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Fractal time series have been argued to be ubiquitous in human physiology and
some of the implications of that ubiquity are quite remarkable. One consequence
of the omnipresent fractality is complexity synchronization (CS) observed in the
interactions among simultaneously recorded physiologic time series discussed
herein. This new kind of synchronization has been revealed in the interaction triad
of organ-networks (ONs) consisting of the mutually interacting time series
generated by the brain (electroencephalograms, EEGs), heart
(electrocardiograms, ECGs), and lungs (Respiration). The scaled time series
from each member of the triad look nothing like one another and yet they
bear a deeply recorded synchronization invisible to the naked eye. The theory of
scaling statistics is used to explain the source of the CS observed in the
information exchange among these multifractal time series. The multifractal
dimension (MFD) of each time series is a measure of the time-dependent
complexity of that time series, and it is the matching of the MFD time series
that provides the synchronization referred to as CS. The CS is one manifestation
of the hypothesis given by a “Law of Multifractal Dimension Synchronization”
(LMFDS) which is supported by data. Therefore, the review aspects of this paper
are chosen to make the extended range of the LMFDS hypothesis sufficiently
reasonable to warrant further empirical testing.
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1 Introduction

In a recent series of papers Mahmoodi et al. (Mahmoodi et al., 2023a; Mahmoodi et al.,
2023b) and West et al. (West et al., 2023) have used the scaling behavior of dynamically
generated time series to hypothesize the existence of a new form of synchronization, called
complexity synchronization (CS), having to do with the optimally efficient exchange of
information between and among the organ-networks (ONs) within the human body viewed
as a network-of-ONs (NoONs). This complexity synchronization (CS) involves the
matching of the multifractal dimensions (MFDs) for time series and was identified by
processing a 64-channel electroencephalogram (EEG) of the human brain with each
channel treated as a distinct network, while the brain continuously interacts with the
respiratory and cardiovascular networks. The complexity that is being synchronized is
measured by the inverse power law (IPL) index of the power spectral density of the MFD
time series. The essence of synchronization has to do with adjusting periodic rhythms
arising from an interaction in which one network influences another through the exchange
of information. Even with this apparently simple-sounding definition of synchronization we
find it necessary to distinguish among a few different kinds of synchronization to clarify the
difference between the old forms and the new ones considered herein.
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The first and subsequent kinds of traditional synchronization
between interacting time series is extensively treated in the excellent
text (Pikovsky et al., 2001) which provides a brief history of the
universality of the concept of synchrony pointing out that in
1665 Huygen’s discovered the phenomenon of mutual
synchronization between two pendula sharing a common mount
(Huygens Hugenii et al., 1986); remarking that two centuries later
Strutt (Lord Rayleigh) described an extension of mutual
sychronization occurring when two similar but separate organ
pipes are sounded together to produce quenching which is the
suppression of oscillations of the sound of the coupled systems
(Rayleigh, 1945); and closing their all too short chronicle observing
that with the birth of radio engineering Eccles and Vincent applied
for a patent (Eccles and Vincent, 1920) for a device consisting of two
coupled generators having slightly different frequencies establishing
that the coupled system vibrates with a single frequency. They end
their historical vignettes in the 1920s after which time a substantial
variety of synchony types began to appear in the scentific literature
and which they discuss in their text.

Collective synchronization (van Santen, 2019) is seen all around
us, from the flocking behavior of birds (Hemelrijk and
Hildenbrandt, 2015) to the herding movement of crowds and
vehicles (Vicsek, 2001) and the well-documented avalanches of
neurons within the brain (Beggs and Plenz, 2003; Buzsáki, 2006)
and are all engagingly described by one of the pioneers in the field (S
Strogatz, 2003). Strogatz pointed out that there are over a half-dozen
different types of synchronizations depending on the phenomena
being described. For those that do not have mathematics as a second
language the first half of the book by Pikovsky et al. (Pikovsky et al.,
2001) is equation-free and devoted to the qualitative description of
the forms of synchrony discussed in mathematical detail
subsequently therein.

