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Background: Abnormal neuronal synchrony is associated with several
neurological disorders, including Parkinson’s disease (PD), essential tremor,
dystonia, and epilepsy. Coordinated reset (CR) stimulation was developed
computationally to counteract abnormal neuronal synchrony. During CR
stimulation, phase-shifted stimuli are delivered to multiple stimulation sites.
Computational studies in plastic neural networks reported that CR stimulation
drove the networks into an attractor of a stable desynchronized state by down-
regulating synaptic connections, which led to long-lasting desynchronization
effects that outlasted stimulation. Later, corresponding long-lasting
desynchronization and therapeutic effects were found in animal models of PD
and PD patients. To date, it is unclear how spatially dependent synaptic
connections, as typically observed in the brain, shape CR-induced synaptic
downregulation and long-lasting effects.

Methods: We performed numerical simulations of networks of leaky integrate-
and-fire neurons with spike-timing-dependent plasticity and spatially dependent
synaptic connections to study and further improve acute and long-term
responses to CR stimulation.

Results: The characteristic length scale of synaptic connections relative to the
distance between stimulation sites plays a key role in CR parameter adjustment. In
networks with short synaptic length scales, a substantial synaptic downregulation
can be achieved by selecting appropriate stimulus-related parameters, such as
the stimulus amplitude and shape, regardless of the employed spatiotemporal
pattern of stimulus deliveries. Complex stimulus shapes can induce local
connectivity patterns in the vicinity of the stimulation sites. In contrast, in
networks with longer synaptic length scales, the spatiotemporal sequence of
stimulus deliveries is of major importance for synaptic downregulation. In
particular, rapid shuffling of the stimulus sequence is advantageous for
synaptic downregulation.

Conclusion: Our results suggest that CR stimulation parameters can be adjusted
to synaptic connectivity to further improve the long-lasting effects. Furthermore,
shuffling of CR sequences is advantageous for long-lasting desynchronization
effects. Our work provides important hypotheses on CR parameter selection for
future preclinical and clinical studies.
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1 Introduction

The human body consists of various interacting physiological
systems forming a complex network in which stimulation of one
system can have long-ranging effects on others (Bashan et al., 2012).
To develop novel treatments, researchers study how the complex
interactions between physiological systems and the various signaling
pathways lead to the emergence of pathological and physiological
states (Bartsch et al., 2015; Ivanov et al., 2016) and how transitions
between these states can be induced, e.g., by stimulation.

Parkinson’s disease is accompanied by synaptic reorganization
(Fan et al., 2012; Miguelez et al., 2012; Chu et al., 2017; Pamukcu
et al., 2020; Madadi Asl et al., 2022) and changes of neuronal activity
(Hammond et al., 2007; Neumann et al., 2016; Vinding et al., 2024)
in several brain areas. The severity of motor symptoms, such as
bradykinesia and rigidity, correlates with excessive neuronal
synchrony (see, e.g., Hammond et al., 2007; Neumann et al.,
2016). Brain stimulation has been found to alleviate symptoms,
which goes along with a reduction of neuronal synchrony
(Hammond et al., 2007). These observations motivated a model
of a multistable complex network of PD-related brain areas (Tass
and Majtanik, 2006; Tass and Hauptmann, 2007). In this model,
pathological states characterized by excessive neuronal synchrony
and the presence of symptoms (Hammond et al., 2007) and with
reorganized synaptic connectivity (Mallet et al., 2019; Madadi Asl
et al., 2022) coexist with healthy states characterized by reduced
neuronal synchrony and less severe symptoms or even the absence
thereof (Tass and Hauptmann, 2007).

High-frequency (HF) deep brain stimulation (DBS) is an
established treatment for medically refractory PD (Krack et al.,
2003). However, symptoms return shortly after cessation of
stimulation (Temperli et al., 2003). Applying the interpretation of
coexisting physiological and pathological states suggests that while
HF DBS induces acute therapeutic effects during stimulation, it may
not drive the network into the attractor of a stable, healthy state
where the network remains after stimulation ceases.

CR stimulation is a multisite stimulation technique
computationally developed to specifically counteract pathological
neuronal synchrony (Tass, 2003a; Tass, 2003b). During CR
stimulation, a spatiotemporal pattern of phase-shifted stimuli is
delivered to multiple stimulation sites to target segregated neuronal
subpopulations. Originally, CR stimulation was developed to
desynchronize neuronal networks with fixed synaptic connections
(Tass, 2003a; Tass, 2003b). Later, computational studies of CR
stimulation in plastic networks revealed that stimulation not only
reduced synchronization during stimulation but also caused
downregulated synaptic connections, which drove the network
into the attractor of a stable desynchronized state such that
desynchronization effects persisted even after cessation of
stimulation (Tass and Majtanik, 2006). Later preclinical studies
in animal models for PD (Tass et al., 2012; Wang et al., 2016;
Bore et al., 2022; Wang et al., 2022) and PD patients (Adamchic
et al., 2014; Pfeifer et al., 2021) reported corresponding therapeutic
effects that outlasted stimulation for several days to weeks. In
contrast to HF DBS, this suggests that CR stimulation indeed
drove the network into the attractor of a stable, healthy state,
characterized by desynchronized neuronal activity, such that
desynchronization effects persisted after cessation of stimulation.

Based on the computational results, the downregulation of
(pathological, see Hauptmann and Tass, 2010) synaptic
connectivity was key for inducing long-lasting desynchronization
effects (Tass and Majtanik, 2006). Since then, several computational
studies analyzed the role of different CR parameters for inducing
long-lasting effects in plastic networks of phase oscillators (Tass and
Majtanik, 2006), conductance-based neuron models (Popovych and
Tass, 2012; Ebert et al., 2014; Lourens et al., 2015; Manos et al.,
2018), and leaky integrate-and-fire (LIF) neurons (Kromer et al.,
2020). These studies pointed out that the spatiotemporal pattern of
stimulus deliveries, characterized by the stimulation frequency and
the timing and the locations of stimulation site activations, has a
strong impact on the CR-induced synaptic dynamics (Kromer et al.,
2020; Khaledi-Nasab et al., 2021; Khaledi-Nasab et al., 2022). For CR
stimulation, stimuli are delivered in cycles such that each
stimulation site receives exactly one stimulus per cycle. The
sequence at which sites receive stimuli is called CR sequence. In
preclinical and clinical studies on CR, the CR sequence is typically
shuffled after each cycle, which will be referred to as shuffled CR
below (Tass et al., 2012; Adamchic et al., 2014; Wang et al., 2022). A
recent computational and theoretical study also showed that the
stimulus shape, characterized by the number of pulses per stimulus
burst and the intraburst frequency, has a strong impact on the CR-
induced synaptic dynamics (Kromer and Tass, 2022). Beyond the
scope of CR stimulation other computational studies analyzed how
the pattern of stimulus deliveries can shape plastic synaptic
connections (see for instance, Madadi Asl et al., 2023; Anil et al.,
2023), how synaptic reshaping might interact with heterogeneous
intrinsic neuronal dynamics (Pariz et al., 2023), how spatially
dependent connections impact synchronization (Berner and
Yanchuk, 2021), and how stimulation-induced synaptic reshaping
can lead to lasting effects on neuronal synchrony (Schmalz and
Kumar 2019). However, none of these studies analyzed how
different spatial patterns of synaptic connectivity might affect the
CR-induced synaptic weight dynamics and how such spatial
patterns can be harnessed for improved long-lasting effects of CR
stimulation. The latter is an important question, as typical target
brain regions, for instance, the subthalamic nucleus (STN) for CR
DBS in PD, present complex patterns of synaptic connectivity
(Emmi et al., 2020). Recently, a brief computational study
reported that long-lasting effects of CR in spatially
inhomogeneous networks might depend on the selected CR
sequence and suggested that rapid shuffling of the CR sequence
might be advantageous for long-lasting effects (Kromer and Tass,
2024), indicating that CR might have different effects depending on
the synaptic network structure in the target brain area.

