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Introduction: Closed-loop control of deep brain stimulation (DBS) is beneficial for
effective and automatic treatment of various neurological disorders like Parkinson’s
disease (PD) and essential tremor (ET). Manual (open-loop) DBS programming solely
based on clinical observations relies on neurologists’ expertise and patients’
experience. Continuous stimulation in open-loop DBS may decrease battery life
and cause side effects. On the contrary, a closed-loop DBS system uses a feedback
biomarker/signal to track worsening (or improving) of patients’ symptoms and offers
several advantages compared to the open-loop DBS system. Existing closed-loop
DBS control systems do not incorporate physiological mechanisms underlying DBS
or symptoms, e.g., how DBS modulates dynamics of synaptic plasticity.

Methods: In this work, we propose a computational framework for development
of a model-based DBS controller where a neural model can describe the
relationship between DBS and neural activity and a polynomial-based
approximation can estimate the relationship between neural and behavioral
activities. A controller is used in our model in a quasi-real-time manner to
find DBS patterns that significantly reduce the worsening of symptoms. By
using the proposed computational framework, these DBS patterns can be
tested clinically by predicting the effect of DBS before delivering it to the
patient. We applied this framework to the problem of finding optimal DBS
frequencies for essential tremor given electromyography (EMG) recordings
solely. Building on our recent network model of ventral intermediate nuclei
(Vim), the main surgical target of the tremor, in response to DBS, we developed
neural model simulation in which physiological mechanisms underlying
Vim–DBS are linked to symptomatic changes in EMG signals. By using a
proportional–integral–derivative (PID) controller, we showed that a closed-
loop system can track EMG signals and adjust the stimulation frequency of
Vim–DBS so that the power of EMG reaches a desired control target.

Results and discussion: We demonstrated that the model-based DBS frequency
aligns well with that used in clinical studies. Our model-based closed-loop
system is adaptable to different control targets and can potentially be used for
different diseases and personalized systems.
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Introduction

Deep brain stimulation (DBS) is a standard therapy for various
movement disorders, including Parkinson’s disease (PD) (Limousin
et al., 1998), essential tremor (ET) (Dallapiazza et al., 2019), and
dystonia (Hung et al., 2007). The thalamic ventral intermediate
nucleus (Vim) is the primary surgical target of DBS for ET
treatment. The stimulation frequency of clinical Vim–DBS for
treating ET is usually chosen to be ≥ 130 Hz (Ondo et al., 1998;
Dowsey-Limousin, 2002; Dembek et al., 2020). Currently, in clinics,
DBS parameters—typically, frequency, amplitude, and pulse
width—are usually manually tuned in a trial-and-error process,
based on immediate clinical observations by neurologists
(Deuschl et al., 2013; Grado et al., 2018; Boutet et al., 2021).
Such manual DBS programming may be biased toward the
neurologists’ expertise and patients’ experience, while requiring
multiple clinical visits to test a large number of possible
parameters, which cost time and induce stress in both patients
and clinicians (Deuschl et al., 2013; Grado et al., 2018; Boutet et al.,
2021). Additionally, manually programmed DBS delivers
continuous DBS (cDBS) to the patient, which can cause side
effects and exacerbate stimulation habituation (Pahwa et al.,
2006; Barbe et al., 2011; Cernera et al., 2021). Continuous
stimulation can also decrease battery life, thus increasing
patients’ burden caused by battery replacement surgeries or
battery recharging processes (Opri et al., 2020; Khaleeq et al.,
2019). Hence, there is a need for a control system that can
automatically adjust DBS parameters in a closed-loop fashion.
Such closed-loop DBS needs to be based on a biomarker that
characterizes the patient’s clinical states.

A closed-loop DBS control system consists of three essential
components: (i) input DBS pulses; (ii) output feedback, i.e., the
biomarker observed during DBS; and (iii) feedback control, which
adjusts the DBS parameters based on the feedback biomarker
(Arlotti et al., 2016; Little and Brown, 2012; Grado et al., 2018).
Such a system offers an automatic way to adapt stimulation
parameters moment-to-moment with respect to the patient’s
clinical states (Arlotti et al., 2016). Compared with manually
programmed (open-loop) cDBS, closed-loop DBS can
significantly reduce the stimulation time and enhances clinical
efficacy (Arlotti et al., 2016; Little et al., 2013; Cernera et al., 2021).

Most common closed-loop DBS systems use local field potential
(LFP), recorded from stimulated nuclei, to find an effective feedback
biomarker (Little et al., 2013; Priori et al., 2013; Velisar et al., 2019),
e.g., the power of the beta oscillation (12–32 Hz) of LFP recorded in
the subthalamic nucleus (STN) for reducing PD symptoms (Grado
et al., 2018; Arlotti et al., 2016; Little et al., 2013). Velisar et al. (2019)
developed a closed-loop DBS control system in which the beta
oscillation power of the STN-LFP was chosen as the biomarker and
the DBS amplitude was updated by a dual-threshold control method
that maintains the STN–LFP beta power within a certain range.
Other signals like muscle activities in electromyography (EMG) or
inertial measurement units (IMUs) have also been used as
biomarkers in treatment of tremors by closed-loop DBS (Cernera
et al., 2021; Yamamoto et al., 2013; Haddock et al., 2017; Herron
et al., 2017). For example, in the treatment of ET, Herron et al.
(2017) developed a closed-loop DBS system that controls the EMG
power to be below a specified threshold. There are also other types of

feedback biomarkers used in closed-loop DBS, e.g., single-unit
recordings (Rosin et al., 2011) and the coherence among
electroencephalogram (EEG) recordings (Silberstein et al., 2005).

Regardless of the type of the feedback biomarker, DBS settings
are determined solely based on neural (e.g., LFP) or behavioral (e.g.,
EMG) signals in most existing closed-loop DBS controllers (Velisar
et al., 2019; Little et al., 2013; Herron et al., 2017; Haddock et al.,
2019; Castaño-Candamil et al., 2020; Chandrabhatla et al., 2023).
However, these methods suffer from the lack of an understanding of
the physiological mechanisms underlying the DBS and disease-
related neuronal circuits. An effective approach to overcome this
problem is to embed a computational model of the underlying
mechanisms into the control system (Grado et al., 2018). For
example, to control Parkinson’s disease, closed-loop DBS systems
were developed based on the physiological models of the related
cortico-basal ganglia–thalamic network (Liu et al., 2021; Fleming
et al., 2020). Liu et al. (2021) used the control system to suppress the
beta oscillations in the cortex, and Fleming et al. (2020) suppressed
the beta power of LFP in the STN. Although these computational
studies includedmethods for adjusting DBS in a closed-loop manner
(Fleming et al., 2020; Grado et al., 2018; Liu et al., 2021), the models
used were not validated for replicating/tracking experimental data
nor did they incorporate DBS mechanisms of actions, e.g., DBS-
induced short-term synaptic plasticity (Milosevic et al., 2021; Tian
et al., 2023a; Ghadimi et al., 2022).

