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The increasing availability of time series data depicting the evolution of physical
system properties has prompted the development of methods focused on
extracting insights into the system behavior over time, discerning whether it
stems from deterministic or stochastic dynamical systems. Surrogate data testing
plays a crucial role in this process by facilitating robust statistical assessments.
This ensures that the observed results are not mere occurrences by chance, but
genuinely reflect the inherent characteristics of the underlying system. The initial
process involves formulating a null hypothesis, which is tested using surrogate
data in cases where assumptions about the underlying distributions are absent. A
discriminating statistic is then computed for both the original data and each
surrogate data set. Significantly deviating values between the original data and the
surrogate data ensemble lead to the rejection of the null hypothesis. In this work,
we present various surrogate methods designed to assess specific statistical
properties in random processes. Specifically, we introduce methods for
evaluating the presence of autodependencies and nonlinear dynamics within
individual processes, using Information Storage as a discriminating statistic.
Additionally, methods are introduced for detecting coupling and nonlinearities
in bivariate processes, employing the Mutual Information Rate for this purpose.
The surrogate methods introduced are first tested through simulations involving
univariate and bivariate processes exhibiting both linear and nonlinear dynamics.
Then, they are applied to physiological time series of Heart Period (RR intervals)
and respiratory flow (RESP) variability measured during spontaneous and paced
breathing. Simulations demonstrated that the proposed methods effectively
identify essential dynamical features of stochastic systems. The real data
application showed that paced breathing, at low breathing rate, increases the
predictability of the individual dynamics of RR and RESP and dampens
nonlinearity in their coupled dynamics.
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1 Introduction

The increasing accessibility of detailed and extensive signal
recordings from various sources is opening the way to the
representation of complex systems through network structures.
For example, in physiology, the traditional reductionist approach,
which involves studying the function of an organ system in isolation,
is now complemented by a holistic investigation of collective
interactions among diverse organ systems in the field of Network
Physiology (Bashan et al., 2012; Ivanov et al., 2017; Ivanov, 2021).
Network Physiology falls within the broader domain of Network
Science, an expansive interdisciplinary field dedicated to advancing
theoretical and practical methodologies to improve the
comprehension of natural and artificial networks characterized by
hierarchical structures (Barabási, 2013).

Within the Network Physiology approach, the human body is
commonly represented as a graph, encoding the observed dynamical
system with distinct nodes (e.g., organ systems) connected by edges
that map functional dependencies (Lehnertz et al., 2020). The
primary methods employed to analyze these dependencies
include state-space interdependence (Arnhold et al., 1999; Faes
et al., 2008a), correlation analyses (Li et al., 2009), and the
application of Granger causality (GC) in both the time and
frequency domains (Bressler and Seth, 2011). Information
dynamics (Lizier, 2012) is a versatile framework that includes
most of these approaches and has been widely used to
characterize the interdependence of coupled systems in various
fields, especially in physiology (Widjaja et al., 2015; Javorka et al.,
2018). Entropy-based measures have been demonstrated to be
effective in evaluating physiological interactions in
cardiorespiratory (Widjaja et al., 2015), cardiovascular (Faes
et al., 2019a), and cerebrovascular systems (Bari et al., 2023).
These measures assess complexity (Pincus, 1991; Faes et al.,
2017) and information stored within a process (Faes et al.,
2019b), as well as directed information transfer between
processes (Porta and Faes, 2013). Another key characteristic to
assess in physiological interactions is the dynamic coupling
between two processes which can be evaluated through the
computation of the Mutual Information Rate (MIR) (Barà et al.,
2023; Pinto et al., 2023). This information-theoretic measure
quantifies the degree of information shared between two systems,
providing a measure of their dynamic coupling strength and
revealing the interdependencies within their dynamic behavior.

Nevertheless, the inherent variability in dynamic systems,
particularly physiological ones, requires proper statistical tests to
evaluate the significance of estimated information measures.
Without such testing, the reliability of these measures remains
uncertain. Typically, this assessment involves the use of surrogate
analysis methods (Lucio et al., 2012; Lancaster et al., 2018).
Surrogate data testing provides a versatile framework applicable
to signals that arise from any physical system, allowing the
exploration of fundamental questions about the system.
Moreover, incorporating information dynamic measures, such as
IS and MIR, into these methods enables the testing of specific
hypotheses related to the observed data (Jamšek et al., 2010; Cliff
et al., 2021). In typical surrogate analysis methods, a null hypothesis
is formulated, assuming the absence of a specific characteristic to be
tested in the observed data. Subsequently, surrogate data consistent

with the null hypothesis is generated, and a discriminating statistic is
computed for both the original and surrogate data. If the
discriminating statistic of the original data significantly deviates
from the surrogate distribution, the null hypothesis is rejected
(Schreiber and Schmitz, 2000; Lancaster et al., 2018).

In time series analysis, several methods have emerged to assess
the temporal statistical structure and the interaction between
interconnected dynamic processes (Theiler et al., 1992; Palus,
1996; Popivanov and Mineva, 1999; Faes et al., 2008b; Lancaster
et al., 2018; Calderón-Juárez et al., 2023). In this study, surrogate-
based tests were implemented, using IS as a discriminating statistic,
along with shuffling procedures and the Iterative Amplitude
Adjusted Fourier Transform (IAAFT) algorithm (Schreiber and
Schmitz, 1996) to assess the presence of self-dependencies and
nonlinear dynamics in univariate processes. Additionally, these
tests were extended to bivariate systems, incorporating MIR as a
discriminating statistic, to investigate coupling and nonlinearity in
coupled systems. All the proposed methods were validated through
simulations involving both univariate processes and bivariate
systems with linear and nonlinear dynamics. Finally, the
framework is applied to a simple exemplary application in
cardiovascular and cardiorespiratory time series, collected from
healthy subjects monitored during different breathing conditions,
to assess changes in the strength of the cardiorespiratory coupling
and the extent of nonlinearities.

2 Framework for the surrogate data
analysis of dynamic correlations and
nonlinearity

Within the surrogate family, there are two distinct approaches:
typical realizations and constrained realizations (Lancaster et al.,
2018). In typical realizations, a model is fitted to the data, such as
estimating the coefficients of an autoregressive (AR) model.
Subsequently, Monte Carlo realizations of this model are
generated for comparison with the data. However, a drawback of
this method is that the user needs to have prior knowledge of the
model and its parameters. On the other hand, constrained
realizations are computed directly from the data, producing
surrogates that replicate all characteristics of the original data
except for the specific property being tested (Theiler and
Prichard, 1996). Although the constrained realization approach,
commonly known as surrogate data, is more widely adopted, it is
essential to acknowledge that this method is specifically tailored for
hypothesis testing. In contrast to typical realizations, it cannot be
employed for the estimation of confidence intervals (Theiler and
Prichard, 1996).