The present paper studies CR stimulation in plastic networks
with spatially dependent synaptic connections. The network
dynamics is modeled by LIF neurons with spike-timing-
dependent plasticity (STDP) (Kromer and Tass, 2020). The
network parameters are adjusted such that a strongly connected
synchronized state and a weakly connected desynchronized state
coexist. This was motivated by the presence of pathological states
with excessive neuronal synchrony (Hammond et al., 2007) and
healthy states characterized by the absence of excessive neuronal
synchrony in PD (Tass and Majtanik, 2006). In contrast to previous
studies, we vary the spatial structure of synaptic connections and
derive stimulation strategies for different network structures.
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Specifically, we introduce a characteristic length scale of synaptic
connections, s, that controls the distance dependence of the
connection probability between two neurons. We assumed a
decay of the connection probability with the distance between
neurons, based on the analysis of synaptic connectivity in several
brain regions, including the cortex (Hellwig, 2000), the striatum
(Humphries et al., 2010), and as previously assumed in a detailed
computational model of the STN (Ebert et al., 2014).

Based on our computational results, we derive the hypothesis
that local connections dominate networks with short synaptic length
scales and that selecting an appropriate stimulus shape has a
significant impact on synaptic downregulation regardless of the
spatiotemporal pattern of stimulus deliveries. In contrast, networks
with long synaptic connections possess mainly connections between
neurons close to different stimulation sites, and CR-induced
synaptic downregulation strongly depends on the spatiotemporal
pattern of stimulus deliveries.

Our paper is organized as follows. First, we present the neuronal
network model and show that different stable states coexist for a
wide range of synaptic length scales. In the results section, we
present our simulation results on CR stimulation of networks of
LIF neurons with STDP and with different synaptic length scales and
analyze the stimulation-induced network structure. Then, we derive
efficient stimulation strategies for such networks and show how the
spatiotemporal stimulus pattern affects the dynamics of synaptic
connections. Finally, we discuss our results.

2 Model and methods

2.1 Network of leaky integrate-and-
fire neurons

To simulate the effect of CR stimulation on plastic neural
networks, we performed simulations of networks of excitatory
LIF neurons with STDP. The model equations were taken from
previous studies (Kromer et al., 2020; Kromer and Tass, 2020). Here,
we extend the model by considering networks with different
synaptic length scales as described below.

Individual neurons were modeled as LIF neurons. The ith
neuron’s membrane potential, Vi(t), obeyed the dynamics.

Ci
dVi

dt
� gleak Vrest − Vi( ) + gsyn,i t( ) Vsyn − Vi( ) + Istim,i t( ) + Inoise,i t( ).

(1)
Here, Ci is the membrane capacitance and the terms on the right-
hand side model the leak current, with leakage conductance gleak
and resting potential Vrest; the excitatory synaptic input current,
with synaptic conductance gsyn,i(t) and reversal potential Vsyn;
the stimulation current Istim,i(t); and the noisy input current
Inoise,i(t), modelling input from other brain regions. Action
potentials (spikes) were not modelled directly. Instead neuron
i was assumed to exhibit a spike whenever its membrane potential
crossed the threshold potential Vth,i(t) from below. Vth,i(t)
obeyed the dynamics

τth
dVth,i

dt
� − Vth,i − Vth,rest( ). (2)

After threshold crossing, we implemented a rectangular voltage
spike by setting Vi(t) to Vspike for a duration of τspike. Then, we
performed an instantaneous reset of the threshold potential and the
membrane potential: Vth,i(t) → Vth,spike and Vi(t) → Vreset.

The synaptic conductances gsyn,i(t) were increased
instantaneously whenever a presynaptic spike arrived, and
decayed exponentially in between incoming presynaptic spikes:

τsyn
dgsyn,i

dt
� −gsyn,i + κ

τsyn
N

∑
j∈Gi

wj→i t( ) ∑
l∈Yj

δ t − tjl − td( ). (3)

τsyn is the synaptic timescale, tjl the timing of the lth spike of
neuron j, Yj the set of spikes of neuron j, and td the synaptic (axonal)
transmission delay. The first sum runs over the set of all presynaptic
neurons Gi of neuron i. κ scales the maximum synaptic coupling
strength. Additionally, the strength of individual synapses was
scaled by the time-dependent synaptic weights wj→i(t), with j
being the index of the presynaptic neuron and i the index of the
postsynaptic neuron.

To model noisy input from other brain areas, we delivered
independent Poisson spike trains with mean firing rate fnoise to each
neuron. These spike trains were fed into the neurons through
excitatory synapses. The resulting input current to neuron i is
given by

Inoise,i t( ) � gnoise,i t( ) Vsyn − Vi( ). (4)

gnoise,i(t) is the noise conductance given by

τsyn
dgnoise,i

dt
� −gnoise,i + κnoiseτsyn

N
∑
k∈Ui

δ tk − t( ). (5)

κnoise sets the noise intensity and tk is the timing of the kth spike
of the Poisson spike train that was fed into neuron i, and Ui is the set
of all spikes in this spike train.