Synchronization may be understood to be an adjustment of
rhythms of oscillating objects due to their weak mutual
interactions but like most definitions it is necessary to further
refine the definition by means of definitions of the technical
terms. Pikovsky et al. (Pikovsky et al., 2001) break down the
above definition by detailing the meaning of “oscillation object”,
the notion of “rhythm”, the concept of “interaction of oscillating
systems” and the technical meaning of “adjustment of rhythms”
in ten pages of text. I cannot improve on this and therefore I am
forced to assume the reader has a working familiarity with each of
these terms but may not be familiar with the wide range of
phenomena that have been explained using the notion of
synchronization. We briefly review the dominant
characteristics of synchronization to be clear on what is
different and what is the same regarding the newly defined
synchronization mechanism.

Consider two time series X(t) and Y(t) from two different
sources and we observe that both oscillate in complete harmony
which can only be associated with synchronization if: (Pikovsky
et al., 2001):

1) It is established that when not interacting that both systems
generate their own rhythms.

2) The systems adjust their rhythms by weakly interacting with
one another.

3) The rhythm adjustments fall within a given range of mismatch.

Synchronization can also be generated by an external force, by
ensembles of oscillators and oscillatory media, through phase
synchronization of chaotic systems and complete synchronization
are all discussed by Pikovsky et al.

2 Not your usual synchronization

Unlike the familiar forms of synchronization of two time series,
we are here concerned with another kind of synchronization which
enables us to look behind the curtain and observe the wizard at work
on his dynamic elements within complex networks and witness their
collective interactions. Let me emphasize here that this is not the
kind of synchrony that we all too briefly reviewed in the previous
section nor is CS to be found in any of the chapters of the
comprehensive introductions to the rhythms within complexity
science (Bak, 1996; Peletier et al., 2019; S Strogatz, 2003). Note
that CS was discovered two decades after Strogatz’s remarkable book
raised the overall awareness of the science, technology, engineering,
and mathematics (STEM) community to the singular importance of
synchronization research in the understanding of the behavior of
complex collective adaptive systems (Stefanovska et al., 2003; S
Strogatz, 2003; Turalska et al., 2011) as well as that of fractals in
the life sciences (Liebovitch, 1998). The discoveries are ongoing
from the fractal random growth of interfaces (Failla et al., 2004) to
the pumping of playground swings (Hirata et al., 2023) to the
modification of fundamental concepts in statistical physics
(Aquino et al., 2010; Aquino et al., 2011).

Modern synchronization has been shown to be the mechanism
needed to coordinate activities among events in any complex, multi-
level, multi-element dynamic network living or not (Miller and Page,
2007). However, as an ON’s complexity changes so does the
synchronization of its dynamic interactions with other ONs
which makes the living network significantly more difficult to
characterize than the non-living (West et al., 2020). The coupling
of these two kinds of change is nowhere more apparent than in the
remarkably complex ON structure of the human body and the
necessity to coordinate activities across widely different time scales
from the microscopic time scales of the neural ONs within the brain
to the mesoscopic time scales of the cardiac ON to the macroscopic
time scales of respiratory ON and circadian NoONs rhythms.

The complexity (scaling) of EEG time series data (64-channel
electroencephalogram) were shown to be multifractal as were the
respiratory and cardiovascular time series in addition to which the
multifractal dimension (MFD) scaling of the three kinds of
simultaneously measured datasets were shown to be in
synchronization with one another (Mahmoodi et al., 2023a;
Mahmoodi et al., 2023b; West et al., 2023). The MFDs of these
time series have also been identified using pairwise correlations
between time series to identify an appropriate mechanism (Bartsch
and Ivanov, 2014). The change in the MFD of the time series
indicates the changing complexity of the ONs as various
physiological functions are performed. In the jargon of network
science for two interacting ONs, the more complex network is the
driver (sender of information) and the less complex network is the
driven (receiver of information) but these roles of various EEG
channels change with the functions being performed as do the
respiration and cardiac time series (Ivanov et al., 1999;
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Stefanovska et al., 2003) and they each change in time as well
depending on the function being performed.