In this constrained realization approach, two fundamental steps
need to be addressed: the selection of a suitable discriminating
statistic and the proper formulation of the null hypothesis to be
tested. This ensures that when rejection occurs, it is possible to
conclude that the null hypothesis is not suitable to describe the data.
Conversely, not rejecting the null hypothesis does not inherently
mean its acceptance. Surrogates exclusively test the null hypothesis
specified for them, without confirming its accuracy. Since surrogates
do not always have a Gaussian distribution, it is more robust to use a
non-parametric test where the significance level is determined, for
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example, by the 95th percentile of the surrogate distribution. The
required number of surrogates depends on whether a one-sided or
two-sided test is being conducted. In a one-sided test, the null
hypothesis is rejected only if the distribution of surrogate values of
the discriminating statistic deviates from those calculated in the
original data in one specified direction—either lower or higher. On
the contrary, a two-sided test allows for testing the possibility of the
discriminating statistic being either higher or lower in the surrogates
than in the original data (Theiler et al., 1992; Schreiber and
Schmitz, 2000).

The following sections provide a detailed overview of surrogate
methods for testing the presence of specific statistical structures in
both univariate and bivariate processes. Firstly, in Section 2.1, the
discriminating statistics employed in this work, Information Storage
(IS) and Mutual Information Rate (MIR), are described in detail,
along with the nearest neighbor estimation of these information
measures. Then, in Sections 2.2 and 2.3, respectively, methods for
assessing the presence of self-dependencies and nonlinearities in
univariate processes are introduced. Lastly, Sections 2.4 and 2.5
discuss, respectively, surrogates for testing the existence of dynamic
coupling and the nonlinear dynamics in bivariate systems.

2.1 Discriminating statistics

2.1.1 Information-theoretic preliminaries
As information-theoretic analysis of random processes relies on

information measures applied to random variables, we will begin by
reviewing the entropy measures adopted for describing general static
random variables. Subsequently, these measures are extended to
stochastic processes representing networks of interacting dynamical
systems, enabling the formulation of Information Storage (IS) and
Mutual Information Rate (MIR), which are later used as
discriminating statistics.

One of the most well-known and widely used information
measures is entropy (Shannon, 1948; Cover, 1999). Entropy
serves as a measure of uncertainty or disorder associated with a
random variable. For a discrete random variable Xwith a probability
mass function p(x), the entropy H(X) is defined by

H X( ) � E ln
1

p x( )[ ], (1)

where E[.] represents the expectation operator. Since it is
formulated in terms of the natural logarithm, the entropy is
measured in natural units (nats). High entropy values indicate
high uncertainty, while low entropy suggests more predictability.

Moving beyond single variables, conditional entropy (CE),
denoted as H(Y|X), measures the remaining uncertainty of a
random variable Y given the knowledge of X and is defined as

H Y|X( ) � −E ln
p x, y( )
p x( )( )[ ], (2)

where p (x, y) is the joint probability mass function of X and Y.
The amount of information shared between two random

variables can be measured by Mutual Information (MI), which is
crucial for understanding the relationships and dependencies
between variables (Cover, 1999). MI, denoted as I(X;Y), between

X and Y is defined as the expected value of the pointwise mutual
information

I X;Y( ) � E ln
p x, y( )

p x( )p y( )( )[ ]. (3)

The logarithm term inside the expectation measures the ratio of the
joint probability to the product of the marginals, reflecting the
departure from independence. Positive values of mutual
information indicate dependence, while zero suggests
independence between X and Y.

2.1.2 Information measures in dynamic processes
This Section describes the use of the information measures

defined in Section 2.1.1, applied by taking as arguments proper
combinations of the present and past states of the stochastic
processes representative of a network of interacting dynamical
systems, to formulate a framework quantifying auto-dependencies
in univariate processes through IS and dynamic coupling in bivariate
systems via the MIR.

Consider two stationary, ergodic, potentially interacting
stochastic processes, X and Y. Let us assume that the realization
of system states is suitably described as a multivariate stationary
stochastic process S = [X, Y]. In a temporal reference frame where n
denotes the present time, Yn represents the current state of Y, and
Y−
n � [Yn−1, Yn−2, . . .] describes its past. The same notation applies

to the process X. This simple operation of separating the present
from the past allows us to consider the flow of time and study causal
interactions within and between processes by examining the
statistical dependencies among these variables (Faes and Porta,
2014). Furthermore, by adopting the Markov assumption, which
posits a finite-length memory for the investigated system, the past of
each process is approximated by vector variables with dimension 1 ×
q, i.e., Xq

n ≈ [Xn−1, Xn−2, . . . , Xn−q] and Yq
n ≈ [Yn−1, Yn−2, . . . , Yn−q].

2.1.2.1 Information storage
IS can be interpreted as a measure of the process regularity and

for the process X can be defined as (Faes et al., 2019b)

SX � I Xn;X
q
n( ) � E ln

p xn, xn−1, . . . , xn−q( )
p xn( )p xn−1, xn−2, . . . , xn−q( )⎡⎢⎣ ⎤⎥⎦. (4)

Here, the expectation is calculated across various instances
(xn, xn−1, . . . , xn−q) of the random variables (Xn,Xn−1, . . .Xn−q).
Considering the dynamic evolution of a time-evolving system, the
concept of IS complements a widely recognized measure of system
complexity, which is quantified as the entropy rate. This rate, for
ergodic processes, is defined as the conditional entropy of the
current state given its past states, denoted as HX � H(Xn | Xq

n)
(Cover, 1999; Martins et al., 2020). Thus, IS can be rewritten as

SX � H Xn( ) −HX. (5)
Moreover, given thatH(Xn | Xq

n) � H(Xn,Xq
n) −H(Xq

n), the IS can
be reformulated exclusively in terms of entropy, i.e.,

SX � H Xn( ) +H Xq
n( ) −H Xn,X

q
n( ). (6)

It is worth noting that the IS for the Y process is defined in exactly
the same way, simply by replacing X with Y in the previous
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expressions. As the entropy measures previously defined, the IS is
also expressed in nats.