All parameters were taken from Kromer and Tass (2020): gleak =
0.02 mS/cm2, Vrest = −38 mV, Vreset = −67 mV, Vth,spike = 0 mV,
Vth,rest = −40 mV, τth = 5 ms, Vsyn = 0 mV, τsyn = 1 ms, td = 3 ms, κ =
8 mS/cm2, κnoise = 0.026 mS/cm2, and fnoise = 20 Hz. The membrane
capacitances Ci were Gaussian distributed (N (μC, σC), with mean
value μC = 3 μF/cm2 and standard deviation σC = 0.05μC). This led to
heterogeneity of the intrinsic dynamics of individual neurons. This
parameter set was chosen such that the frequency and the range of
membrane potential oscillations matched recordings of periodically
spiking STN neurons in brain slices of healthy rats (Bevan and
Wilson, 1999). The STN is a major target region for HF DBS in PD
(Krack et al., 2003) and target for CR DBS in Parkinsonian monkeys
(Tass et al., 2012) and PD patients (Adamchic et al., 2014).

2.2 Networks with spatially dependent
synaptic connections

To study CR stimulation in networks with spatially dependent
synaptic connectivity, we considered networks of N = 1000 LIF
neurons. The neurons were placed along the x-axis such that their
center coordinates, xi, were uniformly distributed in the interval 0 ≤
xi < L. This is a similar distribution as in previous computational
studies (Kromer et al., 2020) and was motivated by the distribution
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of neurons along a DBS electrode. Synaptic connections were
introduced randomly between the neurons such that 7% of all N2

possible connections are implemented. This was motivated by
earlier detailed studies on the effect of CR stimulation on
neuronal activity in a detailed model of the STN (Ebert et al.,
2014). We did not allow for autaptic connections.

The spatial dependence of the synaptic connections was
implemented by considering a distance-dependent
connection probability p (dij) ∝ exp (−dij/s) (Ebert et al.,
2014). Here, dij = |xj − xi| is the Euclidian distance between
the presynaptic neuron i and the postsynaptic neuron j. Periodic
boundary conditions were not considered. s is the synaptic
length scale and will be varied throughout the present paper.
Network realizations for the three values of s that were
considered are visualized in Figure 1.

For s ≪ L the network of synaptic connections is dominated
by local connections whereas s ≫ L leads to rather homogeneous
synaptic connectivity that becomes independent of the distance
between neurons in the limit of long synaptic length scales s/L→
∞. In the present paper, we studied how CR stimulation reshapes
the synaptic connectivity for the three synaptic length scales in
Figure 1 which are representative of cases where the network is
dominated by local connections (s = 0.08 L, Figures 1A, A’), the
network shows close-to-homogeneous synaptic connectivity (s =
2 L, Figures 1C, C’), and a case in between these two extreme
cases (s = 0.4 L, Figures 1B, B’).

For comparison, we discuss values of L and s used in previous
studies modelling the STN. In Kromer et al. (2020), L = 5.0 mm was
used, which was motivated by the length of a short axis of an
ellipsoidal volume approximation of the STN based on experimental
measurements of STN tissue volume (Lévesque and Parent, 2005;
Ebert et al., 2014). Magnetic resonance imaging (MRI) studies
reported variations of STN dimensions among PD patients with

measured mean lengths of 5.9, 3.7, and 5.0 mm along the
anteroposterior, mediolateral, and dorsoventral axes, respectively;
however, it was noted that MRI yields smaller estimates of STN
dimensions than other techniques (Richter et al., 2004). In a detailed
computational study, s = 0.5 mm was used to reproduce
experimentally measured mean connection lengths (Afsharpour,
1985; Hellwig, 2000; Ebert et al., 2014). Together, these values for
L and s would correspond to a synaptic length scale of s ≈ 0.1L, close
to the values used in Figures 1A, A’. However, note that the STN is
part of the basal ganglia, and its activity is shaped by input from
other nuclei (Emmi et al., 2020), making a comparison difficult.

2.3 Spike-timing-dependent plasticity

To model synaptic plasticity, we employed a nearest neighbor
STDP scheme (Morrison et al., 2008). The synaptic weightswi→j were
updated whenever a presynaptic or a postsynaptic spike arrived at the
synapse. Respective arrival times are given by tpre + td for presynaptic
and tpost for postsynaptic spikes. tpre and tpost are the spike times of the
presynaptic and postsynaptic neurons, respectively. At the arrival
times, instantaneous synaptic weight updates were performed
according to wi→j → wi→j + W (Δt) with the time lag Δt = tpost −
tpre − td and the STDP function (Song et al., 2000)

W Δt( ) � η

exp −Δt
τ+

( ), Δt> 0,

0, Δt � 0,

− β

τR
exp −|Δt|

τ−
( ), Δt< 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(6)

η≪ 1 scales the weight update per spike arrival. 1/η sets the time
scale on which STDP affects the synaptic weights. The parameters τ+

FIGURE 1
Connection probability and connectivity diagrams for network realizations with different synaptic length scales. (A–C): Plots of the connection
probability as a function of the distance, dij, between two neurons. We normalized p (dij) such that ∫∞

0
du p(u) � 1. Labels indicate synaptic length scales.

(A’–C’)Corresponding connectivity diagrams. Black dots indicate a synaptic connection between a presynaptic neuron at location xpre and a postsynaptic
neuron at location xpost. Panels show results for synaptic length scales s =0.08L (A, A9), 0.4L (B, B9), and 2.0L (C, C9). Here, L is the system’s length
scale. In units of the distance between adjacent stimulation sites, d, the synaptic lengths scales are s =0.32 d (A), 1.6 d (B), and 8.0 d (C) (see below).
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and τ− = τRτ+ determine the shape of the STDP function and are
typically in the range of tens of milliseconds (Bi and Poo, 1998). β
scales the ratio of overall long-term depression to long-term
potentiation, i.e., the integrals over the time lags for which
W(Δt) < 0 (|∫0

−∞ dt W(t)|) and for which W (Δt) > 0
(|∫∞

0
dt W(t)|), respectively. STDP is typically considered to be

either balanced (β ≈ 1), depression dominated (β > 1), or
potentiation dominated (β < 1). In the simulations, we used hard
bounds by clipping the synaptic weights after each update to ensure
that wi→j(t) ∈ [0, 1].

Throughout the present paper, we used the parameters β = 1.4,
τ+ = 10 ms, τR = 4 (Kromer et al., 2020; Kromer and Tass, 2020).
These parameters ensured that desynchronized and synchronized
states coexisted for all considered synaptic length scales (Figure 2).
We set η = 0.01 which yielded slow changes of the synaptic weights
relative to the interspike intervals.

2.4 Degree of in-phase synchronization

The degree of in-phase synchronization was quantified by
evaluating the Kuramoto order parameter (Kuramoto, 1984)

ρ t( ) ≔ 1
T
∑N
i�1

e2πIϕi t( )
∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣. (7)

ϕi(t) is a phase function that attains subsequent integer values at the
timings of subsequent spikes of neuron i and increases linearly in
between subsequent spikes (Rosenblum et al., 2001). I is the
imaginary unit. ρ(t) ≈ 1 indicates in-phase synchronization and
ρ(t) ≈ 0 the absence of in-phase synchronization.

