. Figure 8A first displays the dependence of the average

clustering coefficient C (red line) and the mean shortest path length L
(black line) of the operated FHN network on the PCRO probability
PPCRO. The preferential constraints are selected as k1 � 1, k2 � 〈k〉AV,
and k3 � kMax′ . It is shown that, as the PCRO probability increases, the
average clustering coefficient decreases gradually, while the mean
shortest path length increases. Importantly, as PPCRO approaches 1.0,
the approximate network structure properties of C and L are those for
the emergence of epileptic-seizure-related synchronization on the
small-world network with intermediate rewiring probability can be
obtained. This means that, in these parameter regions, our PCRO
method can also induce a certain balance of regularity and randomness
on the operated FHN network, based on which the corresponding
epileptic-seizure-related synchronization phenomena are expected to
be observed.

The global Kuramoto order parameter r (black curve) of the
operated FHN network obtained at a PCRO probability of PPCRO �

FIGURE 8
(Color online) Mimicking the epileptic-seizure-related synchronization phenomena in brain systems by the PCRO method proposed in this article.
Here, an ERRN consisting of FitzHugh–Nagumo (FHN) neurons with the rotational coupling scheme is utilized to address this issue. The system size
(N � 90) and the parameter setting of the FHN network (α � 0.5, ε � 0.05, and φ � π

2 − 0.1) are all the same as the ones adopted by Gerster et al. (2020) and
Schöll (2021), except for the coupling strength σ � 0.07. The connection probability of the initial ERRN is chosen as PER � 0.032. (A) The dependence
of the average clustering coefficient C (red line) and the mean shortest path length L (black line) of the operated FHN network on the PCRO probability
PPCRO . The preferential constraints are selected as k1 � 1, k2 � 〈k〉AV , and k3 � kMax′ . (B) The corresponding global Kuramoto order parameter r (black
curve) vs. time relative to the onset of a seizure (time interval 20 s) obtained at PCRO probability PPCRO � 0.97. The horizontal red linemarks the threshold
of r � 0.8. If r >0.8 for more than 8 s, an epileptic-seizure-related synchronization can be identified on the FHN network with a PCRO. The two vertical
pink dashed lines, respectively, indicate the instants of the self-initiation and the self-termination of episodes of seizure-like synchronization. (C) The
space-time plot of the dynamical phases corresponding to panel (B) bywhich the PCROmethod induced the epileptic-seizure-related synchronization is
further confirmed.
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0.97 is revealed in Figure 8B. The horizontal red line marks the
threshold of r � 0.8. The definition of the epileptic-seizure-related
synchronization, which was first introduced by Schöll et al., is also
utilized here; that is, the global Kuramoto order parameter should
satisfy r> 0.8 for more than 8 s. The two vertical pink dashed lines,
respectively, indicate the instants of the self-initiation and the self-
termination of episodes of seizure-like synchronization, between
which an epileptic-seizure-related synchronization can be identified
on the FHN network with a PCRO. Figure 8C shows the
corresponding space-time plot of the dynamical phases by which
the PCRO method that induced the epileptic-seizure-related
synchronization is further verified. These results can confirm the
possible application of the PCRO method proposed in this article in
mimicking specific physiological phenomena in real cases.

8 Conclusion

In conclusion, a preferentially cutting–rewiring operation is
proposed in the present article to regulate the structure of the given
network. It consists of two distinct stages: the cutting procedure and the
rewiring procedure with specific preferential constraints. By applying
the PCRO on the classical ERRN with specific constraints and a certain
PCRO probability, the initially homogeneous structure changes
drastically. Three types of isolated nodes are generated: the NINs,
the ADINs, and the PDINs, based on which the CLs are formed
between the two hubs in the operated network. Furthermore, as the
PCRO probability increases, the number of CLs increases significantly,
which makes the initially homogeneous ERRN become heterogeneous.
This confirms that the PCRO introduced in this article has effects on
regulating the network structure.

The statistical properties of the ERRN with a PCRO are
theoretically studied using a statistical analysis method. We have
analytically derived the statistical expressions of the probability
distributions of NINs, ADINs, and PDINs, based on which the
probability distribution of CLs is acquired easily. More importantly,
the theoretical predictions obtained from these analytical formulas have
been confirmed in numerical simulations and coincide with the
experimental data very well. Furthermore, these analytical
expressions are applied to forecast the average number of CLs in the
operated ERRN. The coincidence of the numerical and theoretical
results confirms the validity and applicability of the statistical analysis
method proposed here. Finally, the universality of the statistical analysis
method has also been verified. Our method is general and can be
applied to ERRNs with arbitrary preferential constraints and topologies.

Modeling specific physiological processes and physiological
functions from the perspective of network physiology is an
important and central issue under investigation in the
interdisciplinary field of complexity science and biological
science. The PCRO method proposed in this article, which
consists of the cutting procedure and the rewiring procedure,
may give us a clue in understanding the physiological process of
the global information integration among the localized functional
modules in structural and functional brain networks to implement
specific physiological functions. The reasons are as follows. In the
PCRO cutting procedure, we discard the links of the nodes satisfying
the preferential constraint with a certain PCRO probability
condition, and isolated nodes are produced in the original

network. As these isolated nodes originally satisfied the given
preferential attribute, they can be roughly considered the
localized functional modules in anatomical space, which are
selected and will be integrated into achieving global information
communication across the whole brain system for specific
physiological functions. In the PCRO rewiring procedure, we
reconnect these isolated nodes to the hubs satisfying the
corresponding preferential constraint, which can be roughly
regarded as the specialized regulatory centers (i.e., the hub
regions) in brain networks to perform global physiological
functions among the whole brain system. Furthermore, in a
recent contribution (Qian et al., 2024b), the PCRO-induced
oscillation mode transition from the originally single-mode
oscillations to the newly multi-mode oscillations has been
confirmed to emerge among the preferentially operated nodes
(i.e., the integrated local modules), which we think is beneficial
for understanding the complicated global multimodal physiological
functions in integrated structural and functional brain networks.
More importantly, the probability distributions of the three different
types of isolated nodes formed in the PCRO are derived according to
the statistical analysis method proposed in this article, based on
which the probability distribution of the preferentially operated
common leaves is acquired explicitly. We think the statistical
analysis method and the precise theoretical formulas exposed in
this article can shed light on a deep comprehension of these amazing
physiological phenomena in highly complex and heterogeneous
brain networks. We do hope our results will be of great interest
to network physiology.
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