The major distinction between the present work and such
theoretical works as those of Plamen Ivanov and his group
(Ivanov et al., 2016) is that they are working towards
understanding, “complexity ... compounded by various
couplings and feedback interactions among different systems,
the nature of which is not understood” from a network
physiology and/or network medicine theory perspective. We
on the other hand, are working towards the same end from
the other side which is to say through understanding the generic
empirical properties that have only recently been uncovered and
precisely how such phenomena as CS can and do constrain theory
development is only now being glimpsed (Mahmoodi et al.,
2023c; West et al., 2023).

Information is readily exchanged within overlapping memory
areas of the heterogeneous human brain. At any point in time a
given region of the brain (a channel is treated as an ON) can receive
information (a brain channel acting as a receiver-ON) from a
sensor-ON and is driven by this input information to locally
process the received signal and subsequently transmits (the same
brain channel changing to sender mode) the processed signal to an
appropriate physiological-ON for action, depending on their
function and instantaneous relative MFDs. This hierarchy of
complexity is subsequently revealed by the way in which the
MFD nature of the interacting ONs exchange information with
one another over time. The relative width of the MFD spectra of an
ON’s time series at the time of an interaction determines which is the
sender (greater width) and which the receiver (smaller width)
(Braginton, 2003; West and Grigolini, 2021).

Xiao et al. (Xiao et al., 2021) constructed what they termed a
node-based multifractal analysis (NMFA) which is a theoretical
framework revealing the generating rules and quantification of the
scale-dependent topology of dynamic complex networks. They
showed that the NMFA yields precisely the singularity spectrum
f(α) obtained using the thermodynamic arguments (Feder, 1988;
Meakin, 1998). The theory of (Xiao et al., 2021) supports the
intuitive statements made regarding the behavior of the empirical
ON-generated MFD time series based on the empirical evidence for
the complexity matching principle (West et al., 2008; Delignières
et al., 2016; Bohara et al., 2017), but now has a direct underlying
theoretical argument.

The depth of our understanding of synchrony stands in sharp
contrast to the shallowness of our collective insight into the mystery
that is complexity science whose fundamental problems have gained
preeminence in science over the last decade paralleling the sharp rise
in the application of Network Science to our understanding of
collective behavior in medicine in general and in physiology in
particular (West, 2014; Ivanov et al., 2016). One might say that the
modern view of complexity began with the acknowledgement that a
new branch of science had formed around the behavior of a many-
degree-of-freedom system governed by the emergent dynamics of
spontaneous self-organized criticality (SOC) (Bak, 1996). Moreover,
both bottom-up resilience and top-down vulnerability arise from
emergent processes captured by spontaneous self-organized
temporal criticality (SOTC) (Mahmoodi et al., 2018). The term
criticality is used herein to denote the dynamic condition
corresponding to the spontaneous onset of phase transitions

generated by the self-induced adoption of a critical value of a
control parameter by the internal dynamics.

In Section 2.2 and SM#2 we review the scaling properties of MFD
time series to make clear the implications of the DEA data processing
results shown in Figure 1. We mention that here because the scaling
index gives a direct measure of the multifractal dimension of the time
series which for the crucial event time series (CETS) discussed in
Section 2.3 has diverging second moments thereby making all
processing techniques suspect that are based on the time series
being processed having a finite second moment.

2.1 Basis of complexity synchronization (CS)

As pointed out byWest et al. (West et al., 2023) the sciencemotif of
CS is based on scaling determined by the 1/f-variability of complex
dynamic ONs and the need for a NoONs to transport information
internally during intra-ON dynamics and externally exchange
information which is the interaction among ONs during inter-
network dynamics among the members of the NoONs. The term 1/
f-variability is used throughout rather than the more familiar term 1/
f-noise because the author finds the latter term to be directed toward
random fluctuations that carry no useful information whereas the
former term addresses time series with inverse power law (IPL)
statistics. The IPL index in the latter case provides a working
definition of complexity that being the multifractal dimension
(MFD) and is used as a measure of complexity of the crucial event
time series (CETS) studied herein. The quantification of the complexity
adopted herein is the MFD which is shown to be a measure of the
complexity content of CETS that constitutes the signal generated by an
ON. Moreover, the difference in the MFDs of two interacting ONs
(such as the cardiovascular and respiratory) within a NoON (a human
body) quantifies the relative complexity between them as they interact
within a NoON (West and Grigolini, 2021) as well as the higher-order
interactions between NoONs (two or more human bodies), e.g., see
(Kello et al., 2007; West et al., 2008; Almurad et al., 2018).