In this work, we develop a closed-loop control system to adjust
the stimulation frequency of Vim–DBS automatically. Our control
system is based on a computational model that predicts the EMG
activities in response to different frequencies of Vim–DBS. In this
computational model, the firing rate of Vim neurons in response to
Vim–DBS is predicted by our recently developed rate network
model that reproduces the human clinical data recorded in Vim
neurons in response to different DBS frequencies (10–200 Hz)
(Tian et al., 2023b). Dynamics of DBS-induced short-term synaptic
plasticity (Tian et al., 2023b) are incorporated in the rate network
model. We used a neural model simulation study including models
of DBS, Vim, the motor cortex, motoneurons in the spinal cord,
and muscle fibers to generate muscle activities (represented by
EMG). To link Vim–DBS to EMG signals in our model-based
control framework, model-predicted EMG signals, generated in
our simulation study, are used to calculate the feedback biomarker
by a polynomial fit, which is processed and implemented in a
proportional–integral–derivative (PID) controller (O’Hara et al.,
1997; Raj et al., 2016; Sattar et al., 2019) that automatically updates
the appropriate DBS frequency. Our model-predicted EMG can
predict the symptoms of essential tremor during DBS-OFF and is
consistent with clinical observations of tremors during different
frequencies of Vim–DBS. In a closed-loop DBS control system, the
ability of predicting the biomarker decreases the probability of
delivering inappropriate DBS frequencies to the patient, and thus
increases the therapeutic efficacy and reduces side effects.

The proposed model-based closed-loop DBS control system is
based on synthetic EMG data and is currently in the stage of proof-
of-concept. However, we anticipate that our computational
framework can facilitate the development of model-based control
systems that can be potentially implemented in and out of the clinic
to automatically update the appropriate DBS frequency for
individual patients suffering from different diseases.
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Materials and methods

We developed a computational framework for incorporating the
physiological mechanisms of deep brain stimulation into controlling
disease symptoms. This framework consists of two main parts: (1) a
computational model characterizing the physiological mechanism of
the stimulated neuronal network and (structurally/functionally)
connected neurons and (2) a feedback control reflecting the
disease state. In this study, we use computer simulations and
apply our framework to control DBS frequency for reducing ET
symptoms observed from EMG signals.

Computational model

The computational model consists of four components: (i)
neural activities, spikes, generated by the Vim network model in
response to different DBS frequencies; (ii) motor cortex neural
activities influenced by propagation of Vim–DBS effects to the
motor cortex; (iii) spinal motoneuron activities impacted by
neurons in the motor cortex; (iv) motor unit action potentials in
the muscle fibers innervated by the spinal motoneurons.

(i) Vim network model impacted by Vim–DBS
The baseline firing rate of Vim neurons during DBS-OFF is

often chosen in the range of 10–40 Hz (Milosevic et al., 2021;
Tian et al., 2023b). The firing rate dynamics of the Vim neurons
in response to Vim–DBS were simulated by our previous model
of the Vim network based on clinical DBS data recorded during
surgery on human patients with essential tremor (ET)
(Supplementary Method S2) (Tian et al., 2023b). The impact
of DBS pulses was modeled as the induction of synaptic release
(Tian et al., 2023b), the dynamics of which is characterized by
the Tsodyks and Markram (TM) model (Tsodyks et al., 1998)
(Supplementary Method S1) of short-term synaptic plasticity
(STP) (Milosevic et al., 2021). DBS pulses are fed into the TM
model to obtain the post-synaptic currents into Vim neurons
(Tian et al., 2023b). The firing rate network model consists of
recurrent connections among three neural groups: DBS-targeted
Vim neurons, external excitatory nuclei, and inhibitory nuclei
(Supplementary Method S2) (Tian et al., 2023b). Our previous
model could accurately reproduce the clinically recorded
instantaneous firing rate of the Vim neurons receiving DBS
of different stimulation frequencies (10–200 Hz)
(Supplementary Figure S5) (Tian et al., 2023b).

(ii) Propagation to the primary motor cortex
In our model, the effects of Vim–DBS are propagated to the

primary motor cortex (M1). We modeled the propagation using the
dynamics induced by two sources: (1) the effects of Vim–DBS and
(2) the background neuronal activities that induce tremor
symptoms. The Vim–DBS effects are induced by the direct DBS
activation of the axons projected to the M1 neuron and the firings of
the Vim neurons during Vim–DBS.

These effects consist of direct axon activation and DBS-induced
Vim firings. DBS activates the axons connecting to the synapses
projecting to theM1 neuron, and these synapses are characterized by
the Tsodyks and Markram model (Tsodyks et al., 1998)

(Supplementary Method S1). In addition to the direct axon
activation, the M1 neuron is also affected by the DBS-induced
firings of the Vim neurons. With our previous Vim network
model (Tian et al., 2023b), we simulated the instantaneous firing
rate of the Vim neurons receiving DBS of different stimulation
frequencies (10–200 Hz). The Vim firing rate signal is the time-
varying Poisson rate for generating Poisson spike trains, which were
passed to the TM-modeled synapses to produce the post-synaptic
current in the M1 neurons (Supplementary Method S1).

In addition to the DBS effects, we also modeled the
background neuronal activities inducing tremor symptoms. The
tremor activities observed in the EMG from ET patients are often
in the frequency band of 4–8 Hz (Halliday et al., 2000; Hess and
Pullman, 2012; Herron et al., 2017). The tremor-inducing
background firing rate was taken as a waveform consisting of
6-Hz bursts with a baseline shift (Supplementary Figure S1). To be
consistent with the EMG recordings from ET patients (Halliday
et al., 2000; Vaillancourt et al., 2003; Hess and Pullman, 2012;
Zhang et al., 2017), each burst consists of three consecutive
sinusoidal waves and the period of each wave is 20 ms
(Supplementary Figure S1). We then generated Poisson spike
trains from the background firing rate waveform; these spikes
were then passed to the M1 synapses characterized by the TM
model (Tsodyks et al., 1998), which produced the post-synaptic
current into the M1 neurons (Supplementary Method S1).