2.5 Coordinated reset stimulation

CR stimulation was delivered to four stimulation sites (Tass,
2003b). The sites were placed at locations xK = L/8, 3L/8, 5L/8, and
7L/8, respectively, such that the distance between two adjacent sites
was d = L/4.

Stimulation was delivered in cycles of four stimuli TCR/4, such
that each site received exactly one stimulus per cycle. The cycle
period TCR is given by the inverse CR frequency TCR = 1/fCR. Hence,
individual sites received stimuli at an average inter-stimulus interval
of TCR. Following, we refer to the sequence of stimulus deliveries
during a single CR cycle as CR sequence and to the overall spatio-
temporal pattern of stimulus deliveries as CR pattern (Figure 3). We
considered two qualitatively different CR patterns: non-shuffled CR
and shuffled CR. During non-shuffled CR, one of the 4! possible CR
sequences is selected and delivered for the entire stimulation period.
In contrast, during shuffled CR, a new CR sequence is randomly
selected at the beginning of each CR cycle, i.e., every TCR (Figure 3).
Shuffled CR has been used in preclinical (Tass et al., 2012) and
clinical studies (Adamchic et al., 2014) on PD.

Individual stimuli were modelled as a sequence of charge-
balanced pulses. In neuroscience and medicine, electrical stimuli
are typically charge-balanced to avoid tissue damage (Harnack et al.,
2004). Each charge-balanced pulse consisted of two rectangular
current pulses: an excitatory one and an inhibitory one. The
excitatory one had a pulse duration of ]e = 0.4 ms and an
amplitude of Ae � AΔVμC/]e. It was immediately followed by the
inhibitory one, which had a duration of ]i = 0.8 ms and an amplitude
of Ai � −Ae]e/]i (Figure 3). ΔV = Vth,spike − Vreset is the maximum
voltage range in the subthreshold voltage region of a single LIF
neuron in the absence of stimulation and A the dimensionless

FIGURE 2
Coexistence of strongly connected synchronized andweakly connected desynchronized states for different synaptic length scales. Simulated traces
of the Kuramoto order parameter ρ, Eq. 7, (A–C) for networks with different synaptic length scales, s (columns). Panels in the bottom row show
corresponding traces of themean synaptic weight, 〈w〉 obtained by averaging the weights of all synapses in the network. Gray tones mark trajectories for
different initial mean synaptic weights. At t = 0 individual synaptic weights were randomly set to either zero or one such that a given mean synaptic
weight was realized. Synaptic length scales were the same as in Figure 1, i.e., s = 0.08L (A,A9), s = 0.4L (B,B9), s =2L (C,C9).
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stimulation strength. A = 1 marks stimuli for which the excitatory
pulse resulted in an approximate elevation of the membrane
potential of ΔV. Thus, individual stimuli typically elicited a
spiking responses.

We employed a spatial stimulus profile to account for the fact
that neurons that are further away from a stimulation site,
experience weaker stimuli than those close to the site
(Richardson et al., 2003). This effectively reduced the stimulus
amplitude for neurons at a finite distance |xi − xK| from a site
located at xK. Specifically, an LIF neuron with center coordinated xi
experienced stimuli with a reduced amplitude A(xi, xK) from a site at
xK (Lysyansky et al., 2013)

A xi, xK( ) � Astim 1 + xi − xK

σ
( )2( )−1

. (8)

A(xi, xK) is the dimensionless stimulus amplitude
experienced by a neuron at location xi for a stimulus
delivered to the stimulation site at location xK. σ scales the
width of the stimulus profile and was set to σ = d/4π throughout
the present paper. Thus, during a stimulus delivery to a site at xK
a neuron at location xi received an excitatory stimulation
current, Istim,i(t), (Eq. 1), with amplitude A(xi, xK)ΔVμC/]e,

during the excitatory rectangular pulses and a current with
amplitude −A(xi, xK)ΔVμC/]i during the inhibitory pulses.

Below, we study the impact of the stimulus shape, referring to
the time course of Istim,i(t) after stimulus onset, on the outcome of
CR stimulation. To this end, we deliver single-pulse stimuli,
consisting of one charge-balanced pulse, i.e., one excitatory
rectangular pulse followed by an inhibitory one as described
above, and burst stimuli consisting of multiple such charge-
balanced pulses (Figure 3). Within a burst stimulus, the time
lag between subsequent charge-balanced pulses was controlled
by the intraburst frequency, fintra, specifying the inverse time
between the onset of two subsequent charge-balanced pulses
within a burst.

2.6 Analytical approximation of relative
number of synaptic connections between
neuronal subpopulations affected by two
stimulation sites

In the results section, we present approximations for the mean
synaptic weight based on the relative numbers of synaptic
connections bxy≔Bxy/∑xyBxy between a presynaptic neuronal

FIGURE 3
Illustration of stimuli and CR pattern-related parameters. We distinguish between individual stimuli and the spatio-temporal pattern of stimulus
deliveries (CR pattern). Individual stimuli are characterized by the stimulus shape (left). Two different stimulus shapes are considered throughout the
present paper: burst stimuli consisting of three charge-balanced pulses separated by Tintra = 1/fintra (top left) and single-pulse stimuli (bottom left).
Stimulus-related parameters include the stimulus amplitude, the number of pulses per stimulus, the intraburst frequency, fintra, and the waveform
during individual charge-balanced pulses, here characterized by the widths of the excitatory and the inhibitory rectangular pulses (left). Several CR
patterns are used throughout the present paper (right). In the right panels, red rectangles mark individual stimuli. We distinguish between non-shuffled CR
patterns in which the same CR sequence is repeated for the entire stimulation period (top right) and shuffled CR patterns in which a new CR sequence of
stimulus deliveries to the stimulation sites (Roman numerals) is generated after each cycle period, TCR, by shuffling theM=4Roman numerals, referring to
individual sites, and randomly drawing M Roman numerals without replacement (bottom right). The shuffled CR pattern shown in the bottom right
consists of the CR sequences “I,III,II,IV”, and before the first shuffling, and “II,I,III,IV”, after the first shuffling. After the second shuffling, only the first half of a
CR sequence is shown with stimulus deliveries to sites IV and II.
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subpopulation x and a postsynaptic neuronal subpopulation y. In
particular, we consider neuronal subpoplations that are the closest to
one of the stimulation sites. Here, Bxy is the total number of
connections between the two neuronal subpopulations. The
neuronal subpopulation that is the closest to stimulation site K at
location xK = (2K − 1)L/8, K = 1, 2, 3, 4 incorporates all neurons with
center coordinates xi ∈ [(K − 1)L/4, KL/4).