Themathematician NorbertWiener observed (Wiener, 1948) that in
the interaction of two physical networks heat is transferred from the hot
to the cold systemwhen the entropy of the two systems is comparable. He
went on to conjecture that when the hotter system is relatively low in
information and the cooler system is relatively high in information the
force generated by the information gradient between the two systems
may be stronger than the mechanical force generated by the energy
gradient between them and acts in the opposite direction. Thus, resulting
in the hotter system being controlled by the cooler system which at first
glance suggests a contradiction to the Second Law of Thermodynamics.
Wiener goes on to argue that this second force, the entropy force, is
completely consistent with the second law. The “entropy force” has been
used to explain the elasticity of rubber (Neumann, 1977) and the physical
properties of colloids (Damasceno et al., 2012) amongmany other things,
see, for example, (Sharp, 2012). Herein we replace the nomenclature
“entropy force”with “information force” and concentrate our remarks on
those systems dominated by such information forces (West, 2016).

Fractal statistics are ubiquitous in the determination of
physiological fluctuations in that the waiting-time distribution of the
time intervals between successive beats of the human heart (Ivanov
et al., 1999; Allegrini et al., 2002; Humeau et al., 2010), between breaths
in respiration (Bohara et al., 2017), and in the critical dynamics of the

Frontiers in Network Physiology frontiersin.org03

West 10.3389/fnetp.2024.1379892

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2024.1379892


brain (Kello et al., 2007; Allegrini et al., 2009), are all IPL in time and
result from intra-ON interactions or paraphrasing Buzsaki (Buzsáki,
2006) on the fractal nature of the human brain: the human brain’s web
of influence consists of a multilevel, self-similar organization which a
physicist would call a fractal network of ONs. Similar findings regarding
the time intervals between events are documented for the information
exchanged during the interaction between complex NoONs such as the
human body in the walking rehabilitation of the elderly (Almurad et al.,
2017; Almurad et al., 2018), in dyadic communication (Abney et al.,
2014), in motor control (Delignières et al., 2004; Coey et al., 2016;
Delignières et al., 2016) and in interpersonal coordination (Marmelat
and Delignières, 2012; Fine et al., 2015), to name a few.

It is not just in physiologic time series that fractal statistics
appear, in fact, the fractal structure of physical phenomena began to
be noticed shortly after Mandelbrot (Mandelbrot, 1977) introduced
the fractal concept into the lexicon of science. Its utility in
understanding medical phenomena took somewhat longer but it
was applied to determining the spatial structure the tree-like
branchings of the human lung, arterial and venous systems and
other ramified structures (West and Goldberger, 1987; Liebovitch,
1998; Meakin, 1998).

2.2 The fractal-paradigm

The term fractal-paradigm is of fairly recent vintage and we take
its use to be a consequence of the finding that naturally occurring
complex phenomena have inverse power law (IPL) PDFs and

consequently have fractal statistics. This empirical finding
coupled to the fact that the theoretical scaling-PDF given below
is the solution to a fractal kinetic equation (Sachev and Zaslavsky,
1997; Zaslavsky, 2002) entails that the nearly universal finding that
natural complex penomena have fractal dimensions became a
paradigm for successful science. Fractal time series exhibit self-
similarity indicating that their statistical properties are invariant
under different scales of observation in time (Feder, 1988).
Consequently, the variability of fractal statistical fluctuations
examined are the same at each level of magnification. Being
fractal implies that an appparently continuous time trace such as
an ECG or an EEG is actually controlled by a set of discrete statistical
events generically called CETS as we have shown elsewhere
(Mahmoodi et al., 2023a; Mahmoodi et al., 2023b; West et al.,
2023) and is briefly reviewed herein.

