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This paper investigates the Hamiltonian energy of a modified Hindmarsh–Rose
(HR) model to observe its effect on short-term memory. A Hamiltonian energy
function and its variable function are given in the reduced system with a single
node according to Helmholtz’s theorem. We consider the role of the coupling
strength and the links between neurons in the pattern formation to show that the
coupling and cooperative neurons are necessary for generating the fire or a clear
short-term memory when all the neurons are in sync. Then, we consider the
effect of the degree and external stimulus from other neurons on the emergence
and disappearance of short-term memory, which illustrates that generating
short-term memory requires much energy, and the coupling strength could
further reduce energy consumption. Finally, the dynamical mechanisms of the
generation of short-term memory are concluded.
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1 Introduction

Short-term memory is a primary cognitive function of the brain. The transitions
between the spontaneous and persistent states could lead to the emergence and
disappearance of short-term memory in a bistable system (Amit and Brunel, 1997).
Continuous neural activity without external inputs was deemed an expression of short-
term memory (Wang, 2001). A phenomenological model of spatial working memory was
developed to examine the dynamical interactions of multiple feedback mechanisms (Carter
and Wang, 2007). A growing body of evidence suggests memories may be kept through the
mutual effect of persistent neural activity and activity-silent dynamics (Stokes, 2015;
Barbosa et al., 2020). Gaussian noise was treated as an essential factor in neuronal
activity and its toggle switch (memory maintenance) (Zheng et al., 2020b). Memory
maintenance through persistent neural activity and a synaptic mechanism was
compared in mice and two types of artificial neural networks to show their differences
(Hu et al., 2021). Then, computational modeling was constructed to prove how the circuits
and networks affect working memory, which provides a novel theory for memory
maintenance (Ghazizadeh and Ching, 2020). In addition, the encoding style of the
input information of the short-term memory was investigated to illustrate the
dynamical mechanisms of short-term memory (Ichikawa and Kaneko, 2021; Jones and
Ching, 2022; Zhou et al., 2023). Hamilton energy, representing the utilization of energy
(actual energy in the generation of short-term memory), should be considered to illustrate
the dynamic mechanism of the generation of short-term memory.

Hindmarsh–Rose (HR) model (1) (x is the membrane potential, y is the recovery
variable of the fast current of K+ or Na+, and z is the adaptation variable of the slow current
of Ca+ or other ions) was proposed to show the membrane potential of neuronal activity
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(Hindmarsh and Rose, 1982), which has rich dynamical behaviors
(Wang et al. 2021a; Wang et al. 2021b; Wang et al. 2022).

dx

dt
� y − ax3 + bx2 + Iext − z,

dy

dt
� c − dx2 − y,

dz

dt
� r s x − xr( ) − z( ).

(1)

The synchronization and bifurcation (Song and Xu, 2013;
Liebovitch et al., 2011; Kumar et al., 2016; Zheng et al. 2020a;
Zheng et al. 2024; Zheng et al. 2023) of the HR model were often
studied to demonstrate the dynamical mechanism of chaotic
bursting or spikes (Shi and Wang, 2012; Wu et al., 2016; You,
2023a). The interplay between neurons was analyzed to present the
effect of the parameters and coupling strength on the appropriate
functioning of the system (Lepek and Fronczak, 2018; Rajagopal
et al., 2019; You, 2023b). Energy is necessary for neuron activity
(Attwell and Laughlin, 2001). The Hamiltonian energy function is a
vital tool to evaluate energy consumption when neurons are active
(Torrealdea et al., 2006). The average energy consumption of the HR
model was given to display the energy consumption ratio in different
situations, which could help optimize energy use (Torrealdea et al.,
2009; Song et al., 2015; Usha and Subha, 2019). The Hamilton
energy balance of different functional neurons was discussed
through the coupling strength, which contributes to designing
functional assistive devices (Zhang et al., 2022; Yu et al., 2023).
Although the HR model could explain the generation of short-term
memory (Zheng et al., 2022), the utilization of energy should be
further stated in short-term memory.

Short-term memory results from neuronal activity coming with
a change in energy, and a physical neuron circuit plays a vital role in
the synergistic effect of neurons and the generation of short-term
memory. In this paper, the pattern formation of a modified HR
model is investigated to find the dynamical mechanism of how the
coupling strength and links (degree) affect the generation of short-
term memory. The Hamiltonian energy function is derived in the
HR model with a single node, which means the energy consumption
varies at different states of neuronal activity. Then, the degree and
stimuli from other neurons are studied through bifurcation, which
means the energy is necessary to generate short-term memory.
Finally, the related dynamical and biological mechanisms
are obtained.