2.1.2.2 Mutual information rate
The MIR of the bivariate process S = {X, Y} is defined as the

limit, if it exists, of the rate at which the MI between dynamic
sequences taken from X and Y increases over time (Komaee, 2020;
Miao et al., 2020)

IX;Y � limq→∞
1
q
I Xq

n;Y
q
n( ). (7)

The MIR serves as a dynamic measure for the information shared
per unit of time between two dynamical systems and was adopted in
various forms to quantify dynamic interactions among physiological
processes (Baptista and Kurths, 2008; Mijatovic et al., 2021; Faes
et al., 2022). This measure of dynamic coupling can be decomposed
in terms of other information-theoretic measures, offering valuable
insights into the dynamics of each process and the coupling
relationships within the bivariate system (Barà et al., 2023). A
possible decomposition of MIR is

IX;Y � HX +HY −HX,Y, (8)
where HX and HY denote the entropy rate of X and Y, respectively,
and HX,Y their joint entropy rate. Exploiting the fact that the
conditional entropy terms can be written as the difference
between two entropies and substituting the above-defined terms
in Eq. 8, the MIR can be reformulated as follows

IX;Y � H Xn,X
q
n( ) −H Xq

n( ) +H Yn, Y
q
n( ) −H Yq

n( )
−H Xn, Yn, X

q
n, Y

q
n( ) +H Xq

n, Y
q
n( ), (9)

favoring the estimation of the MIR as the sum of entropy terms,
measured also in nats.

2.1.3 Estimation of information measures
In this work, the most widely used non-parametric estimator for

continuous random variables was applied, the k-nearest neighbor
(KNN). Due to its ability to adjust resolution dynamically by altering
the distance scale based on the underlying probability distribution
(Victor, 2002), and its potential for bias compensation through
distance projection (Kraskov et al., 2004), the nearest-neighbor
technique has become increasingly popular in recent years for
estimating entropy measures in the analysis of time series.

2.1.3.1 Nearest-neighbor estimation
The KNN estimation approach derives an approximation of

the probability distribution by analyzing the statistical properties
of the distances among neighboring points within the
multidimensional spaces defined by the observed variables. This
approach is grounded in the results presented in (Kozachenko and
Leonenko, 1987), which assert that the mean Shannon information
content of a general d-dimensional random variable V can be
estimated from the set of N observations {v1, v2, . . . , vN} of the
variable as

−E lnp vn( )[ ] � ψ N( ) − ψ k( ) + d〈ln εn〉, (10)
where ψ denotes the digamma function, εn represents twice the
distance between vn and its kth nearest neighbor, determined using

the maximum norm and 〈.〉 denotes the average over all the N
realizations of V. It is straightforward, from Eq. 10, to obtain the
formula for the KNN estimate of the entropy for Xn, calculated based
on the time series {x1, x2, . . . , xN}

H Xn( ) � ψ N( ) − ψ k( ) + 〈ln εn〉. (11)
According to Eqs 6, 9, the IS and MIR can be computed as a
combination of entropy terms. Nevertheless, these entropy
terms are calculated in spaces with distinct dimensions, and
applying the same neighbor search procedure uniformly across
all spaces would yield distinct distance lengths when
approximating the probability density in different
dimensions. This divergence in distance lengths could
introduce estimation biases that cannot be rectified by taking
the entropy differences. Hence, in order to keep the same
distance length in all explored spaces, the approach discussed
in (Kraskov et al., 2004) was used. This method conducts a
neighbor search only in the highest-dimensional space and then
projects the distances identified in this space to the lower-
dimensional spaces. This ensures that these distances serve as
the range for counting neighbors in each respective space.
Specifically, for the IS estimation, the KNN estimate of
H(Xn, Xq

n) is computed through the neighbor search

H Xn,X
q
n( ) � ψ N( ) − ψ k( ) + q + 1( )〈ln εn〉, (12)

with εn representing twice the distance from [xn, x
q
n] to its kth

nearest neighbor. Subsequently, based on the calculated distances εn,
the entropies in the lower-dimensional spaces are assessed using a
range search.

H Xq
n( ) � ψ N( ) − 〈ψ NXq

n
+ 1( )〉 + q〈ln εn〉, (13a)

H Xn( ) � ψ N( ) − 〈ψ NXn + 1( )〉 + 〈ln εn〉, (13b)

where NXn and NXq
n
are the number of points whose distance

from xn and xq
n, respectively, is smaller than εn/2. Therefore, IS is

obtained subtracting Eq. 12 from the sum of Eq. 13

SX � ψ N( ) + ψ k( ) − 〈ψ NXq
n
+ 1( )〉 − 〈ψ NXn + 1( )〉. (14)

Analogously, for the MIR estimation, considering the bivariate
system S = {X, Y}, the KNN estimate of the entropy in the higher
space, i.e., [Xn, Yn, Xq

n, Y
q
n], is computed through the neighbor

search as follows

H Xn, Yn,X
q
n, Y

q
n( ) � −ψ k( ) + ψ N( ) + 2 q + 1( )〈logεn〉 (15)

where, in this case, εn denotes twice the distance from [xn, yn, x
q
n, y

q
n]

to its kth nearest neighbor. Following this, the entropies in the lower-
dimensional spaces are determined through a range search using εn.
Particularly, in this framework, H(Xn,Xq

n) and H(Xq
n) are

computed respectively as.

H Xn,X
q
n( ) � ψ N( ) − 〈ψ NXnX

q
n
+ 1( )〉 + q + 1( )〈ln εn〉, (16a)

H Xq
n( ) � ψ N( ) − 〈ψ NXq

n
+ 1( )〉 + q〈ln εn〉, (16b)

where NXnX
q
n
andNXq

n
are the number of points whose distance

from [xn, x
q
n] and xq

n is smaller than εn/2, respectively. Similarly,
H(Yn, Yq

n) and H(Yq
n) can be derived by replacing X with Y in the

corresponding above equations, thus obtaining.
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H Yn, Y
q
n( ) � ψ N( ) − 〈ψ NYnY

q
n
+ 1( )〉 + q + 1( )〈ln εn〉, (17a)

H Yq
n( ) � ψ N( ) − 〈ψ NYq

n
+ 1( )〉 + q〈ln εn〉, (17b)

NYnY
q
n
and NYq

n
are the number of points whose distance from

[yn, y
q
n] and yq

n is smaller than εn/2. Then, the joint entropy of the
past state of both processes can be computed as:

H Xq
n, Y

q
n( ) � ψ N( ) − 〈ψ NXq

nY
q
n
+ 1( )〉 + 2q〈log εn( )〉, (18)

where NXq
n,Y

q
n
denote the number of points whose distance from

[xq
n, y

q
n] is smaller than εn/2. Finally, the KNN estimate of MIR is

derived plugging Eqs 15–18 in Eq. 9, thus obtaining

IX;Y � ψ k( ) + 〈ψ NXq
n
+ 1( ) + ψ NYq

n
+ 1( ) − ψ NXnX

q
n
+ 1( )

− ψ NYnY
q
n
+ 1( ) − ψ NXq

nY
q
n
+ 1( )〉. (19)

2.2 Surrogates for auto-dependencies in
univariate processes

Many physical and biological systems exhibit complex dynamic
behaviors resulting from the presence of self-sustained oscillators,
interacting subsystems, and feedback loops responding to both
internal and external stimuli (Pincus, 1991; Donges et al., 2009;
Chialvo, 2010). Therefore, assessing the existence of self-
dependencies in these types of systems is crucial. In this context,
for detecting auto-dependencies, in this work a surrogate method
that employs the IS as a discriminating statistic is proposed. Let us
consider the time series x = {x1, x2, x3, . . . , xN} as a realization of
length N of the univariate stochastic process X. Moreover, assuming
an embedding dimension of q, the estimation of IS, as described in
Section 2.1.2.1, relies on the (N − q) × (q + 1) observation matrix,
defined as

xq+1 xq xq−1 . . . x1

xq+2 xq+1 xq . . . x2

..