The membrane potential of one neuron in the M1 neuron
population was characterized by a leaky integrate-and-fire (LIF)
model (Eq. 1) as follows:

dV

dt
� − V − EL( ) + RIsyn

τV

Isyn � IDBS + Ib

, (1)

where EL � − 65 mV is the equilibrium potential, R (resistance
parameter) = 1 MΩ, and τV = 10 ms is the membrane time constant;
spikes occur when V≥Vth, where Vth = − 35 mV. The reset voltage
is − 90 mV, and the absolute refractory period is 1 ms. Isyn is the
total post-synaptic input current, consisting of the inputs induced by
Vim-DBS (IDBS) and the background inputs generating the tremor
(Ib), and was obtained by the TM model (Tsodyks et al., 1998) that
incorporates all the input spikes (see Supplementary Method S1).

(iii) Projection from the primary motor cortex to
spinal motoneurons

We modeled the effects of Vim–DBS as being propagated to a
population of 150 M1 neurons (Nc = 150), which project to
120 motoneurons (Nm = 120) in the spinal cord (Moezzi et al.,
2018; Watanabe et al., 2013). We assumed that each motoneuron
randomly connects to 70 M1 neurons and receives monosynaptic
inputs from eachM1 neuron (Moezzi et al., 2018; Porter et al., 1995).
Following a spike from anM1 neuron, wemodeled the post-synaptic
current into a motoneuron by the rule of spike-timing-dependent
plasticity (STDP) from Izhikevich (2006):

i t( ) � C e−
t−td,cm−k

τi , (2)
where k is a spike timing of an M1 neuron, td,cm = 10 ms is the M1-
to-spinal-motor-neuron transmission delay (Baker and Lemon,
1998), t≥ k + td,cm is a time point following the M1 spike timing
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k, τi = 20 ms is a time constant, and C = 0.1 nA is the scaling factor
(Izhikevich, 2006). The membrane potential of the motoneuron is
given by an LIF model (Eq. 3) equivalent to that of Herrmann and
Gerstner (2002) (Herrmann and Gerstner, 2002; Moezzi et al., 2018):

Vj t( ) � V0e
−
t−tsp

j
τp h t − tspj( ) + Rm

τm
1 − e−

t−tsp
j

τr( )∫t−tspj

0
e−

s
τm Ij t − s( )ds,

(3)
where tspj is the last spike timing of the jth motoneuron. h(t) is the
Heaviside step function, which is 0 when its argument is negative and
1 otherwise. Ij(t) is the post-synaptic current from M1 neurons
into the jth motoneuron and is a summation of i(t) (Eq. 2) from
each of the 70 M1 neurons projecting to the motoneuron. V0 �
−22 mV is the reset membrane potential (Moezzi et al., 2018).
When the membrane potential reaches a firing threshold Vth, it is
instantaneously reset to V0, and the integration process restarts.
For each motoneuron, the firing threshold Vth∈ [5, 15] mV is
chosen randomly (Moezzi et al., 2018). Rm = 36 MΩ is the input
resistance (Moezzi et al., 2018). τp = 2 ms is the refractory time
constant. τm = 4 ms is the passive membrane time constant. τr =
100 ms is the recovery time constant (Borg and Borg, 1987;
Moezzi et al., 2018). The firing rate of a human motoneuron
is normally between 5 and 50 Hz (Macefield et al., 1993),
although it can be over 100 Hz for a brief period during fast
contractions (Duchateau and Baudry, 2014).

(iv) Generation of EMG activities from spinal
motoneuron spikes

The spikes from the spinal motoneurons generate action
potentials in the motor units of muscle fibers (Moezzi et al.,
2018; Watanabe et al., 2013). These motor unit action potentials
(MUAPs) were modeled (Eq. 4) as follows (Watanabe et al., 2013;
Moezzi et al., 2018; Lo Conte et al., 1994):

Mj t( ) � Aj t − τspj( )e−
t−τsp

j
λ( )2

h t − τspj( ); τspj � tspj + td,mm, (4)

where Mj is the MUAP of the jth motor unit, corresponding to the jth

motoneuron; λ � 2 ms is the time factor (Moezzi et al., 2018); tspj is the
spike timing; td,mm = 10 ms is the motor-neuron-to-muscle conduction
delay in humans (Eyre et al., 2000); and h(t) is the Heaviside step
function. Aj is the scale factor of the amplitude of activities in the jth

motor unit (Li et al., 2012; Moezzi et al., 2018) and was modeled as
following the exponential distribution Aj ~ Exp (1

μ), where μ is the
mean of distribution (Li et al., 2012; Moezzi et al., 2018); we chose μ �
7 × 10–3 to be consistent with the EMG simulation during transcranial
magnetic stimulation (TMS), as given in Moezzi et al. (2018). Finally,
the surface EMG (y(t)) was modeled (Eq. 5) as the summation of
MUAPs with a low-level Gaussian white noise (ε(t)) (Watanabe et al.,
2013; Moezzi et al., 2018) with a standard deviation of 0.025 mV:

y t( ) � ε t( ) +∑
j
Mj t( ). (5)

Feedback control for DBS frequency

Our computational model simulates the EMG signal in response
to different DBS frequencies. Simulated EMG signals are used to

calculate the feedback biomarker which controls the DBS frequency.
The feedback control consists of three main parts: (1) biomarker
identification, (2) computation of a system output from the
biomarker, and (3) a closed-loop controller that implements the
system output to update the DBS frequency.

Biomarker identification

The EMG simulation of our computational model is slow to
implement: it takes more than 30 min when using
MATLAB R2022b with a personal computer to simulate 10 s
of the EMG signal. Thus, to facilitate the implementation speed of
the model in a closed-loop control system, we need rapid EMG
estimation to replace the direct EMG simulation. We
implemented a polynomial method to estimate the EMG from
the Vim firing rate, and the direct model-simulated EMG is used
as the reference (i.e., reference EMG) for estimation. We
implemented the MATLAB custom function polyfit for
polynomial estimation, which gives a least-square fit of the
polynomial coefficients. The estimated EMG is formulated
as follows:

ŷ t( ) � ψ ζ x t( )( )( ) + φ0 + ε t( )

ψ ζ x t( )( )( ) � ∑N
n�1φn ζ x t( )( )[ ]n and ζ x t( )( ) � x t( ) − �x t( )

sd x t( )[ ]
, (6)

where x(t) is the Vim firing rate simulated from our previous
Vim network model (Tian et al., 2023b) and ŷ(t) is the estimated
EMG. ζ(x(t)) is the standardization of x(t); �x(t) and sd[x(t)] are
the mean and standard deviation of x(t), respectively. Then,
ζ(x(t)) has a mean of 0 and a standard deviation of 1. The
polynomial order is 25, and φ0,φ1, . . . ,φN, N � 25{ } are the
polynomial coefficients. The R2 statistic (Colin Cameron and
Windmeijer, 1997) of the fit generally increases with increase in
the polynomial order (Supplementary Figure S3), and 25 is a
minimal order of the polynomial when R2 converges. ε(t) is the
Gaussian white noise with a standard deviation of 0.038 mV. We
fitted the consistent polynomial coefficients (Supplementary
Table S2) across data from different DBS frequencies,
including 10, 50, 80, 100, 120, 130, 140, 160, and 200 Hz. Our
previous work showed that consistent model parameters fitted
based on concatenated DBS frequencies in a certain range—in
this case, [10–200] Hz—can be consistently applied to
unobserved frequencies (e.g., 25 and 180 Hz) in the same
range (Tian et al., 2023a). Thus, we implement the
polynomial-estimated EMG as the biomarker to control the
DBS frequencies in the range [10–200] Hz.