Next, we consider the distribution pΔK(dij, d) of distances dij
between postsynaptic neurons j that are the closest to site Kpost and
presynaptic neurons i that are the closest to stimulation site Kpre

with ΔK = Kpost − Kpre. For a uniform distribution of neuron center
coordinates in each subpopulation, we find.

pΔK dij, d( ) � 1
d

dij

d
− ΔK − 1( )( ), d ΔK − 1( )≤dij <dΔK

−dij

d
+ ΔK + 1( )( ), dΔK≤ dij <d ΔK + 1( )

0, otherwise

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
.

(9)
For a large number of connections between individual

subpopulations, the relative numbers of connections between
subpopulations can by approximated by,

bxy ≈
∫∞
−∞ dx py−x dx, d( )e−|dx|

s

∑M
x,y�1

∫∞
−∞ dx py−x dx, d( )e−|dx|

s

. (10)

Here,M = 4 is the total number of stimulation sites. This integral can
be solved analytically, and the solution depends only on the ratio l =
d/s of the distance between adjacent stimulation sites d,
characterizing the characteristic length scale of the
spatiotemporal stimulus pattern, and the synaptic length scale s.
In particular, for l → 0 the result becomes independent of y and x
and yield results for homogeneous networks, which have been
studied in Kromer and Tass (2022).

2.7 Approximation of mean synaptic weight
after CR stimulation in networks with
spatially dependent synaptic connections

Below, we explore the effect of the stimulus shape and the CR
pattern on the mean synaptic weight after CR stimulation in
more detail and develop effective stimulation strategies for
synaptic weight reduction in networks with spatially
dependent synaptic connections. Recently, we derived
theoretical approximations of the stimulation-induced
dynamics of the mean synaptic weight for non-shuffled CR
stimulation with rectangular stimulation profile in networks
with spatially homogeneous synaptic connectivity and STDP
(Kromer and Tass, 2022). Given an estimate of the average rate
of synaptic weight change during stimulation, Jx→y, of synapses
between the presynaptic neuronal population x and postsynaptic
neuronal population y and the mean synaptic weight of these
synapses at a reference time t0, 〈wx→y (t0)〉, their mean synaptic
weight at a later time t > t0 can be approximated by Kromer and
Tass (2022)

〈wx→y t( )〉 ≈ 〈wx→y t0( )〉 + S Jx→y, 〈wx→y t0( )〉( )t − t0[ ]
clip,0,1

.

(11)
[a]clip,0,1 � a for a ∈ [0, 1], 0 for a < 0 and 1 for a > 1 accounts for the
hard bounds for individual synaptic weights. The function

S J , w( )t − t0 ≔
wJ t − t0( ), J ≤ 0
1 − w( )J t − t0( ), J > 0

{ , (12)

accounts for a linear increase of the weights of initially
downregulated synapses and a linear decrease of weights of
initially upregulated ones. Note that during the derivation of Eq.
11, it was assumed that a mean synaptic weight of wx→y(t0)
corresponds to a fraction of wx→y(t0) synapses with synaptic
weights one and a fraction of 1 − wx→y(t0) synapses with
synaptic weights zero. This assumption was motivated by the
observation that individual synaptic weights are close to the hard
bounds in the stationary states (Song et al., 2000; Rubin et al., 2001).

From Eq. 11, an approximation of the mean synaptic weight was
derived in Kromer and Tass (2022). To this end, the matrix B was
introduced with its entries Bxy being the total numbers of synaptic
connections with presynaptic neurons in neuronal subpopulation x
and postsynaptic neurons in subpopulaton y. For a given matrix B,
the overall mean synaptic weight 〈w(t)〉 can be approximated by

〈w t( )〉 ≈
1

∑xyBxy
∑
xy

Bxy〈wxy t( )〉 � ∑
xy

bxy〈wxy t( )〉. (13)

The sums run over all possible combinations of presynaptic
neuronal subpopulations x and postsynaptic subpopulations y.
bxy≔Bxy/∑xyBxy denotes the relative number of connections with
presynaptic neuron in subpopulation x and postsynaptic neuron in
subpopulation y.

In the previous section, we derived an analytical estimate for the
relative number of connections bxy for the networks of spatially
dependent synaptic connections considered throughout the present
paper for the case where a subpopulation incorporates the neurons
that are closest to one of the stimulation sites (Eq. 10). Using Eq. 10 in
Eq. 13, we calculated the approximate dynamics of the overall mean
synaptic weight during non-shuffled CR stimulation with a given CR
sequence and a given ratio l of the distance between adjacent
stimulation sites d and the synaptic length scale s. In Figure 7,
results from Eq. 10 are compared to estimates from networks
generated by the algorithm, used in our simulations. Note that Eq.
10 also yields the relative portion of intra-population synapses as
bintra = ∑xBxx and inter-population synapses binter = 1 − bintra,
i.e., synaptic connections between presynaptic and postsynaptic
neurons that are closest to the same and to different sites, respectively.

2.8 Details of numerical simulations and
data analyses

Numerical integration of the networkmodel of LIF neurons with
STDP was performed using an Euler scheme with integration time
step 0.1 ms. The python code used for the simulations and the
generation of the figures is available on github.

For simulations of CR stimulation, we used the networks for an
initial mean synaptic weight of 0.45 from Figure 2 at t = 5000 s and
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started stimulation. Thus, the time point at t = 5000 s from Figure 2
corresponds to the onset of stimulation at t = 0 s in Figures 4–6, 8, 9.

The relative numbers of connections bxy in Figure 7 were
obtained by averaging over five network realizations. The same
networks were used in the simulations for Figure 8. Analytical
approximations in Figure 7 and for the approximations in
Figure 9 were obtained from Eq. 10.

Estimates of the mean weight change during stimulation, Δw, in
Figures 8A’, 8B’, were obtained by averaging the weights of all
synapses between presynaptic neurons within a distance of less than
d/2 from the stimulation site at xII = 3L/8 and postsynaptic neurons
within a distance of less than d/2 from the stimulation site at xIII =
5L/8, at the onset of stimulation and after 20 s of stimulation with a
phase lag ϕx→y and a stimulation frequency f. Then the
corresponding mean synaptic weights were averaged over five
network realizations.

3 Results

We performed simulations of non-shuffled and shuffled CR
stimulation of networks of LIF neurons with STDP. Before
stimulation, the networks were in a strongly connected,
synchronized state. Specifically, we used the networks obtained
for an initial mean synaptic weight of 0.45 from Figure 2 after a

simulation time of 5000 s. We delivered CR stimulation with the
primary goal to downregulate synaptic weights and drive the
network into the attractor of a stable, weakly connected
desynchronized state (see Figure 2) such that stimulation entailed
long-lasting desynchronization effects (see Figure 4). We recorded
traces of the mean synaptic weight 〈w(t)〉 and the Kuramoto order
parameter, ρ(t), quantifying the degree of neuronal
synchrony (Eq. 7).