. ..
. ..

. ..
. ..

.

xN xN−1 xN−2 . . . xN−q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (20)

This matrix plays a central role in the proposed
surrogate method.

Null Hypothesis. The time series x comes from a process that
does not exhibit self-dependencies; equivalently, SX = 0.

Algorithm. Perform a random shuffle on the column
corresponding to the present state of the time series x, which is
the first column of the observation matrix [xq+1, xq+2, . . . xN]T (T
represents matrix transpose), thereby eliminating any dependency
between the present samples and their past (see Figure 1B). After this
shuffling process, the IS is estimated. This procedure is repeated M
times to obtain the distribution of IS for the surrogates. Finally, a
percentile-based test is performed, where the null hypothesis is
rejected if, with a significance level α, the IS estimated for the original
process exceeds the (1 − α)th percentile of the surrogate distribution,
indicating that the process does have self-dependencies.

2.3 Surrogates for nonlinear dynamics in
univariate processes

The presence of nonlinear dynamics was assessed using the
Iterative Amplitude Adjusted Fourier Transform (IAAFT)
surrogates introduced by (Schreiber and Schmitz, 1996). This
method involves the iterative replacement of Fourier amplitudes
with the correct values and rescaling the distribution to achieve a
closer match between the distribution and the power spectrum in the
original data and the surrogates (Lancaster et al., 2018).

Null Hypothesis. The time series x comes from a process that
exclusively exhibit linear dynamics.

Algorithm. The algorithm involves an iterative process:

1. Store a sorted list of the values of the time series x and the
squared amplitudes of its Fourier transform
S2k � |∑N−1

n�0 xnei2πkn/N|2, with k = 1, . . . , N.
2. Randomly shuffle (without replacement) x(0), where the

superscript (0) denotes the iteration number.
3. x(i) is adjusted to match the desired sample power spectrum.

This involves performing a Fourier transform on x(i), replacing
the squared amplitudes S2,(i)k with S2k, and subsequently
applying the inverse Fourier Transform. The phases of the
complex Fourier components are retained. Therefore, this step
ensures the correct spectrum, but it typically results in a
modified distribution.

FIGURE 1
Schematic description of surrogate frameworks proposed for assessing the presence of self-dependencies and nonlinearities in univariate random
processes: (A) presents the Venn diagram of the dependency between the past and the present of the original time series, measured by the IS. In (B), the
proposed surrogate procedure to assess the presence of self-dependencies will generate time series where the dependencies between the present and
the past are destroyed. In this case, the Venn diagram is presented as two non-intersecting circles. In (C), the surrogate method for detecting
nonlinearities will create time series where the nonlinear correlation between the past and the present state of the process is destroyed. Under these
conditions, the dependency between the past and the present is not totally destroyed but is equivalent to that arising from a time series with linear
correlations only, so the Venn diagram presents a reduced intersection.
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4. Arrange the derived series in a ranked order to precisely match
the values of x. Unfortunately, this results in a further
modification of the spectrum in x(i+1).

5. Repeat steps 3 and 4 to ensure that the power spectrum and
distribution are as close to the original data as possible. In this
work, seven iterations were used to avoid high computational
costs, and indeed, this number of iterations is sufficient to
observe a low percentage of false rejections (Schreiber and
Schmitz, 1996).

This iterative procedure is repeated M times to obtain the
distribution of the IS of the 100 surrogates. The null hypothesis is
rejected, with a significance level of α, when the IS estimated in the
original process exceeds the (1 − α)th percentile of the surrogate
distribution, indicating that the data come from a nonlinear process.
Figure 1C represents graphically this surrogate procedure in terms of
a Venn diagram. The IAFFT algorithm generates a time series in
which the nonlinear correlation between the past and present state
of the process is disrupted. In this case, the dependency between the
past and the present is not entirely destroyed but is reduced
compared to the original case presented in Figure 1A, resulting
in a reduced intersection in the Venn diagram.

2.4 Surrogates for the presence of dynamic
coupling in bivariate processes

Consider that x = {x1, x2, . . . , xN} and y = {y1, y2, . . . , yN} are
realizations of length N for the stochastic processes X and Y,
respectively. Similar to the approach with IS, described in Section
2.2, assuming an embedding dimension of q, the estimation of the
MIR relies on an (N − q) × 2 (q + 1) observation matrix given by

xq+1 xq . . . x1 yq+1 yq . . . y1

xq+2 xq+1 . . . x2 yq+2 yq+1 . . . y2

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

xN xN−1 . . . xN−q yN yN−1 . . . yN−q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (21)

which is exploited for generating surrogate time series.

Null Hypothesis. The time series x and y are realizations of
independent processes, or, equivalently, IX;Y = 0.

Algorithm. Shuffle the rows of the (N − q) × (q + 1) sub-matrix of
the observation matrix defined as

xq+1 xq . . . x1

xq+2 xq+1 . . . x2

..

. ..
. ..

. ..
.

xN xN−1 . . . xN−q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (22)

thus destroying the coupling while maintaining the internal
dynamics of X and Y, as illustrated in Figure 2B. It is important
to note that the matrix shown relates to process X for illustrative
purposes only; likewise, choosing the sub-matrix for process Y
would yield the same results. After this step, the shuffled
observation matrix is used to estimate the MIR. This procedure
is iterated M times to derive the surrogate distribution of the MIR,
and the null hypothesis is rejected, with a significance level α, if the
MIR value estimated in the original time series exceeds the (1 − α)th

percentile of the surrogate distribution, indicating that the processes
are coupled.

2.5 Surrogates for the assessment of
nonlinear interactions in bivariate processes

Fourier Transform (FT) surrogates, along with any other
surrogate types wherein the phases are randomized, such as
IAFFT introduced in Section 2.3, can be employed to investigate
nonlinear dependencies in multivariate data. Let consider x = {x1, x2,
. . . , xN} and y = {y1, y2, . . . , yN} as realizations of length N from the
bivariate stochastic system S = {X, Y}.