Computation of system output from the
estimated EMG

The power spectral density (PSD) of the estimated EMG ŷ(t)
(Eq. 6) is the system output for updating the frequency of the
input DBS (10–200 Hz). In the system output, we consider PSD
in the frequency band [2–200] Hz, which includes the frequencies
of both DBS and EMG activities (Halliday et al., 2000; Hess and
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Pullman, 2012; Herron et al., 2017; Milosevic et al., 2021).
The power density is calculated by the following equation
(Miller, 2019; Liu et al., 2021), with a sampling frequency
of 0.5 kHz:

p f, t, u( ) � 1��
w

√ ∫w
2

−w
2

ŷu t + s( )H s( )ei2πfsds
∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2

; furthermore, (7)

H(s) � 1
2 (1 + cos(2πsw )).

wheref represents the frequency of the EMG activities.H(s) is the
Hann windowing function (Miller, 2019; Porat, 1997), and w is the
width of the window, chosen to bew = 1 s to ensure stability (Liu et al.,
2021; Miller, 2019). ŷu(t) represents the estimated EMG in response to
DBS with stimulation frequency u. The total power of EMG activities
over the initial period T of the estimated EMG signal is then given as

P f, T, u( ) � ∫T

0
p f, t, u( )dt. (8)

The EMG power thus computed can be used to analyze the EMG
activities in the frequency domain in response to different
frequencies of DBS.

In response to DBS frequency u, the PSD of EMG within the
frequency band of [2–200] Hz is approximated as the sum of the
power density (p(f, t, u), Eq. 7) from each integer DBS frequency
(2, 3, 4, . . ., 200 Hz) in [2–200] Hz, and the system output z(u) is
calculated as the approximated PSD in the initial T = 5 s of the
estimated EMG:

z u( ) � 1
T
∫T

0
∑200

f�2p f, t, u( )dt. (9)

Finally, a closed-loop controller updates the DBS frequency u so
that z(u) is close to a specified control target βz (see the
next section).

The PID controller that updates the DBS frequency
We implemented the proportional–integral–derivative (PID)

controller (O’Hara et al., 1997; Raj et al., 2016; Sattar et al.,
2019) to update the DBS frequency based on the system output,
z (Eq. 9). The updated DBS frequency u(t) is computed as Eq. 10

u tm+1( ) � Kpe tm( ) + Ki∑m
j�1e tj( )Δt +Kd

e tm( ) − e tm−1( )
Δt

e tm( ) � z u tm( )( ) − βz

⎧⎪⎪⎨⎪⎪⎩ (10)

and is evaluated at the time points {t1, t2, . . ., tM}, with t1 = 0, tM =
10 min, and Δt = tm – tm−1 = 1/3 min. The simulation of the PID
controller was performed with MATLAB R2022b. Kp, Ki, and Kd

denote the proportional, integral, and derivative gains, respectively.
The error signal e(t) is the difference between the system output z
and its control target βz.

Results

Our proposed computational framework for model-based closed-
loop DBS control is shown in Figure 1. As shown in Figure 1A, an
encoding model is used to replicate (predict) neuronal activities in
response to DBS frequencies. In this encoding model, the dynamics of

synaptic plasticity and other biophysical details can be preserved, and
model parameters are estimated by fitting the model output to
experimental data (Tian et al., 2023b; Tian et al., 2023a).
Additionally, to map neural activities to behavioral signals, we use a
data-driven approach (Eq. 6) in our framework. A controller, e.g., a PID
controller, is developed to adjust DBS patterns given behavioral signals
solely. It is to be noted that, unlike the encoding model, using neural
models to identify neural–behavioral relationships requires building a
network of several neuronal circuits (see our simulation study in
Figure 2), which in turn increases the complexity of this type of
model for mapping neural features to behavioral activities. However,
we show that data-driven approaches are strong alternatives. The
proposed computational framework in Figure 1B highlights the
contributions of encoding (biophysical) and decoding (data-
driven) models.

In the next sections, we present details of the model-based
closed-loop DBS system that can effectively control the DBS
frequency based on EMG signals generated by a neural model
simulation (Figure 2) of the underlying neuronal network (from
DBS/Vim neural activity to muscle activity).

Schematics of the neural model simulation
study for Vim-DBS control

The simulation study for the Vim–DBS control system is
schematized in Figure 2. The effects of Vim–DBS included direct
axon activation and DBS-induced Vim firings, which were simulated
from our previous Vim network model established based on clinical
Vim–DBS data (Tian et al., 2023b). The Vim–DBS effects are
propagated to the M1 neuron, which projects to the motoneuron
in the spinal cord. The firings of the spinal motoneurons innervate
the corresponding motor units in the muscle fibers and induce
motor unit action potentials (MUAPs). The simulated EMG consists
of a linear summation of MUAPs and a low-level Gaussian white
noise. In the feedback control, in order to facilitate the
implementation speed, we estimated the simulated EMG by a
polynomial fit. Then, we computed the mean power spectral
density (PSD) of such polynomial-estimated EMG as the system
output. Finally, a proportional–integral–derivative (PID) controller
updated the DBS frequency that brought the system output close to a
specified control target.

DBS pulses are delivered to the neurons in the thalamic ventral
intermediate nucleus (Vim) and also activate the axons projecting to
neurons in the primary motor cortex (M1). The firing rate of the Vim
neurons impacted by DBS was obtained from our previous Vim
network model that reproduced experimental DBS data (Tian et al.,
2023b). Spike trains are generated from the modeled Vim firing rate
(x(t)) as a Poisson process and are propagated to the M1 neurons.
The spikes from the M1 neurons are then propagated to the
motoneurons in the spinal cord. The spikes from these
motoneurons innervate the corresponding motor units in the
muscle fibers and induce motor unit action potentials (MUAPs).
The simulated EMG (y(t)) is a linear summation of MUAPs with
additive low-level Gaussian white noise. In the feedback control, we
estimate the simulated EMG by fitting a polynomial function ψ (Eq.
6), and this estimated EMG (ŷ(t)) is the biomarker used in the
control. φ0 is the constant term of ψ, ε(t) is the Gaussian white noise,
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and ζ(x(t)) is the standardization of themodeledVim firing ratex(t)
(Eq. 6). The system output z(u) is calculated as the mean power
spectral density (PSD) over the initial T of the biomarker ŷ(t) (Eq. 9).
Finally, a proportional–integral–derivative (PID) controller (Eq. 10)
updates the DBS frequency u that reduces the error (e) between the
system output z(u) and a specified control target βz.