We employ a working definiton of complexity, one sufficiently
general to describe the generic features of physiological time series.
Li (Li, 2010) points out in his excellent review article that a fractal
time series can be chacterized by a fractal dimension D which is a
measure of how completely the time series fills phase space and
consequently provides a measure of the complexity of a CETS.
Consider a typical signal generated by an j − ON depicted by Xj(t)
where j = 1, 2, ., which scales with an index δj if the time t when
multiplied by a constant λ yields the homogeneous scaling relation
Xj(λt) ≔ λδjXj(t).The scaling relation is interpreted not in terms of
the dynamic variable itself but rather in terms of the scaling-PDF
such that in phase space the PDF takes the form: P(xj, t) � 1

tδj
F(xj

tδj
)

which is the renormalization group solution to the FKE as explained

FIGURE 1
(A): The threeONswhose fractal time series outputs are simultaneously measured and representative 10 s samples of each time series are shown for
each ON drawing to emphasize how different the time series are in both time scales and statistical structures. (B): Each of the 66 channels are different
fractal time series having a unique multi-fractal dimension as determined by the time-dependent scaling parameter δj(t), j = 1, 2, .., 66, over a 15 min time
interval. The black line segment is the average over the 64 channels of the EEGmulti-fractal dimension time series (the 64 light gray line segments in
the background are the EEG channel multifractal dimensions in the brain), the red line segment is the multi-fractal dimension of the respiration fractal
time series and the blue line segment is themulti-fractal dimension of the electrocardiogram (ECG) fractal time series. Note the similarity of the individual
multi-fractal dimensions of the three kinds of time series, particularly their quasi-periodic behavior. Adapted from (West et al., 2023) with permission.
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in SM #1. The scaling index is related to a class of fractal time series
such that the fractal dimension is given by (Feder, 1988; Li, 2010;
West et al., 2023): Dj � 2 − δj.Here δj is the scaling index for the
CETS labeled j whether theoretical or empirical and when the time
series is monofractal the scaling index is constant but when the time
series is multifractal the scaling index becomes time dependent δj(t)
as does the MFD Dj(t). (see SM #1 & #3).

2.3 Renewal and crucal events

The theory of REs has innumerable application across a wide
swath of disciplines including but not limited to actuaral science,
epidemiology, operations research and reliability engineering.
Herein we are interested in a class of RETS given by CETS used
in the study of complex dynamic networks, such as the ONs found in
the bodies of all cognitive living creatures, e.g., birds, mammals, etc.,
and whose nonlinear dynamics exhibit spontaneous temporal phase
transitions, see discussion of SOTC (Mahmoodi et al., 2018). REs
occur randomly and independently of each other having no memory
of the past, whereas CEs occur randomly and independently of each
other at critical points of a network’s dynamics, but have a counter-
intuitive long-lasting impact on the future dynamics, even though
the time intervals between succesive CE are statistically independent
(see SM # 3). This counter-intuitive result was verified using the
concept of “aging” where an aged survival probability generated by a
CETS is shuffled and seen to have the same survival probabity as the
original CETS because the time intervals between successive events
are statistically independent of one another, whereas applying the
aging test to FBM yields an survival probability with δ = 0.5. Thus,
the CETS would be classified as 1/f-variability whereas FBM would
be 1/f-noise, see (West and Grigolini, 2021) for a detailed discussion
of this difference in 1/f-variability.

Thus, CEs are always REs, but not all REs are CEs, for example, a
Poisson process is renewal and consists of a sequence of REs in a
RETS that is not a CETS. A similar observation can be made for a
random walk realization with δ = 0.5 that being simple Brownian
motion with δ = 1/2 which is an RE sequence (see RM #3). This
proved to be very important in the discussion of living networks in
general and medicine in particular. The role CETS play in the
communication among physiologic ONs such as the brain, heart
and lungs, which, like most other biological networks, were
conjectured to be on the verge of criticality (Mora and Bialek,
2011); a conjecture supported by the fractal statistics of the ON
time series (Mahmoodi et al., 2018). Brain waves are rhythmic
patterns of electrical activity in the brain that reflect different states
of consciousness, such as wakefulness, sleep, or meditation and are
typically measured using a many-channeled
electroencephalogram (EEG).