Null Hypothesis. The time series x and y are realizations of a
bivariate process exhibiting exclusively linear correlations, or
equivalently, the data constitutes a realization of a multivariate
Gaussian process.

Algorithm. The algorithm is similar to the previously presented
IAAFT in Section 2.3. The only difference in the procedure lies in
step 2, where, instead of applying a random permutation to both

FIGURE 2
Schematic description of surrogate frameworks proposed for assessing the presence of coupling, nonlinearities, and temporal correlations in
bivariate random processes: (A) presents the Venn diagram of the coupling between two generic processes X (yellow) and Y (blue) measured by MIR,
represented in green. In (B), the proposed surrogate procedure to assess the presence of coupling will generate time series where the dependencies
between the two processes are destroyed, but dependencies between the past and the present of each process aremaintained. In (C), the surrogate
method for detecting nonlinearities will create a time series where the nonlinear correlation between the past and the present state of the process is
destroyed. For this scenario, the MIR between the processes is not completely lost but is inferior to the original case (A), so the Venn diagram presents a
reduced MIR intersection.
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series, the same random number in the range of [0, 2π] is added to
the phases of both processes (Lancaster et al., 2018). This approach
preserves not only the power spectrum but also the cross-spectrum
between signals, as highlighted by Prichard and Theiler (1994). In
this case, the MIR between the processes is not completely lost but is
inferior to the original, illustrated in Figure 2A, so the Venn diagram
presents a reduced MIR intersection on Figure 2C.

As before, this procedure is repeated M times to obtain the
distribution of the MIR of the M surrogates. The null hypothesis is
rejected, with a significance level α, when the MIR estimated in the
original process exceeds the 95th percentile of the surrogate
distribution, indicating the presence of nonlinear dependencies
between the processes constituting the bivariate system.

3 Toolbox description

In this section, we present the Surrogates for Information
Dynamics measures toolbox (SID) with the utilized measures
and surrogate techniques previously outlined. The toolbox is
designed within MATLAB and is equipped with all essential
functions required for the described investigation within this
work, with some demo scripts in order to demonstrate its
functionality.

The used functions are within the /SID/functions folder, which
can be grouped into four distinct categories:

• data manipulation,
• KNN supporting functions,
• measure estimation,
• surrogate generation algorithms.

Details for each individual provided function are covered in
Table 1. Here, the supporting functions for efficient KNN algorithm

computations are obtained from (Lindner et al., 2011) and are given
as compiled MEX files for Windows and Linux systems.

The parameters for the main estimation functions surr_ISknn
and surr_MIRknn are the following:

• Y - the analyzed multivariate process, organized as a matrix
with rows as samples and columns as processes,

• V - the assigned embedding vector,
• jj - index of the column for one investigated process,
• ii - index of the column for the second investigated process
(MIR only),

• k - number of neighbors for the KNN estimation,
• metric - distance metric for the KNN estimation, and
• surr - parameter determining which type of surrogate to be
created before estimating the measure.

To enable the creation of the proposed surrogates, the
functionality is controlled with the surr parameter, where
for surr = 1 the function applies the shuffling method on
defined columns of the observation matrix, for surr = 2
applies the IAAFT method, and for surr = 0 it does not
apply any surrogate method and the measure is estimated
from the original data.

In order to demonstrate the functionality of the proposed
methods, 2 demo scripts are placed within the root directory of
the toolbox, /SID, along with a single sample data obtained from
(Faes et al., 2011) concerning the RR and respiration series.

In both demo_IS_estimation and demo_MIR_estimation, we
demonstrate the steps to evaluate the significance of the measure
and the presence of nonlinearities within the RR series and
respiration series. The script goes through a basic collection of
steps which can be condensed as:

• loading and applying z-score normalization on the data,

TABLE 1 SID toolbox function contents.

Function name Description

data manipulation

surr_SetLag Creates the desired embedding vector

surr_ObsMat Forms the observation matrix

KNN supporting functions

nn_prepare Construct a tree structure for nearest neighbor search

nn_search Apply nearest neighbor search for a given query

range_search Find points that are within a range for a given query

measure estimation

surr_ISknn K-nearest neighbor estimation of Information Storage

surr_MIRknn K-nearest neighbor estimation of Mutual Information Rate

surrogate generation

surr_ShuffColumn Create surrogate observation matrices by applying joint random permutation of selected columns

surr_Iaaft Create surrogate data for a given single process using the IAAFT algorithm

surr_IaaftBivariate Create surrogate data for a given bivariate process using the IAAFT algorithm
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• defining the parameters needed for the measure estimations,
• applying the measure estimation function with the surr
parameter 0,

• applying the measure estimation function with the surr
parameter 1 and 2, repeated num_surrogates times,

• obtaining the percentile values and comparing them to the
originally estimated measure.

The potential users can easily adapt to the scripts with their
data, parameters, or other changes. The SID toolbox is freely
available at the Biosignals and Information Theory Laboratory
(BIT Lab) website and https://github.com/helderpinto97/SID_
Toolbox along with the real data application and the codes for
the full simulation setup.

4 Simulations studies

In this section, the surrogate methods presented in Section 2 will
be tested in simulations of both univariate and bivariate systems,
including linear and nonlinear models. Specifically, for univariate
processes, simulations were conducted using an AutoRegressive
(AR) model and the Hénon-Hénon map to assess the presence of
auto-dependencies and nonlinear dynamics. Subsequently,
surrogates designed for detecting coupling and nonlinearities in
bivariate systems were applied to a Vector AR model and the
Coupled Hénon-Hénon Map. For each simulation model, a total
of M = 100 surrogates were constructed and a significance level of
α = 0.05 was considered. For KNN estimation, k = 10 neighbors and
an embedding dimension of q = 2 were applied. These are the values
typically employed in the literature for KNN estimation. The choice
of k involves a trade-off between variance and bias: increasing k
reduces the variance but increases the bias. A low embedding was
used to mitigate the bias on the estimates associated with the curse of
dimensionality (Bellman, 1966).

4.1 Detection of self-dependencies and
nonlinear dynamics in univariate processes

4.1.1 AutoRegressive model
The identification of auto dependencies and the presence of

nonlinear dynamics is initially tested through the use of IS in
conjunction with the surrogate analysis techniques introduced
earlier in the AR model (Brockwell and Davis, 2009)

Xn � 2ρx cos 2πfx( )Xn−1 − ρ2xXn−2 + εn, (23)
where fx=0.3, the pole radius ρxwas varied from0 to 0.95 in steps of 0.05,
to ensure the stability of the generated models (Barnett and Seth, 2014),
and εn denotes white Gaussian noise with zero mean and unit variance.
For each value of ρx, 100 realizations of length N = 1000 were generated.