2 Model description

As the membrane potential of neurons is often coupled with
others, the following network-organized HR model is introduced:

dxi

dt
� yi − ax3

i + bx2
i + Iext − zi + d1 ∑n

j�1
Lij t( )xj,

dyi

dt
� c − dx2

i − yi,
dzi
dt

� r s xi − xr( ) − zi( ),
(2)

where xi is the membrane potential, I represents the ith neuron
and i = 1, . . . , n, yi is the recovery variable of the fast current of K

+ or
Na+, and zi is the adaptation variable of the slow current of Ca+ or
other ions. D1 is the coupling strength between neurons. Lij(t) =

Aij – δijki, where Aij is the adjacent matrix and ki is the degree of
the ith node.

In order to obtain the Hamiltonian energy function of system
(2), we consider a simplified model with a single node through the
mean-field approach (McCullen and Wagenknecht, 2016). The
reduced system is

dxi

dt
� yi − ax3

i + bx2
i + Iext − zi + d1ki x0 − xi( ),

dyi

dt
� c − dx2

i − yi,

dzi
dt

� r s xi − xr( ) − zi( ),

(3)

where (x0, y0, z0) (Zheng et al., 2022) is the equilibrium point of
system (2) without a network, and x0 makes Iext = f(x) = −c + dx2 +
ax3 − bx2 + s (x − xr) + Iext + d1ki (x0 − xi) hold. In addition, x0 is the
external stimulus from other neurons.

In this paper, we mainly investigate the dynamical behaviors of
system (3) and its Hamiltonian equation. According to Helmholtz’s
theorem (Donald and Rose, 1986), an autonomous ordinary
differential equation _X � F(X) (F(X) can be treated as the
velocity vector field) can be described in the usual forms of a
Hamiltonian equation:

_X � G X( )∇H X( ),
where G(X) is a skew-symmetric matrix in the Hamiltonian

system. If G(X) is not a skew-symmetric matrix in a generalized
Hamiltonian system, G(X) can be divided into two parts G(X) =
G1(X) + G2(X): a skew-symmetric matrix G1(X) and a symmetric
matrix G2(X) (Sarasola et al., 2004). H(X) is an energy function.
Then, we have

_X � G1 X( ) + G2 X( )( )∇H X( ).

For the network-organized HR model (3), it can be written as
(Torrealdea et al., 2006; Torrealdea et al., 2009; Song et al., 2015;
Usha and Subha, 2019)

_xi

_yi

_zi

⎛⎜⎝ ⎞⎟⎠ � G1 xi, yi, zi( ) + G2 xi, yi, zi( )( )∇H xi, yi, zi( ),
where

F1 xi, yi, zi( ) � G1 xi, yi, zi( )∇H xi, yi, zi( )
�

yi − zi + d1ki x0 − xi( )
−dx2

i

rsxi

⎛⎜⎝ ⎞⎟⎠,

F2 xi, yi, zi( ) � G2 xi, yi, zi( )∇H xi, yi, zi( )
�

−ax3
i + bx2

i + Iext − kixi

c − yi

−rsxr − rzi

⎛⎜⎝ ⎞⎟⎠.

Furthermore, we obtain the Hamiltonian energy function as (Zhang
et al., 2022)

∇H xi, yi, zi( )TF1 xi, yi, zi( ) � 0,
_H xi, yi, zi( ) � ∇H xi, yi, zi( )TF2 xi, yi, zi( ).{

Namely,
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yi − zi + d1ki x0 − xi( )( ) ∂H xi, yi, zi( )
∂xi

− dx2
i

∂H xi, yi, zi( )
∂yi

+ rsxi
∂H xi, yi, zi( )

∂zi
� 0,

where a general solution can be expressed as

H xi, yi, zi( ) � yi − zi + d1ki x0 − xi( )( )2 + 2
3
dx3

i + rsx2
i ,

and

Ht � _H xi, yi, zi( ) � 2rsxr + 2rzi + 2c − 2yi( ) d1ki x0 − xi( )( )
−2adx5

i + −2ars + 2bd( )x4
i + 2brs − 2dki( )x3

i

+ −2kirs + 2Iextd( )x2
i + 2Iextrsxi + 2rsxry − 2rsxrzi

+2ryizi − 2rz2i + 2cyi − 2czi − 2y2
i + 2yizi.

3 Numerical results and discussion

In this section, the finite difference method is applied to find
numerical solutions for the network-organized HR model (3) with
time step dt = 0.01. These parameters a = 1, b = 3, c = 1, d = 5, r =
0.01, s = 4 are set (Zheng et al., 2022). The small-world network is
constructed with W (n, K, p) (the number of node n, nearest
neighbor K, and reconnection probability p), which can be found
can be found at https://github.com/zhengqianqian35/network-code.
We give the concept of the average Hamiltonian energy for time
and nodes:

H1 �
∫t0+T
t0

H xi, yi, zi( )dt
T

,

H2 � max _H xi, yi, zi( )( ), min _H xi, yi, zi( )( ){ },
where the integration period is set at T = 5,000 time units. In

order to exclude the influence of initial conditions, t0 is the starting
time of the cycle after the system tends to a stable state. In addition,
we assume H = H (xi, yi, zi)/100. From Figure 1, only one real
equilibrium point (x0, y0, z0) exists in system (1) when a = 1, b = 3,
c = 1, d = 5, r = 0.01, s = 4, which guarantees the uniqueness
of system (3).