The Vim–Cortex propagation

Our model of the propagation of the Vim–DBS effects to the
cortical M1 neurons was validated by using a 10-s block of neural spike
data from single-unit recordings in M1 during 130-Hz VPLo-DBS in
non-human primates, reported in Agnesi et al. (2015). The thalamic
VPLo nucleus (ventralis posterior lateralis pars oralis, in the Olszewski
atlas) in non-human primates is homologous to the Vim in humans
(Molnar et al., 2005; Xiao et al., 2018). To assess the response of Vim to
130-Hz DBS, a peristimulus time histogram (PSTH) was calculated
based on spike times occurring between 0 and 7.7 ms after each DBS
pulse, with the PSTH further smoothed by an optimal Gaussian kernel
(Shimazaki and Shinomoto, 2007; Shimazaki and Shinomoto, 2010)
(Figure 3), both for empirical and simulated data. The standard
deviation of the Gaussian kernel was 0.2 ms, which was obtained
from optimization of the Gaussian kernel to best characterize the
spikes using a Poisson process (Shimazaki and Shinomoto, 2007;

Shimazaki and Shinomoto, 2010; Tian et al., 2023b). Our
Vim–M1 propagation model’s generated M1 spike activity behaved
similarly to that of the empirically recorded non-human primateM1, as
indicated by the spike raster plot and PSTH firing rate analysis
(Figure 3). We computed the R2 statistic (Colin Cameron and
Windmeijer, 1997) to compare model-simulated and experimental
PSTHs, and R2 = 0.728 represents a good model fit (Figure 3B).
Thus, our Vim–M1 propagation model could reflect the
M1 dynamics during 130-Hz Vim–DBS.

EMG simulation from the
computational model

We simulated the EMG from our model, both during DBS-OFF
and in response to Vim-DBS of different stimulation frequencies in
[10–200] Hz (Figure 4).

The EMG simulation with DBS-OFF presented a typical tremor
band (~6 Hz) in the clinical EMG signals recorded from ET patients
(Halliday et al., 2000; Hess and Pullman, 2012; Herron et al., 2017).
During low-frequency (≤ 50 Hz) DBS, the amplitude of the simulated
EMG is similar to (or slightly higher than) the DBS-OFF situation
(Figure 4). Such a simulation is consistent with the clinical observations
that low-frequency Vim-DBS (≤ 50 Hz) is often ineffective and can
exacerbate the tremor (Ushe et al., 2004; Earhart et al., 2007; Pedrosa

FIGURE 1
Computational framework for the proposed model-based closed-loop DBS control system. (A) Biophysical details, e.g., dynamics of synaptic
plasticity, are preserved in the encoding model to identify how different patterns of DBS change the neural activities of simulated neurons. A data-driven
decoding model was used to map the neural activity to behavioral signals like EMG. A controller is used to adjust DBS in a closed-loop manner. The
control target is a specified value of the system output, which is related to the power spectral density (PSD) of EMG (see Eq. 10 for details). (B) A
summary diagram of proposed computational framework.
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et al., 2013). The amplitude of the simulated EMG is lower than that of
the DBS-OFF situation when the DBS frequency is ≥ 80 Hz (Figure 4).
During high-frequency (≥ 100 Hz) DBS, the amplitude of the
simulated EMG is clearly depressed compared with that in the DBS-
OFF situation (Figure 4). Such a simulation is consistent with the
clinical observations that high-frequency (≥ 100 Hz) Vim–DBS can
worsen the tremor (Earhart et al., 2007; Ushe et al., 2004; Vaillancourt
et al., 2003). The simulated EMG is mostly suppressed when the DBS
frequency is ≥ 130 Hz (Figure 4). This is consistent with the fact that
the stimulation frequency of clinical Vim–DBS is usually chosen to be
≥ 130 Hz (Ondo et al., 1998; Dowsey-Limousin, 2002; Dembek et al.,
2020). We observed a short transient with a large amplitude in the
simulated EMG during Vim–DBS, and the tremor intensity might be
higher in the initial ~200 ms after Vim–DBS onset (Milosevic et al.,
2018; Yamamoto et al., 2013). Our simulated EMG signals are
consistent with clinical EMG signals from Cernera et al. (2021),
which showed EMG recordings from a patient with essential tremor
during DBS-OFF and 135-Hz Vim-DBS (Cernera et al., 2021)
(Supplementary Figure S6).

Estimation of the simulated EMG

The EMG simulation from the model is too slow for practical
implementation. Thus, we estimated the model-simulated EMG
with a polynomial fit to facilitate the computational speed in a
closed-loop control system. The model-simulated EMG and

polynomial-estimated EMG are denoted as “reference EMG” and
“estimated EMG,” respectively (Figure 5). We compared the
reference EMG and estimated EMG in response to different
frequencies of DBS (Figures 5, 6).

In the time domain, the estimated EMG is similar to the
reference EMG across different DBS frequencies (10–200 Hz), in
terms of both amplitude and variation (Figure 5A). The correlation
between the reference and estimated EMGs is generally above 0.3,
representing some positive correlations (Figure 5B); the correlation
is not very high because of the existence of white noise in the
simulations. The power is generally similar between reference and
estimated EMGs (Figure 5C). In addition to the comparison in the
time domain, we also compared the reference and estimated EMGs
in the frequency domain (Figure 6). At each frequency in the band
[2–200] Hz of the EMG activities, we computed the corresponding
frequency power with Eq. 8 in the initial T = 5 s of the EMG
(Figure 6). The estimated EMG [by a 25-order polynomial (Eq. 6)] is
well-fitted to the reference EMG in the frequency domain, with R2 =
0.745 (Supplementary Figure S3), computed based on the signals
across different DBS frequencies. Additionally, we observed other
similarities between the estimated and reference EMGs in terms of
the amplitude and pattern of different frequency powers of EMG
activities (Figure 6). The EMG power is high with DBS-OFF and
during low-frequency (<100 Hz) DBS and is mostly suppressed
during ≥ 130 Hz DBS (Figure 6). During 10–80 Hz DBS, in both
estimated and reference EMGs, we observed that the power is high at
the harmonics of the DBS frequency (Figure 6). This might indicate

FIGURE 2
Schematics of the neural model simulation study for Vim–DBS control.
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that DBS could induce synchronized activities during low-frequency
DBS (Florin et al., 2008; Pedrosa et al., 2013). The similarities
between the reference and estimated EMGs—in both the time
domain and frequency domain–indicate that the estimated EMG
is a proper substitute for the reference EMG in controlling the
frequencies of Vim–DBS for treating essential tremor.