3.1 CR stimulation-induced dynamics
depends on network structure

Representative trajectories of the Kuramoto order parameter,
ρ(t), and the mean synaptic weight, 〈w(t)〉, before, during, and after
CR stimulation with burst stimuli are shown in Figure 4. Simulations
were performed for networks with different synaptic length scales.
CR stimulation induced complex dynamics of the Kuramoto order
parameter and the mean synaptic weight (Figure 4). While various
CR patterns led to acute desynchronization (reflected by low values
of Kuramoto order parameter during stimulation), the degree of
long-term synchronization varied across networks with different
synaptic length scales and stimulation parameters. In networks with
short synaptic length scales, s, non-shuffled CR with different CR
sequences led to different values of the mean synaptic weight during

FIGURE 4
CR stimulation-induced dynamics depend on network structure. Simulated traces of the Kuramoto order parameter ρ, Eq. 7, for networks with
different synaptic length scales. s= 0.08 L (A,D,G), 0.4 L (B,E,H), and 2.0 L (C,F,I), and for different stimulation frequencies, fCR = 4 Hz (A–C), 10 Hz (D–F),
and 21 Hz (G–I). Individual stimuli consisted of bursts of three stimulus pulses and an intraburst frequency of 130 Hz, the corresponding time between
subsequent pulses within a burst, Tintra, is 1/130 s (see schematic on the top right). Black traces show results for shuffled CR, often referred to as CR
with rapidly varying sequence (Tass and Majtanik, 2006; Zeitler and Tass, 2015)). The stimulation period of 1000 s is marked in light red. Colored traces
show results for non-shuffled CR with CR sequences “I,II,III,IV”,“I,II,IV,III”,“I,III,II,IV”,“I,III,IV,II”,“I,IV,II,III”, and “I,IV,III,II”. The corresponding sequences of
stimulation site activations within a CR cycle are illustrated on the right-hand side. Parameters: Astim = 2.5 and σ = ds/4 Π.
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CR stimulation. In contrast, non-shuffled CR stimulation of
networks with long synaptic length scales led to similar mean
synaptic weights during stimulation (compare first and last
column in Figure 4).

After cessation of stimulation, the networks freely evolved and
approached either the synchronized, a desynchronized, or a partially
synchronized state. In the latter, neurons in the immediate vicinity of
stimulation sites remained synchronized whereas neurons further away
from stimulation sites showed desynchronized activity (see raster plots
of spiking activity and snapshots of synaptic connectivity for
simulations of shuffled CR with high CR frequencies in
Supplementary Figure S1). In networks with short synaptic length
scales, it took a long time for the networks to approach a stationary state
with transient dynamics occurring on time scales that were even longer
than the stimulation period (Figure 4, left column). In some cases, non-
shuffled CR with different sequences also led to different long-term
effects of stimulation (Figure 4F). Surprisingly, in these cases, different
stationary states were approached even though similar mean synaptic
weights were obtained at the end of the stimulation period, indicating a
complex attractor landscape of the stationary states.

For most parameter sets used in Figure 4 and sufficiently long
stimulation periods, shuffled CR led to a more pronounced

reduction of the mean synaptic weight during stimulation and
lower values of the Kuramoto order parameter after cessation of
stimulation than non-shuffled CR. For large CR frequencies, only
shuffled CR kept the system from returning to the synchronized
state. Here, the system approached a partially synchronized state
that persisted even for long simulation times (we simulated up to
10000 s after cessation of stimulation) (Figures 4G–I). However, at
the beginning of the stimulation period, non-shuffled CR led to a
faster reduction of the mean synaptic weight than shuffled CR for a
low stimulation frequency (see Figures 4A–C). It is currently unclear
whether this effect is strong enough to enable long-lasting
desynchronization effects after non-shuffled CR for shorter
stimulation periods than required for long-lasting
desynchronization after shuffled CR.

3.2 CR pattern determined spatial
orientation of stimulation-induced
synaptic pathways

Next, we analyzed the effect of non-shuffled CR on the synaptic
weight dynamics. Snapshots of connectivity diagrams during CR

FIGURE 5
Synaptic pathways induced by CR stimulation with burst stimuli. Results of simulations of the LIF network model prior to stimulation (A–D), and
during stimulation with non-shuffled CRwith CR sequences “I,II,III,IV” (E–H) and “I,IV,II,III” (I–L) and shuffled CR (M–P) are shown. Left panels show raster
plots of neuronal spiking activity. Black horizontal bars mark a time interval of 100 ms. The other panels show connectivity diagrams with dark colors
marking strong connections and light gray marking weak connections between presynaptic neurons at locations xpre and postsynaptic neurons at
locations xpost. Different columns show results for networks with different synaptic length scales, s (see labels at the top of respective columns). In the
brackets, we give synaptic length scales in units of the distance between adjacent stimulation sites, d. The labels inside individual panels show the mean
synaptic weight 〈w〉. Parameters: A = 2.5, fCR = 10 Hz and σ = d/4 Π. Raster plots in panels (A,E,I, M) are shown for s = 0.08L. Connectivity diagrams
(F–H,J–L, N–P) were recorded at the end of the 1000 s stimulation period. Raster plots (E,I,M) show the last second of this period.
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stimulation are shown in Figure 5. Non-shuffled CR upregulated
certain populations of synaptic connections while down-regulating
others, thereby inducing strongly connected clusters of neurons. To
analyze which synapses were affected, we drew red dashed lines in

the connectivity diagrams in Figure 5 at coordinates L/4, L/2, and
3L/4, i.e., marking halfway points between adjacent stimulation sites.
Vertical lines separate presynaptic neuron coordinates into four
groups, each containing presynaptic neurons that were the closest to

FIGURE 6
Synaptic pathways induced by CR stimulation with single-pulse stimuli. Results of stimulation of the LIF network model prior to stimulation (A–D),
and during simulation with non-shuffled CR with CR sequences “I,II,III,IV” (E–H) and “I,IV,II,III” (I–L) and shuffled CR (M–P) are shown. In contrast to
Figure 5, we used single-pulse stimuli. The raster plots on the left show neuronal spiking activity. Black horizontal bars mark a time interval of 100 ms. The
other panels show connectivity diagrams with dark colors marking strong connections and light gray marking weak connections between
presynaptic neurons at locations xpre and postsynaptic neurons at locations xpost. Different columns show results for networks with different synaptic
length scales, s (see labels at the top of respective columns). Labels inside the panels show the value of themean synaptic weight. Parameters: A= 2.5 and
σ = d/4 Π. Raster plots in panels (A,E,I, M) are shown for s = 0.08L. Connectivity diagrams were recorded at the end of the 1000 s stimulation period. The
raster plots on the left show the last second before stimulation onset (A) and the last second of the 1000 s of CR stimulation period (E,I,M).