In general, the generation of neural function results from the
collaboration of multiple neurons. Therefore, we consider the
strength d1 of the coupling between neurons and the number of
links K. First, a small-world network with W (100, 8, 0.01) is given.
The pattern formation is chaotic (Figure 2A) when the strength

d = 0.01 is weak, which means the nervous system does not work.
The pattern formation starts to become clear and tends to sync with
the increase of d1 (Figure 2b,c). Ultimately, the pattern formation
becomes synchronized; namely, all the neurons become completely
phase synchronized (Figure 2D). The short-term memory needs to
be clarified when d1 is weak. Only when all the neurons work
perfectly together is a clear short-term memory formed (Figure 2),
which is also the mechanism by which adequate short-termmemory
is produced.

Then, the number of cooperative neurons will be considered to
generate short-term memory. The links between neurons can be
treated as the number of collaborative neurons in our analysis, which
could be measured by K. When K is small, the pattern formation is
chaotic, and every neuron is relatively independent (Figure 3A). This
condition is not suitable for the generation of short-term memory.
When K = 2, the pattern formation shows some neurons are in sync
(Figure 3B); namely, multiple short-term memories are produced
simultaneously. In this case, short-term memory is often fuzzy. The
short-term memory gradually becomes clear when K becomes large
(Figure 3C). Eventually, multiple neurons work together to form a
clear short-term memory when all the neurons are in
sync (Figure 3D).

Finally, it is found that the link probability does not work
because p cannot change the number of cooperative neurons and
the coupling strength.

3.1 Hamiltonian energy with
external stimulus

System (3) can be written as

dxi

dt
� yi − x3

i + 3x2
i + Iext − zi +Di x0 − xi( ),

dyi

dt
� 1 − 5x2

i − yi,

dzi
dt

� 0.04xi − zi + 0.064,

(4)

where Di = d1ki (d1 = 0.01), and the effect of x0 is similar to Iext
when Di is a constant. Iext and the coupling strength play a vital role
in the electrical activity, which is the basis of the generation of fire.

FIGURE 1
Distribution of the equilibrium point in system (3) when a = | 1, b = | 3, c = | 1, d = | 5, r = | 0.01, s = | 4. (A) Distribution of the equilibrium point when
x0 | = | 1. (B) Distribution of the equilibrium point when Di = | 1.
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Therefore, we consider the role of Iext and Di in the Hamiltonian
energy, change in Hamiltonian energy, and membrane potential
when x0 = 1.

It is well known that the coupling between neurons is necessary
for generating fire or short-term memory (Figure 2). Because only

the ith neuron evolutes with system (4), and other neurons are fixed
at (x0, y0, z0), Di can also be regarded as the size of the network
degree. When the coupling strength is small, or the number of links
is few, no spike or memory is generated; namely, the neurons are
resting (Figure 4A). The membrane potential began to change

FIGURE 3
Pattern formation when Iext = | 4, d1 | = | 1 and W (100, K, | 0.01). (A) Pattern formation when K = | 0. (B) Pattern formation when K = | 2. (C) Pattern
formation when K = | 4. (D) Pattern formation when K = | 6.

FIGURE 2
Pattern formation when Iext = | 4 andW (100, | 8, | 0.01). (A) Pattern formation when d1 | = | 0.01. (B) Pattern formation when d1 | = | 0.05. (C) Pattern
formation when d1 | = | 0.3. (D) Pattern formation when d1 | = | 1.
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periodically with the increase in Di, which means the emergence and
disappearance of short-term memory (Figure 4B). Meanwhile, the
Hamiltonian energy and change in Hamiltonian energy change with

the membrane potential, which means the generation of the short-
term memory takes more energy. However, short-term memory is
the result of multiple neurons working together. If one neuron is

FIGURE 4
Hamiltonian energy, change in Hamiltonian energy, andmembrane potential when Iext= | 1, x0 | = | 1. (A) EvolutionwhenDi= | 0.1. (B) Evolutionwhen
Di = | 1. (C) Evolution when Di = | 1.5.