The system output based on EMG power
spectral density

We computed the system output to be implemented in a closed-
loop controller updating the DBS frequency. The system output

during Vim–DBS was computed with the estimated EMG (Eq. 6)
that facilitates the implementation speed. For DBS frequency u, we
defined the system output z(u) as the mean power spectral density
(PSD) in the initial intervalT = 5 s of the estimated EMG in response
to DBS with stimulation frequency u (Eq. 9). PSD represents the
band [2–200] Hz of EMG activities. The system output in response
to different frequencies ([10–200] Hz) of DBS is presented
in Figure 7:

In general, the system output decreases with increase in the DBS
frequency (Figure 7, Supplementary Table S3). During low-
frequency (≤ 50 Hz) DBS, the system output is not reduced
much compared with the DBS-OFF (u = 0) situation (Figure 7).
The system output is low during high-frequency (≥ 100 Hz) DBS

FIGURE 3
Raster plot and PSTHofmodel simulation and non-human primate recording. (A, B) The spike times occurringwithin each inter-pulse interval during
10 s of 130-Hz DBS are visualized as a raster plot. We obtain an estimate of the instantaneous firing rate induced around each DBS event by computing a
peristimulus time histograms (PSTHs), convolving the spikes with a 0.2-ms Gaussian kernel. (A) The raster plot and PSTH of the non-human primate
single-unit recording in the primary motor cortex (M1) during 130-Hz VPLo-DBS (Agnesi et al., 2015). (B) The raster plot and PSTH of our model
simulation of M1 spikes during 130-Hz Vim-DBS. We compute the R2 statistic that compares the model simulation (solid line) with experimental data
(dashed line).
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and is close to minimum during ≥ 130 Hz DBS (Figure 7). These
responses of the system output to different DBS frequencies are
consistent with clinical observations of the effectiveness of different
frequencies of Vim–DBS (Pedrosa et al., 2013; Earhart et al., 2007;
Vaillancourt et al., 2003; Dembek et al., 2020).

Closed-loop control of the DBS frequency
with the PID controller

A PID controller (Eq. 10) was implemented to update the DBS
frequency in the closed-loop system, based on the system output z (Eq.
9). The parametersKp,Ki, andKd of the PID controller were chosen to
be 103 (Hz/mV2), 105 Hz/(mV2 · min), and 5 × 103 (Hz · min/mV2),
respectively; parameter tuning was performed to increase the efficacy of
the controller (Supplementary Figure S2 and Supplementary Note).

As a test of the controller, when the control target is the power of the
biomarker (estimated EMG, Eq. 6) from 130-Hz DBS, the PID
controller can converge to the target in 10 min (Figure 8A and
Supplementary Table S4). This shows that our control system is
potentially effective and efficient for clinical implementation. Note
that during the PID control, only the steady-state DBS frequency
(reached after ~10 min) is delivered to the patient. As we change
the control target of the system output, the result of the PID control is
also robustly and flexibly changed (Figure 8B). As shown in Figure 8B,
the five control targets of the system output correspond to the
biomarker power from both observed and unobserved DBS
frequencies (Supplementary Table S4). The observed DBS
frequencies (10, 50, 80, 100, 120, 130, 140, 160, and 200 Hz) were
used in fitting the polynomial coefficients (Eq. 6), and the unobserved
DBS frequencies are arbitrary.

Discussion

We developed a model-based closed-loop control system for
the stimulation frequency of Vim–DBS. The DBS control system
was based on our previously verified computational model, which
represents the neuronal network characterizing the physiological
mechanisms that connect the input (DBS pulses) and the output
(model-predicted EMG activities). In order to facilitate the
implementation speed, we estimated the model-predicted
EMG with a polynomial fit, which was used as the feedback
biomarker for the controller. The power spectrum of the
biomarker was the system output implemented in a PID
controller that automatically updates the appropriate DBS
frequency. Thus, the closed-loop system controls the EMG
power by adjusting the DBS frequency. Our closed-loop
system can control the DBS frequency to achieve different
control targets of EMG power and can potentially be
implementable for different diseases and individual patients.

Clinical relevance of the system output

The system output used in our closed-loop system is related
to the power of the model-predicted EMG signals, and the
optimal DBS frequency is obtained by bringing the system
output to a specified control target. In clinical studies, the
power of EMG is a commonly observed indicator for different
movement disorders, e.g., PD (Zhang et al., 2017), ET (Halliday
et al., 2000), and akinesia (Bisdorff et al., 1999). Tremor
symptoms, characterized by the tremor amplitude and
frequency, can be identified using the power of EMG (Hess

FIGURE 4
Model-simulated EMG in response to different frequencies of DBS. Simulated EMGwith ourmodel, in response to different frequencies of Vim–DBS.
Each signal is given relative to its mean.
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and Pullman, 2012). Tremor amplitude is the primary indicator
of the severity of tremors (Hess and Pullman, 2012). Tremor
frequency can be used to partially differentiate disease types; e.g.,
the peak tremor frequency observed in the EMG of PD patients is
often 3 ~ 6 Hz (Zhang et al., 2017; Hess and Pullman, 2012) and
in the EMG of ET patients is often 4 ~ 8 Hz (Halliday et al., 2000;
Herron et al., 2017). Thus, use of the power of EMG as a
biomarker for ET in a closed-loop DBS is clinically relevant
(Yamamoto et al., 2013; Herron et al., 2017). During the DBS
control, the control target of the EMG power should be
appropriate: a high EMG power indicates the insufficiency of
tremor suppression, and a low EMG power can be related to
akinesia (Bisdorff et al., 1999) and myasthenia gravis
(Mills, 2005).