Themedian and 5%–95%percentile range of the IS values computed
for the AR model, for each ρx considered, are presented in Figure 3A.
Since the AR model is a Gaussian process it is possible to obtain the
theoretical value of IS, which is represented, in the same panel, in gray
color. In Figure 3B, the blue bars indicate the percentage of the
100 generated realizations in which IS was detected as statistically
significant for each ρx value, while the orange bars represent the
fraction of realizations in which nonlinearities were identified by the
IAFFT algorithm. As ρx increases, the regularity of the process increases,
leading to an increase in IS, as illustrated in Figure 3A. Correspondingly,
Figure 3B shows an increase in the significance of the measure,
represented by the blue bars. On the other hand, since the AR model
is linear, only a small percentage of realizations exhibit nonlinearities, as
indicated by the orange bars, showing that the rate of false detection
oscillates around the nominal 5% level.

4.1.2 Hénon map
The univariate Hénon Map, as defined by (Hénon, 1976), is

described by the following equation

Xn � 1 − 1.4X2
n−1 + 0.3Xn−2. (24)

FIGURE 3
Distribution of IS KNN estimates, median and 5%–95% percentiles, computed on 100 simulations of a univariate ARmodel, varying the pole radius ρx
from0 to 0.95, is shown in panel (A). In panel (B), the plots depict the percentage of realizations, out of 100 realizations for each value of the pole radius ρx,
in which the IS was detected as statistically significant (in blue), and for which nonlinearities (in orange) were found. The red line represents the 5%
significance level.
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For this simulation, the process Y, defined as
Y � X + ξ, (25)

was used, where ξ denotes Gaussian noise with zeromean and variance
σ. By incrementally increasing the noise variance from 0 to 3 in steps of
0.2, the past dependencies, as well as the nonlinear dynamics of the
HénonMap defined in Equation 24 (considering the classic parameters
for chaotic behavior), are masked. This approach enables the
assessment of surrogate methods proposed to test the statistical
significance of IS and the presence of nonlinear dynamics. For each
value of σ considered, 100 simulations of length N = 1000, using a
burn-in period of Ntrans = 1000 to avoid transient behavior, were
computed using random initial conditions.

Figure 4A presents themedian and 5%–95% percentile range of the
IS values computed for the process Y formulated in Eq. 25, for each
value of the noise variance σ considered. In Figure 4B, the blue bars
indicate the percentage of the 100 generated realizations in which IS was
detected as statistically significant, while the orange bars represent the
fraction for which the IAFFT algorithm detected nonlinearities. The
increase in noise variance conceals the dependence between the present
and the past of the process, leading to a reduction of the information
storage, as illustrated in Figure 4A. Consequently, Figure 4B shows a
decrease in the presence of statistically significant self-dependencies.
Additionally, the higher noise variance masks nonlinearities,
contributing to the observed downward trend in the presence of
nonlinear dynamics. In summary, these results, together with those
discussed in Section 4.1.1, highlight the effectiveness of the surrogate
methods proposed in this work for detecting self-dependencies and the
presence of nonlinearities in univariate processes.

4.2 Detection of dynamic coupling and
nonlinear interactions in bivariate processes

4.2.1 Vector AutoRegressive model
The surrogate procedures for the significance and the

presence of nonlinear coupling using the MIR are first tested

in a stable bivariate Vector AutoRegressive (VAR)
unidirectionally coupled model defined as (Barnett and Seth,
2014; Faes et al., 2015)

Xn � 2ρx cos 2πfx( )Xn−1 − ρ2xXn−2 + εn,
Yn � 2ρy cos 2πfy( )Yn−1 − ρ2yYn−2 + C ·Xn−2 + ξn,

(26)

where εn and ξn are independent white Gaussian noises with zero
mean and unit variance, and ρx = 0.3, fx = 0.3 and ρy = 0.3, fy = 0.1.
In this simulation, X and Y exhibit second-order autoregressive
behavior, characterized by two complex-conjugate poles with a
modulus of ρx,y and phases of ± 2πfx,y. This configuration
establishes autonomous wide-band oscillations at frequencies
of 0.3 and 0.1 Hz for X and Y, respectively. Directional
connections are set from X to Y, at lag 2, modulated by the
parameter C. For each value of the coupling parameter C, which
varies between 0 and 1 in steps of 0.05, 100 realizations of length
N = 1000 were generated.

The median and 5%–95% percentile range of the MIR values
computed for the VAR model, considering each coupling
parameter C, are presented in Figure 5A. In Figure 5B, the
blue bars indicate the percentage of the 100 generated
realizations in which MIR was detected as statistically
significant, while the orange bars represent the fraction of
simulations in which nonlinearities were identified. As
expected, the increase in the parameter C leads to an increase
in IX;Y, as reported in Figure 5A. It is also important to note that
for low values of C, negative values of MIR are observed. This can
be attributed to the bias of the KNN estimator (Kraskov et al.,
2004; Mijatovic et al., 2021), which tends to underestimate the
MIR, resulting in values near zero becoming negative but not
statistically significant, as illustrated in Figure 6B. Consequently,
in Figure 5B, the presence of significant coupling increases along
with the coupling parameter. On the other hand, due to the
linearity of the VAR model, there is a low fraction of realizations,
distributed around the nominal 5% error rate, where
nonlinearities were detected for each C value considered.

FIGURE 4
Distribution of IS KNN estimates, median and 5%–95% percentile range, computed on 100 simulations of Y process defined in Eq. 25, varying the
variance noise σ from 0 to 3, is shown in panel (A). In panel (B), the plots depict the percentage of realizations, out of 100 simulation runs for each value of
σ, in which the IS was detected as statistically significant (in blue), and for which nonlinearities (in orange) were found. The red line represents the 5%
significance level.
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4.2.2 Coupled Hénon-Hénon maps
The unidirectionally coupled Hénon-Hénon system is described

by the following equations (Sausedo-Solorio and Pisarchik, 2011)

Xn � 1.4 −X2
n−1 + 0.3Xn−2,

Yn � 1.4 − CXn−1Yn−1 + 1 − C( )Y2
n−1( ) + 0.3Yn−2.

(27)

For this simulation, the coupling parameter C was varied from 0 to
0.5 in steps of 0.1. The selection of this interval for C is primarily
based on the system manifestation of chaotic behavior within this
range, without the occurrence of synchronization, which is observed
at higher values of the coupling parameter (Krakovská et al., 2018).
For each C, 100 realizations of length N = 1000 with a burn-in
period of Ntrans = 1000 to avoid the transitory behavior were

computed using random initial conditions. As the parameter C
increases, the nonlinear coupling increases, on the other hand, the
internal dynamics of Y is reduced.