FIGURE 7
Relative numbers of connections between neuronal subpopulations closest to different combinations of stimulation sites for different synaptic
length scales (A–C). Black horizontal lines represents analytical estimates (Eq. 10) and crosses show data from five network realizations. Presynaptic and
postsynaptic neuronal subpopulations are denoted by the Roman numeral of the closest stimulation site, i.e., “I-II” refers to the presynaptic subpopulation
of all neurons within distance d/2 of stimulation site “I” and postsynaptic subpopulation of all neurons within distance d/2 of stimulation site “II”.
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the same stimulation site. Accordingly, horizontal lines separate
postsynaptic neuron coordinates into four groups containing
postsynaptic neurons that were the closest to the same
stimulation site. As can be seen in Figure 5, these lines
approximately separate synaptic connections into different

populations with presynaptic and postsynaptic neurons closest to
the same stimulation sites.

Remarkably, non-shuffled CR with different CR sequences
up- and downregulated different synaptic populations, thereby
shaping the orientation of groups of strong synapses

FIGURE 8
Stimulation-induced change of mean synaptic weight depends on phase lag between stimuli delivered to postsynaptic and presynaptic neuronal
subpopulation. (A): Raster plot of neuronal spiking activity during two-site stimulationwith single-pulse stimuli for ϕx→y=0.3. Phase lags were normalized
to one, i.e., ϕx→y ∈ [0, 1), such that ϕx→y/f is the time lag between the onsets of stimuli delivered to population y and x, respectively. (A)’: Change of mean
synaptic weight of synapses between postsynaptic neurons closest to a site located at 5L/8 and presynaptic neurons closest to a site located at 3L/8
in the first 20 s of stimulation (enclosed by red dashed lines in (A) as function of ϕx→y and stimulation frequency, f. (B) and (B)’: Same as (A) and (A9) but for
stimulation with burst stimuli with three pulses per burst and an intraburst frequency of 130 Hz. (C, D): Examples of CR sequences (top). Roman numerals
denote stimulation sites. Bottom panels show corresponding matrices of resulting phase lags between stimuli delivered to postsynaptic and presynaptic
neurons affected by respective stimulation sites.

FIGURE 9
Mean synaptic weights of intra- (A–C) and (D–F) and inter-population synapses (A’–C’) and (D’–F’) after long stimulation with non-shuffled CRwith
different CR sequences and shuffled CR. Approximations from Eq. 14 (lines) for t = 3000 s are compared to simulation results after 3000 s of stimulation
(symbols) for networks with different synaptic length scales, s, (columns) and for single-pulse (A–C) and (A’–C’) and burst stimuli (D–F) and (D’-F’). Colors
mark different CR patterns (see legend in panel (A) and Figure 4). Parameters: Astim = 2.5, σ = d/4 Π.
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marking pathways of strong synaptic connections in the
network. For example, in Figure 5H, the CR sequence I,II,III,
IV induced the following pathways of strong synaptic
connections I → II, II → III, III → IV, IV → I. Here, X → Y,
denotes strong synaptic connections between presynaptic
neurons with closest site X and postsynaptic neurons with
closest site Y. In contrast, the CR sequence I, IV, II, III
induced the pathways I → IV, II → III, III → I, and VI → II
of strong synapses (Figure 5L).

In networks with short synaptic length scales, some of these
pathways only contained a small number of synapses (compare
Figures 5F–H; Figures 5J–L). This resulted in a different structure of
CR stimulation-induced synaptic pathways due to the lag of synaptic
connections between certain neuronal subpopulations.
Consequently, different CR sequences led to different mean
synaptic weights after non-shuffled CR stimulation of networks
with short synaptic length scales if up- and downregulated blocks
contained different numbers of synaptic connections.

Comparing the results for non-shuffled CR using burst stimuli
(Figure 5) as opposed to single-pulse stimuli (Figure 6), we found
that both induced similar patterns of strongly connected synaptic
pathways. Noteworthy, for both types of stimuli, no such pathways
were induced by shuffled CR variants (Figures 5, 6, bottom row).
This was robust with respect to different realizations of random CR
sequences during shuffled CR. These results suggests that the
structure of CR stimulation-induced synaptic pathways is mainly
determined by the CR pattern and less affected by the employed type
of stimulus.

3.3 Stimulus shape determines network
structure in the vicinity of stimulation sites

Next, we studied how stimuli affected the local network
structure in the vicinity of the stimulation sites. In the
connectivity diagrams in Figures 5, 6, the local network structure
consists of the populations of synapses that are located along the
diagonals. We will refer to these synapses as intra-population
synapses as they connect presynaptic and postsynaptic neurons
that are close to the same stimulation site, as opposed to inter-
population synapses where presynaptic and postsynaptic neurons
are close to different sites. We thereby follow the terminology of
previous studies in which a rectangular spatial stimulus profile was
implemented (i.e., all neurons within a certain distance of a
stimulation site received the same stimulation current (Kromer
et al., 2020; Kromer and Tass, 2022)). Of note, in the present
study, the stimulation current decays with increasing distance
from the stimulation site (Equation 8).

Stimulation-induced reshaping of intra-population synapses
was strongly affected by the employed stimulus shape. Delivering
CR stimulation with burst stimuli and a spatial stimulus profile (Eq.
8) caused a reshaping of local synaptic connectivity. Specifically,
synaptic connections with postsynaptic neurons that were close to
the stimulation site were upregulated. In contrast, connections with
postsynaptic neurons that were further away from their closest
stimulation site were downregulated. This resulted in the
horizontal black regions along the diagonals in the connectivity
diagrams during CR stimulation with burst stimuli in Figure 5. This

complex local network structure was in marked contrast to CR
stimulation with single-pulse stimuli where all intra-population
synapses were downregulated (Figure 6). Consequently, in
networks with short synaptic length scales, a substantial
reduction of the mean synaptic weight can be achieved if the
“right” stimulus is used, i.e., single pulse instead of burst stimuli,
in our model. Note that inter-population synapses were affected in a
similar way for both burst and single-pulse stimuli (Figures 5, 6), as
discussed in the previous paragraph.

3.4 Effect of stimulus shape and CR pattern
on synaptic weights

The results in Figure 7 show that networks with short synaptic
length scales (Figure 7A) contain mostly intra-population synapses;
therefore, for effective synaptic downregulation, the focus should be
on reducing the strength of intra-population synapses. In contrast,
in networks with long synaptic length scales (Figure 7C), the
distribution of synapses across the different combinations of
presynaptic and postsynaptic neuronal subpopulation is close to
uniform. Thus, the major portion of synapses are inter-population
synapses, and the focus should be on reducing the strength of such
synapses when aiming for synaptic downregulation.