Importance of predictability in a
control system

The ability to predict how different frequencies of DBS change
neural and behavioral activities is the main advantage of our model-
based closed-loop DBS. A controller (e.g., PID) can select
appropriate DBS patterns that are biophysically relevant and
clinically effective. Although the model parameters [for both
encoding and decoding models (see Figure 2) are obtained based
on sparse DBS frequencies, 5, 10, 20, 30, 50, 100, 130, and 200 Hz
[human Vim data (Tian et al., 2023b) and non-human primate
cortical data (Agnesi et al., 2015)], the encoding model can robustly
predict the effect of an arbitrary DBS frequency in the continuous
spectrum of 5–200 Hz DBS (see Figure 4 for some examples; see

FIGURE 5
Comparison of reference and estimated EMGs (time domain) in response to different frequencies of DBS. “Reference EMG” is the EMG simulated by
our model (y(t) in Figure 2). “Estimated EMG” is the estimation of the reference EMG with the polynomial fit (ŷ(t) in Figure 2). (A) Comparison of the
reference EMG and estimated EMG in the time domain, in response to different frequencies of DBS. Each signal is subtracted by its mean. (B) Correlation
between the reference EMG and estimated EMG. The correlation is computed based on the initial 5 s of data. (C) Comparison of the mean power
spectral density (PSD) between the reference EMG and estimated EMG. Mean PSD is computed based on the initial 5 s of data.
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Table 1 in Tian et al. (2023a) for a test of robustness of the firing rate
model). Model-based control of DBS was addressed in previous
computational studies (Fleming et al., 2020; Grado et al., 2018; Liu

et al., 2021). Despite the usability of these control systems for in silico
explorations, the underlying models were not fitted to experimental
data. More importantly, these models do not consider the

FIGURE 6
Comparison of the reference and estimated EMGs (frequency domain) in response to different frequencies of DBS. “Reference EMG” is the EMG
simulated by our model (y(t) in Figure 2). “Estimated EMG” is the estimation of reference EMG with the polynomial fit (ŷ(t) in Figure 2). We compare the
reference EMG and estimated EMG in the frequency domain, which is the frequency band [2–200] Hz of the EMG activities. For each DBS frequency, at
each frequency of the EMG activities, we compute the corresponding frequency power with Eq. 8 in the initial T = 5 s of the EMG. The frequency
power of EMG activities is plotted on a log scale.

FIGURE 7
System output in response to different frequencies of DBS. The system output z(u) is the mean power spectral density (PSD) in the initial interval T =
5 s of the estimated EMG (ŷ(t) in Figure 2) in response to DBS with the simulation frequency u (Eq. 9).
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physiological mechanisms of the DBS effects. In this work, our
(encoding) model not only incorporates biophysically realistic
dynamics of DBS-induced short-term synaptic dynamics but also
provides an accurate fit to Vim–DBS experimental data (Tian et al.,
2023b). Additionally, our data-driven decoding model provides a fit
(see Figures 5, 6) to simulated EMG data in which physiological
mechanisms of tremor symptoms were preserved (see Figure 2 for
details of the simulation study). Our control system predicts the
effect of DBS frequency on the power of EMG and delivers an
optimal DBS frequency.

The use of machine learning methods in
closed-loop DBS

In recent closed-loop DBS control systems, machine learning
methods have been developed to map biomarker features (input) to
patients’ observed states (output) and could further deliver an
appropriate DBS setting (Chandrabhatla et al., 2023; Kuo et al.,
2018; Merk et al., 2022). Therefore, it is imperative to identify key
biomarkers that need to be extracted from the LFP and EMG as they
will serve as input features for a judiciously selected machine
learning model. Castaño-Candamil et al. (2020) used a regression
method to estimate tremor severity from electrocorticographic
(ECoG) power in ET patients and adjusted the DBS intensity
according to tremor severity. Golshan et al. (2018) used the
wavelet coefficients of the STN-LFP beta frequency range as
features and further developed a support vector machine (SVM)
classifier for studying the behaviors of PD patients. Numerous prior
studies have established high performance using SVM classifiers
with input features such as phase-amplitude coupling
(Chandrabhatla et al., 2023), Hjorth parameters (Oliveira et al.,
2023), beta band power (Chandrabhatla et al., 2023), and burst
duration (Merk et al., 2022). Using power densities within the beta
(Kuo et al., 2018) and gamma (Yao et al., 2020) bands as features,
hidden Markov models (Merk et al., 2022; Sun et al., 2020; Yao et al.,

2020), SVM (Golshan et al., 2018), convolutional neural networks
(CNNs) (Merk et al., 2022; Golshan et al., 2020; Oliveira et al., 2023),
linear discriminant analysis (LDA) (Merk et al., 2022), and logistic
regression (Houston et al., 2019) have been investigated. It was also
recommended in a couple of studies that deep learning methods
such as CNNs are worth investigating as they capture nonlinear
temporal dynamics and waveform shape (Merk et al., 2022; Oliveira
et al., 2023). For example, Haddock et al. (2019) developed a deep
learning method that classified the behaviors of ET patients based on
the PSD of ECoG and used the classification results to turn DBS
ON/OFF.

A key improvement to existing machine learning methods is to
incorporate physiological characterizations of the input–output
mapping. In this work, we developed a physiological model to
map the input (DBS frequency) to the output (model-predicted
EMG).We then used a polynomial-based approximation to estimate
the input–output map to facilitate the implementation speed of the
control system. However, the polynomial method is prone to be less
robust to unseen inputs, owing to its high-order terms (Kane et al.,
2017; Beltrão et al., 1991). Thus, an important line of future work is
to use state-of-the-art machine learning methods, particularly deep
learning methods, to replace the simple polynomial-based
input–output mapping. Consequently, it is important to
understand key EMG features for muscle activation in
Parkinson’s disease. The literature highlights sample kurtosis,
recurrence rate, and correlation dimension as three specific EMG
features that are responsive to changes in DBS treatment parameters
(Rissanen et al., 2015). These features have been fed as input into the
LDA, CNN, and SVM, where the SVM performed the best (Ruonala,
2022). In a few investigations, EMG features, encompassing
frequency, amplitude, and regularity, were scrutinized
(Khobragade et al., 2018; Wang et al., 2020). The signal mean
and power of the peak frequency performed well as features
when using a random forest model and a deep learning network
for adaptive DBS (Khobragade et al., 2018). It is important to note
that while simpler models like LDA are valued (Ozturk et al., 2020;

FIGURE 8
Closed-loopcontrol of theDBS frequencywith the PID controller. TheDBS frequency is controlled in closed-loopwith theproportional–integral–derivative
(PID) controller (Eq. 10; Figure 2). The simulation of the PID controller is performed with MATLAB R2022b. (A) PID control of the DBS frequency with a
specified target βz . During the control, the system output converges to the target, which is the power of the biomarker (estimated EMG, Eq. 6) simulated
during 130-Hz DBS. (B) PID control of DBS frequency with different targets. βz,1 , βz,2 , . . . , βz,5 represent five control targets of the system output z (Eq.
9 and Supplementary Table S4). βz,2 , βz,3 and βz,4 correspond to the biomarker power during DBS frequency 140, 130, and 120 Hz, respectively. βz,1 and βz,5
correspond to unobserved DBS frequencies.
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Watts et al., 2020) for their interpretability in the context of DBS for
PD, the limited availability of labeled datasets resulted in ambiguous
success for complex models, particularly deep neural networks
(Oliveira et al., 2023).