Figure 6A presents the median and 5%–95% percentile range of
the MIR values computed for the Coupled Hénon-Hénon Map,
considering each coupling parameter C. In Figure 6B, the blue bars
depict the percentage of the 100 generated realizations where MIR
was detected as statistically significant, while the orange bars
represent the fraction of simulations in which nonlinearities were
identified. As expected, with the increase in the coupling parameter
C, the IX;Y rises, as observed in Figure 6A. This observation is further
highlighted in Figure 6B, illustrating the significance of this measure
and the increased detection of nonlinear coupling. As in the case of
the VAR model, for low coupling values, some realizations exhibit

FIGURE 5
The distribution of MIR KNN estimates, median, and 5%–95% percentile range, computed on 100 simulations of the VAR process, varying the
coupling parameter C from 0 to 1, is shown in black, along with the respective theoretical values in gray, in panel (A). In panel (B), the plots depict the
percentage of realizations, out of 100 simulation runs for each value of C, in which the IS MIR detected as statistically significant (in blue), and for which
nonlinearities (in orange) were found. The red line represents the 5% significance level.

FIGURE 6
Distribution ofMIR KNNestimates,median and 5%–95% percentile range, computed on 100 simulations of Coupled Hénon-HénonMap, varying the
coupling parameter C from 0 to 0.5, is shown in panel (A). In panel (B), the plots depict the percentage of realizations, out of 100 simulation runs for each
value ofC, in which the IS MIR detected as statistically significant (in blue), and for which nonlinearities (in orange) were found. The red line represents the
5% significance level.
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negative values due to the bias of the KNN estimator (Kraskov et al.,
2004; Mijatovic et al., 2021).

4.3 Estimators complexity

In this section the execution time of the two main functions
surr_ISknn and surr_MIRknn, introduced in Section 3, are analyzed
in the AR and VAR model, introduced, respectively, in Sections
4.1.1, 4.2.1. The analysis was carried out on a PC with Windows
11 Home OS and an Intel(R) Core(TM) i7-10750H CPU @
2.60GHz, with 16 GB of RAM and using MATLAB
(R2023b) Update 7.

Figure 7 illustrates the distribution of execution times for surr_
ISknn in panel (a) and surr_MIRknn in panel (b). Each plot displays
the median and 5%–95% percentiles, calculated as follows: in (a),
based on 100 simulations of a univariate AR model with ρx = 0.5 and
fx = 0.3; and in (b), derived from 100 simulations of the VAR model
with ρx = 0.3, fx = 0.3, ρy = 0.3, fy = 0.1, and C = 0.5. Both cases
considered signal lengths N = 100, 500, 1000, 1500, 2000, and
embedding dimensions q = 2, 4, 6, 8.

As expected, the execution time of surr_MIRknn, illustrated
in Figure 7A, is higher than that of surr_ISknn, presented in
Figure 7B, since the former is employed in bivariate systems where
the complexity of calculations is superior. Additionally, for both
functions, increasing the signal length results in more time
consumed in the range search, leading to an expected increase in
execution time, as observed. Similarly, when increasing the
embedding dimension q, the dimension of the observation matrix
becomes greater, consequently requiring more time for estimation.

One important point to stress is that most of the time
consumed is for KNN estimation of the information measures.
If some of the surrogate procedures proposed herein are used, a
small increment in the results presented in Figure 7 will be
observed. The magnitude of this increment is expected to be
proportional to the number of surrogates utilized for the test.
In particular, for the univariate case, under the worst-case scenario
withN = 2000 and q = 8, we observe a median increase in execution
time of approximately 1 ms for the shuffled surrogate creation
followed by IS estimation, illustrated in Figure 7(a2). Conversely,
when using IAAFT surrogates followed by IS estimation, there is
an increment in execution time of approximately 3 ms, presented
in Figure 7(a3). In the case of the VAR model, with N = 2000 and
q = 8, there is a median increase in time of approximately 4 ms for
the creation of shuffled surrogates along with the MIR estimation
as presented in Figure 7(b2). Conversely, when utilizing IAAFT
surrogates with MIR estimation to assess the presence of nonlinear
dynamics, a median increase of approximately 2 ms is observed
in Figure 7(b3).

5 Analysis of cardiorespiratory
interactions

This section reports the application of the surrogate approaches
proposed to evaluate the presence of self-dependencies, nonlinear
dynamics, and coupling, as presented in Sections 2.2, 2.3, 2.4, 2.5, in
a physiological dataset. The aim is to prove the effectiveness of the
proposed approaches for assessing the cardiorespiratory interactions
during both spontaneous and paced breathing.

FIGURE 7
Distribution of execution time in msec of (A) surr_ISknn and (B) surr_MIRknn performing only the estimation procedure. The plots present
median and 5%–95% percentiles, computed as follows: in (A), based on 100 simulations of a univariate AR model (Eq. 23) with ρx =0.5 and fx =0.3; and in
(B), across 100 simulations of the VAR model (Eq. 26) with ρx =0.3, fx =0.3, ρy =0.3, fy =0.1, and C =0.5. For both univariate and bivariate cases, signal
lengths N = 100, 500, 1000, 1500, 2000, and embedding dimensions q = 2, 4, 6, 8 were considered.
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5.1 Experimental protocol

Cardiorespiratory interactions were explored considering a
historical database collected for analyzing short-term
physiological variability during paced breathing (Faes et al.,
2011). The experiments were conducted at the Cardiology Unit
of S. Chiara Hospital in Trento, Italy. All participants provided
informed consent, and the experimental protocol received approval
from the hospital Ethical Committee. The dataset comprises
physiological time series obtained from 16 young and healthy
individuals observed in the supine position during four distinct
experimental conditions: spontaneous breathing (SB), controlled
breathing at 10 breaths/min (C10), at 15 breaths/min (C15), and at
20 breaths/min (C20). The acquired signals were the surface
electrocardiographic signal (ECG, lead II) and the respiratory
nasal flow (by differential pressure transducer). Signals were
collected simultaneously and digitized at 1 kHz sampling rate and
12-bit precision. The sequence of heart periods (RR intervals) was
extracted from the ECG signal, representing the time intervals
between two consecutive R peaks in the ECG. The respiratory
amplitude values (RESP) were extracted from the nasal
respiration flow signal sampled at the onset of each heart period.
The analysis involved synchronous time series consisting of
300 values for each subject and condition.

5.2 Statistical analysis

Significant changes in the IS and MIR across the pairs of
experimental conditions were assessed using repeated measures
models (Davis, 2002; Crowder and Hand, 2017; Davidian, 2017).

Estimated marginal means (EMM) were calculated between each
paced breathing condition and the spontaneous (SB vs. C10, SB vs.
C15, and SB vs. C20) (Searle and Milliken, 1980). A Z-test is then
applied to determine the significance of these differences at a
significance level of p < 0.05, with the Bonferroni correction
applied for multiple comparisons (n = 3). The model’s residuals
were checked for whiteness. MATLAB software (MathWorks,
Natick, MA, United States) was used to build the models and
compute EMM.