FIGURE 5
Average Hamiltonian energy, average change in Hamiltonian energy, andmembrane potential when Iext= | 1. (A) Bifurcation of membrane potential.
(B) Average Hamiltonian energy. (C) Max–min value of Hamiltonian energy. (D) Max–min value of Hamiltonian energy variation.
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very tightly connected to other neurons, all the neurons will tend to
be in one state because other neurons are fixed at (x0, y0, z0). Namely,
system (4) of a neuron will tend to a stable state when Di is
larger (Figure 4C).

Next, we show the continuous changes in x, H1, H2 with Di

(Figure 5). From Figure 5A, the bifurcation occurs with the increase
in Di. The average Hamiltonian energy decreases gradually at the
beginning because the utilization of energy is relatively low when the
neuron is in a resting state (Figure 5B). When the membrane
potential is periodic, the average Hamiltonian energy will be a
sudden increase (Figure 5B). Meanwhile, the rise of coupling
strength also reduces the consumption of Hamiltonian energy,
which is why the average Hamiltonian energy decreases with Di

(Figure 5B). It is found that the max–min value of Hamiltonian
energy (Figure 5C) and its variation (Figure 5D) is significantly
associated with the bifurcation, which is essential to show the
relationship between the consumption of energy and the
membrane potential (the generation of short-term memory). In a
word, generating short-term memory will take a lot of energy, and
the coupling strength could further reduce energy consumption.

The role of x0 from other neurons’ external stimulus (Li et al.,
2024b; Li et al., 2024a; Du et al., 2024) is the same as Iext when other
parameters are fixed. When the external stimulation of other
neurons contributing to the ith neuron is weak, system (4) (the
Hamiltonian energy, change in Hamiltonian energy, and membrane
potential) is stable (Figure 4A). The periodical spike occurs
(Figure 6A) in the membrane potential when x0 increases, which
corresponds to the emergence and disappearance of short-term
memory. It is found that energy consumption is relatively large

in preparation for the spike, and the energy varies significantly in the
spike (Figure 6A), which can be treated as an indicator of the
generation of the spike (short-term memory). The frequency of
spikes will increase (Figure 6B) when external stimuli are enhanced.
However, it is insufficient to support two identical spikes of
membrane potential x (Figure 6B) due to the lack of external
stimulus or the Hamiltonian energy H (Figure 6B). Therefore,
the formation of short-term memory requires a process of
accumulating energy, and the energy breaks out when a spike
occurs. The more energy accumulates, the greater the energy
change (Ht). If x0 continues to increase, there will be more
spikes, but their intensity is different (Figure 6C). A constant
spike is created when x0 is very large (Figure 6D), which is also
the ordinary emergence and disappearance of short-term memory.
However, the external stimulus from other neurons will inhibit the
generation of the spike and put the ith neuron in a resting state
(Figure 7A). From Figure 7, the spike is impossible without
extensive external energy input, and it has excellent fluctuations
at the beginning (Figure 7A). We find the average Hamiltonian
energy increases with x0 (Figure 7B). The max–min value of
Hamiltonian energy (Figure 7C) and the max–min value of
Hamiltonian energy variation (Figure 7D) are consistent with
the bifurcation of x.

Finally, we conclude the dynamical mechanism of the
generation of short-term memory: the energy from other neurons
is necessary for short-term memory, proving that short-term
memory results from multiple neuronal activities. Energy requires
a process of accumulation to maintain a complete spike. The
excessive influence of other neurons can make the ith neurons

FIGURE 6
Hamiltonian energy, change in Hamiltonian energy, and membrane potential when Di = | 0.1, Iext = | 1. (A) Evolution when x0 | = | 5. (B) Evolution
when x0 | = | 10. (C) Evolution when x0 | = | 20. (D) Evolution when x0 | = | 200.
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lose their dominance and align with the dynamic behaviors of
other neurons.

4 Conclusion

Energy plays a vital role in neuronal activity, which is the basis of
the generation of short-term memory. In this paper, the pattern
formation could represent the collecting dynamics of short-term
memory through the Hamiltonian energy, showing the neuronal
activity in generating short-term memory. Therefore, the interplay
between neurons is considered through a simple network to show
the effect of the external stimulus and coupling strength (degree) on
the dynamical behaviors. It is found that the Hamiltonian energy,
change in the Hamiltonian energy, and membrane potential are
consistent. The excessive influence of other neurons can make the
ith neurons lose their dominance and align with the dynamic
behaviors of other neurons, which could show the synergistic
effect of neurons through a physical neuron circuit. In addition,
the energy from other neurons is necessary for short-term memory,
proving that short-term memory results from multiple neuronal
activities. Generating short-term memory requires much energy,
and energy requires a process of accumulation to maintain a
complete spike. Meanwhile, the coupling strength could further
reduce energy consumption, which provides a novel way to reduce
the energy consumption in information storage and processing.
However, more short-term memory descriptions should be
completed next.
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