Our closed-loop DBS control is based on a physiological model
that can generate an arbitrary amount of synthetic data, which can
be implemented in fully training deep learning methods. The
arbitrary amount of data in the training set will increase the
accuracy and robustness of our future closed-loop DBS control
based on physiological models and deep learning methods.
Therefore, it is recommended that the efficacy of the SVM,
logistic regression, LDA, hidden Markov model (HMM), random
forests, and deep neural network models like CNNs be evaluated in
greater detail using the abundance of synthetic data. Watts et al.
(2020) performed a thorough retroactive study of various machine
learning classifiers used to identify optimal DBS parameters for PD,
and it was recommended to pursue machine learning in the context
of adaptive closed-loop DBS for PD.

Different DBS mechanisms

Synaptic depression can partially explain the therapeutic
mechanisms of high-frequency DBS (e.g., Vim–DBS), which can
stem from synaptic and axonal failure (Rosenbaum et al., 2014; Tian
et al., 2023a). In the present work, we incorporated dynamics of
DBS-induced short-term synaptic plasticity (STP)—characterized
by the Tsodyks and Markram model (Tsodyks et al., 1998)—in our
neural model. Such a modeling strategy of the DBS effect is
consistent with previous works (Farokhniaee and McIntyre, 2019;
Milosevic et al., 2021). Further details of the DBS effect can also be
considered in neuronal simulations. For example, Schmidt et al.
(2020) modeled the effect of DBS by generating a spherical electrical
field that affects the potential of all neuronal elements (including
soma and axon) within a certain distance from the DBS electrode
(Schmidt et al., 2020). The electrical field induced by DBS can be
non-spherical if multiple electrodes or directional leads are used
(Steffen et al., 2020; Masuda et al., 2022). DBS can induce both
orthodromic and antidromic activations of axons, e.g., in Vim–DBS
(Grill et al., 2008) and STN–DBS (Neumann et al., 2023). In
particular, during STN–DBS, the antidromic activation of the
cortical circuitry is a key factor in changing neural dynamics
(Neumann et al., 2023). We will investigate the DBS effect of
antidromic activations in our future models and compare
different models of the DBS mechanisms.

Limitations and future work

In our closed-loop system, the EMG power of a broad band is
used as the system output to update the input DBS frequency. We
used the band [2–200] Hz that covers the DBS frequencies [10–200]
Hz, which induces DBS-evoked activities in our EMG simulations
(Figures 5, 6). These DBS-evoked activities could be a mechanism of
the ineffectiveness of low-frequency Vim–DBS (Ushe et al., 2004;
Earhart et al., 2007; Pedrosa et al., 2013) and need to be suppressed
in the closed-loop control system. Yet, EMG recordings during low-
frequency DBS are very limited, and more such recordings are

needed to fully investigate the underlying mechanisms. There have
been closed-loop DBS systems controlling the tremor band [~(2, 12)
Hz] of EMG activities in ET patients (Cernera et al., 2021;
Yamamoto et al., 2013). Cernera et al. (2021) showed that during
DBS-OFF for an ET patient, most of the EMG power belongs to the
band (2–12) Hz (Cernera et al., 2021). Thus, the control result may
be similar when using the broad band [2–200] Hz, in which the
power of [12–200] Hz is small, and the result will not be biased
toward this relatively small power. In the future, we will perform the
control of the tremor band ~ (2–12) Hz of EMG activities and
compare it with the current scheme.

We developed a model-based closed-loop control system that
automatically updates the DBS frequency. Although the DBS
frequency is a commonly tuned parameter in clinical applications
(Merola et al., 2013), the tuning of another DBS parameter (e.g.,
pulse width and amplitude), or a combination of different DBS
parameters, may also be clinically effective. Our closed-loop system
adapts the DBS frequency because the underlying Vim network
model was built to fit clinical data recorded during different
frequencies of DBS. In the future, we will develop closed-loop
systems that can adapt different DBS parameters, based on the
corresponding new clinical data.

Our model-based closed-loop DBS control system is in the
proof-of-concept stage for clinical implementations. The system
will be implemented together with a constant monitoring of the
EMG signal. In contrast to existing closed-loop DBS systems that
update DBS parameters based on EMG signals solely (Yamamoto
et al., 2013; Herron et al., 2017), before delivering DBS to the patient,
our system predicts the effect of DBS frequency based on the
underlying computational model. During implementation, the
recorded EMG signal will be used to adjust our model
predictions to personalize the model-based system and increase
the prediction accuracy.

Our model included the clinical Vim–DBS data recorded in Vim
neurons across different stimulation frequencies (10–200 Hz) (Tian
et al., 2023b). However, experimental data were not sufficiently
included in other components of our model. We incorporated non-
human primate single-unit recordings in M1 during 130-Hz VPLo-
DBS reported in Agnesi et al. (2015), but M1 activities in response to
other DBS frequencies were not recorded. The EMG model
simulation is consistent with some clinical observations, but was
not further developed and validated by fitting clinical EMG data. In
fact, in current experimental work onDBS, the EMG signal is usually
recorded with DBS-OFF or high DBS frequencies (>100 Hz)
(Herron et al., 2017; Vaillancourt et al., 2003; Rissanen et al.,
2011), and they lack EMG recordings in response to a wide
spectrum of DBS frequencies (e.g., 10–200 Hz). In the future, we
plan to incorporate more experimental data into the further
development of the model-based closed-loop DBS control, and
these experimental data—in particular, cortical and EMG
data—need to be recorded with different DBS frequencies from
each individual subject.

It is worth mentioning that the synaptic connections between the
Vim (VPLo in primate) are reciprocal and excitatory, though the
projections that the M1 sends to the Vim are in different M1 laminae
than the ones it receives from Vim (Stepniewska et al., 1994). Our
model simplified this excitatory feedback relationship by considering
the excitatory propagation effect as unidirectional, from the Vim to

Frontiers in Network Physiology frontiersin.org13

Tian et al. 10.3389/fnetp.2024.1356653

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2024.1356653


the M1. We fitted the simplified model to the recording from one
M1 neuron during 130-Hz VPLo-DBS, and there are variabilities
among the dynamics of different M1 neurons. In the future, we will
develop a more detailed Vim-M1 model based on more
M1 recordings. In this work, we modeled the spinal motoneurons
as one population. Spinal motoneurons can be classified into two
function groups: somatic and visceral (Fields et al., 1970). The
M1–motoneuron synaptic projection can be modeled by pair-
based STDP, which characterizes membrane potential dynamics
using spike timings of both pre- and post-synaptic spikes
(Morrison et al., 2008; Gütig et al., 2003). We will develop more
detailed models of the M1–motoneuron circuits in the future. Our
future closed-loop DBS systems will be constructed based on both
improved models and deep learning methods.
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