5.3 Results of real data analysis

Figures 8A, C present the boxplot distributions with the
overlapping individual values of SRR and SRESP, respectively.
On the right, Figures 8B, D report the percentage of subjects
presenting self-dependencies (in blue) and nonlinearities (in
orange) when taking into account the RR and RESP time
series, respectively. Results evidence a significant increase in IS
from SB to C10, followed by a decrease when going from C10 to
C20 with regard to RR, and a statistically significant difference
from SB (panel (a)). On the contrary, although the trend is the
same, only the increase from SB to C10 is found significant when
taking into account RESP time series (panel (c)). The values
across all considered phases were statistically significant,
indicating the presence of self-dependencies on RR and RESP
time series. Additionally, the majority of the tested individuals
exhibit nonlinear dynamics, especially for RESP time series, as
illustrated in Figure 8D, with a tendency towards decreasing the
nonlinearity of the RR series while increasing the frequency of the
paced breathing, as presented in Figure 8B.

FIGURE 8
Analysis of the individual dynamics of physiological variability time series. Panels (A, C) display boxplot distributions and individual values of the IS
computed on RR and RESP time series, respectively, analyzed during spontaneous breathing (SB) and controlled breathing at 10, 15, and 20 breaths/min
(C10, C15, C20). On the right, panels (B, D) present the percentage of individuals exhibiting self-dependencies (blue) and nonlinearities (orange) when
considering RR and RESP processes, respectively. Statistical analysis: post hoc test with a Bonferroni correction of the estimated marginal means
(EMM) of a repeated measures model:*p < 0.05.
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In Figure 9A, the distribution and individual values of IRR;RESP
for the four experimental conditions are presented. The percentage
of subjects exhibiting significant coupling (in blue) and
nonlinearities (in orange) is reported in Figure 9B. Figure 9A
shows a slight not statistically significant decrease from the SB to
the C10 phase followed by the recovery of MIR values in C15 and
C20. Nonetheless, all the MIR estimates are statistically significant,
as illustrated in Figure 9B. With regard to the presence of
nonlinearities (panel (b)), a marked decrease is observed for
C10 if compared to SB, followed by a recovery when going
to C15 and C20.

5.4 Discussion

Firstly, the presence of self-dependencies and nonlinear
dynamics was individually analyzed for each of the processes, RR
and RESP, using IS. Physiologically, the higher IS detected during
C10, as observed in Figures 8A, C, suggests less complex RR and
RESP dynamics (Radhakrishna et al., 2000). This observation may
be linked to the mechanism of Respiratory Sinus Arrhythmia (RSA),
i.e., modulation of heart rate with respiration. The RSA mechanism
is more prominent during forced ventilation at low breathing rates
(Saul et al., 1989), and its effects, compared to spontaneous
breathing, tend to diminish when increasing respiratory rate
(Song and Lehrer, 2003). Furthermore, RSA and other
cardiovascular control mechanisms, such as cardio-ventilatory
coupling and synchronization of respiratory stroke volume
(Elstad et al., 2018), not only produce alterations in the
complexity of respiratory dynamics but also similar variations in
the complexity of cardiac dynamics. Nonetheless, a difference is
found with regard to the nonlinearities between the two systems:
controlled breathing produces a slight decrease of nonlinearities in
cardiac dynamics with breathing rate, which is instead not observed
in respiratory dynamics (Fang et al., 2008; Dimitriev et al., 2019).

The analysis of the coupling of the bivariate system S = {RR, RESP}
usingMIR highlights that the coupling between RR and RESP is not lost
during different paced breathing rates (Mary et al., 2018), being the slight
decrease observed in Figure 9 from the SB to the C10 phase not
significant, and is followed by a complete recovery in C15 and C20.
Such results are similar to what was reported in (Barà et al., 2023). A
decrease in nonlinearities was observed in the C10 phase when
compared with the other experimental conditions. This suggests that
lower breathing rates reduce the nonlinearity of cardiorespiratory
coupling (Fang et al., 2008), reflecting the possible effect of
entrainment between low-frequency and high-frequency (respiration-
induced) oscillations of HRV. This entrainment causes the entire HRV
pattern to be centered around a single (broad band) stochastic oscillation,
resulting in more linear dynamics. The trend differs when comparing
IRR;RESP and SRR in terms of nonlinearities: RR nonlinearities appear to be
mainly associated with the controlled breathing condition and seem less
related to the frequency rate, unlike IRR;RESP nonlinearities, which appear
instead to depend only on the breath rate.

6 Conclusion

This study introduces surrogate approaches to examine specific
statistical properties in univariate and bivariate dynamic processes.
These approaches explore self-dependencies and nonlinearities in
univariate processes, along with coupling and nonlinearities in
bivariate systems. The proposed methods were validated through
simulations and subsequently applied to investigate
cardiorespiratory interactions from physiological time series.

The simulation results revealed that the proposed approaches
successfully detect key dynamical characteristics of stochastic systems
related to the internal properties of individual systems and the coupling
structure between two systems, as well as to the nature (linear/
nonlinear) of the underlying dynamics. Moreover, the application to
real data has allowed to infer interesting different behaviors with regard

FIGURE 9
Analysis of the coupled dynamics in the cardiorespiratory system S = {RR,RESP}. Panel (A) reports the boxplot distributions and individual values of
the MIR, computed during spontaneous breathing (SB) and controlled breathing at 10, 15, and 20 breaths/min (C10, C15, C20). Panel (B) reports the
percentage of individuals for which coupling (blue) and nonlinear dynamics (orange) were found. Statistical analysis using a post hoc test with a Bonferroni
correction of the estimated marginal means (EMM) of a repeated measures model:*p < 0.05.
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to cardiorespiratory interactions during spontaneous and paced
breathing. In particular, controlled breathing increases the
predictability of both RR and RESP dynamics. A decrease in
nonlinearities when increasing the breathing rate is observed in
cardiac, but not in respiratory dynamics. Moreover, the different
paced breathing rates do not alter the cardiorespiratory coupling,
while its nonlinearities are reduced during lower breathing rates.

Future developments will aim to test the surrogate methods
discussed herein on various biosignals in the context of network
physiology (Ivanov, 2021), particularly focusing on the analysis of
brain-heart interactions (Koutlis et al., 2021; Antonacci et al., 2023;
Varley et al., 2023). The proposed integrated approach for evaluating
dynamic dependencies and nonlinearities in univariate and bivariate
time series, implemented with the provided toolbox, will foster the
assessment of the statistical temporal structure in coupled processes
within Network Physiology and its related fields.
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