3 Empirical findings

The basis for the empirical CS formulated here is depicted in the
figure where the left panel displays 10 seconds of simultaneously
recorded time series placed next to the appropriate ON drawing and
the bi-directional interactions among the ONs are indicated by
arrows for each ON thereby showing how different the time scales

and apparent statistics are for each of the three. The typical EEG-
channel for the brain is seen to resemble nothing so much as a totally
random process, that of the heart could be a two-state periodic
process, and the slow wave of regular breathing could be mistaken
for a nonlinear wave. What is clear from this comparison of the time
series is that they have nothing suggesting any of the known forms of
synchronization reviewed in Section 1 controlling their
unique shapes.

The raw time series for the three kinds of ONs certainly do not
appear to have anything in common. Yet when the data is processed
using diffusion entropy analysis (DEA) (West and Grigolini, 2021) (see
also SM # 2) and their scaling statistics are revealed using DEA (see RM
# 2) to produce theMFD related to their scaling indicesDj(t) = 2 − δj(t),
j= 1, 2, ., 66, as depicted in the right-hand panel. Thus, the CS concept is
vindicated by these three simultaneously recorded datasets and the
coordinated quasi-periodic scaling of their respective MFD over time.

Each of the 66 channels in the figure are treated as the source of a
distinct ON signal having different fractal time series with a unique
MFD determined by the time-dependent scaling parameter δj(t), j =
1, 2, ., 66, over a 15 min time interval. The black line segment is the
average over the 64 channels of the EEGMFD fractal time series (the
64 light gray line segments in the background are the EEG channel
MFDs in the brain), the red line segment is the MFD of the
respiration fractal time series and the blue line segment is the
MFD of the electrocardiogram (ECG) fractal time series. The
quasi-periodic behavior of all 66 time series indicates the
phenomenon of complexity synchronization for the three very
different types of signals (Mahmoodi et al., 2023a; Mahmoodi
et al., 2023b; West et al., 2023)].

4 Discussion and conclusions

An explicit assumption was made at the outset of this
presentation having to do with the ubiquity of fractal time series
being generated by ONs and their resulting multifractal nature. We
now raise this explicit assumption to the level of a hypothesis since
the processed datasets in the figure support the formulation of the
existence of a Law of Multifractal Dimension Synchronization
(LMFDS) which entails a locked-in regularity of the dynamics of
the MFD time series of the interacting triad of ONs in this NoONs.
In the particular case of this triad of empirical ON time series we
observe that each channel of the EEG is a multifractal time series
whose 1/fβ-variability (β quantifying its complexity) is the same in all
cortical structures and this aligns with the observation of Buzsáki
concerning brains for a variety of mammalian species (Buzsáki,
2006). The fact that the EEG channels also carry information from
and deliver information to the ECG and respiratory networks,
information that necessarily changes in time, thereby requiring
these very different ONs to share a common language is also an
empirical observation supporting the hypothetical LMFDS.

Buzsáki (Buzsáki, 2006) also noted that neuroscience was
awaiting a breakthrough of the kind recently made in statistical
physics wherein a network’s SOC (Bak, 1996) spontaneously
generates structural complexity by means of the criticality of a
network’s dynamics which obeys universal laws of emergence
that are independent of the micro-dynamics. The newly
identified mechanism of spontaneous temporal complexity given
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by SOTC (Mahmoodi et al., 2018) can explain the generation,
transport, and exchange of information within and among the
various parts of an NoONs devoted to distinctly different
functions. This result is summarized by the LMFDS being
extended beyond the physiologic datasets used herein to support
its veracity which in addition has strong empirical arguments for its
support [2, ? 38, 54] outside of physiology yjereby making the
conjecture for the extended application-domain of the LMFDS
hypothesis reasonable.
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