Combining the pronounced difference between the distributions of
synapses in networks with different synaptic length scales and the results
on the different effects of the CR pattern and the stimulus shape on the
connectivity diagrams in Figures 5, 6 from the previous sections, we
formulate the hypothesis, that selecting an effective stimulus shape can
substantially improve stimulation-induced synaptic weight reduction in
networks with short synaptic length scales; whereas, in networks with
long synaptic length scales the selection of the CR pattern strongly affects
synaptic weight reduction. Here, we use the term CR pattern to refer to
the spatiotemporal characteristics of stimulus deliveries, characterized by
the CR sequence, the presence or absence of shuffling as well as the CR
frequency. In contrast, the stimulus shape is characterized by the
stimulation amplitude, the number of stimulus pulses per burst, and
the intra-burst frequency (Figure 3).

Accordingly, comparing the results for networks with short
synaptic length scales in Figures 5, 6, we see that the difference
between mean synaptic weights after CR stimulation with single-
pulse (Figure 6) and burst stimuli (Figure 5) is substantial for all
three CR patterns, i.e., for non-shuffled CR with sequence I,II,III, IV
compare Figures 5F, 6F and with sequence I,IV,II, III compare
Figures 5J, 6J, and for shuffled CR compare Figures 5N, 6N. In
contrast, for long synaptic length scales the difference between
connectivity diagrams and mean synaptic weights for the same
CR pattern for burst and single pulse stimuli is smaller (compare
Figures 5H, 6H, 5L, 6L; Figures 5P, 6P, respectively).

3.5 CR pattern selection for STDP-induced
synaptic weight reduction

Finally, we studied how synaptic weight reduction depended on
the selected CR pattern. We focused on the case where neuronal
responses to stimuli were short compared to the inter-
stimulus intervals.
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The dynamics of the mean synaptic weight for a single synaptic
population 〈wx→y〉 during CR stimulation strongly depends on the
mean rate of weight change (Eq. 11 for non-shuffled CR). Note that
for shuffled CR, the dynamics is more complex and was studied for
single-pulse stimuli in Kromer et al. (2020).

For non-shuffled CR, an estimate of the function S (Eq. 11) for
given CR parameters can be obtained by stimulating two
subpopulations with stimulation frequency f for a time period T
(Kromer and Tass, 2022) and evaluating the change of the mean
synaptic weight of synapses interconnecting the two subpopulations
Δw = 〈wx→y(t0 + T)〉 − 〈wx→y(t0)〉. This setup is illustrated in
Figures 8A,B for single-pulse and burst stimuli, respectively.

In Figures 8A’, 8B’, we show Δw for single-pulse stimuli (Figures
8A, A’) and burst stimuli (Figures 8B, B’) with three pulses per burst
for different stimulation frequencies f and phase lags, ϕx→y, between
stimuli delivered to the two subpopulations. We used short
stimulation periods of T = 20 s to minimize the effect of the hard
bounds on individual synaptic weights. Note that for long
stimulation times T → ∞, synaptic weights approach the hard
bounds, and Δw either approaches −〈w(t0)〉 indicating a reduction
of individual weights towards the lower hard bound, or 1 − 〈w(t0)〉
indicating an increase of individual weights towards the upper
hard bound.

In a wide range of stimulation frequencies, the sign of Δw
depended on the phase lag ϕx→y, indicating that the adjustment
of the phase lag between stimuli determines whether synapses
between these neuronal subpopulations strengthen (Δw > 0) or
weaken (Δw < 0).

In the schematics in Figures 8C, C’, and Figures 8D, D’, we show
the phase lags between stimuli delivered to different stimulation sites
for two CR sequences. ForM = 4 stimulation sites, each CR sequence
induces M times the phase lags 0, 1/M, 2/M, 3/M, . . . , (M − 1)/M,
between neuronal subpopulations that are closest to the M
stimulation sites; however, the pairs of neuronal subpopulations
that receive stimuli at the phase lags vary across CR sequences
(Figures 8C’, D’). As a consequence, the resulting change of the
mean synaptic weight (Eq. 13) may depend on the CR sequence in
inhomogeneous networks bx1y1 ≠ bx2y2. For a given CR sequence,
the mean synaptic weight at time t > t0 during stimulation can be
approximated by

〈w t( )〉|ϕ ≈ ∑
xy

bxy 〈wx→y t0( )〉 + S J ϕx→y, fCR( ), 〈wx→y t0( )〉( )t − t0[ ]
clip,0,1

.

(14)

ϕ denotes the matrix of the M2 phase lags ϕx→y between the
different combinations of postsynaptic subpopulations, y, and
presynaptic subpopulations, x (see examples in Figures 8C’, D’).

Approximating S(J(ϕx→y, fCR), 〈wx→y(t0)〉)t − t0 ≈
Δw(ϕx→y, f � fCR)(t − t0)/T and bxy using Eq. 10, we evaluated
〈w(t)〉|ϕ for the matrices ϕ for different CR sequences and networks
with different synaptic length scales. Note that for long stimulation
times t − t0 → ∞ the sign of Δw is sufficient as the mean weight of
synapses between subpopulations will either approach zero or one.
The results are compared to simulations of the LIF network
in Figure 9.

As can be seen in Figure 9, the approximations based on Eq. 14
well approximated the mean weight of inter-population synapses for
single-pulse and burst stimuli (Figures 9A’–F’) and for intra-

population synapses when single-pulse stimuli were used (Figures
9A–C). For burst stimuli, large deviations between approximations
and simulation results occurred. These deviations were caused by
the local network structure (see Figure 5), which was not considered
by the approximations. Instead, approximations were solely derived
based on the mean weight change for the synaptic populations and
assumed that weights of all synapses within the population approach
either one or zero. Furthermore, for low CR frequencies, neurons
have enough time between stimuli to respond to input from other
subpopulations, which causes deviations from the two-site
stimulation results (Figure 8) used to calculate the approximations.

Overall, the stimulation-induced mean synaptic weight of intra-
population synapses was more robust with respect to changes in the
CR frequency than the one of inter-population synapses.

4 Discussion

CR DBS induced long-lasting therapeutic effects in Parkinsonian
monkeys (Tass et al., 2012; Wang et al., 2016; Bore et al., 2022; Wang
et al., 2022) and PD patients (Adamchic et al., 2014). Therapeutic
long-lasting effects were also observed in PD patients who received
non-invasive vibrotactile CR finger-tip stimulation (Pfeifer et al.,
2021). Computational studies in plastic neural networks and
networks of phase oscillators predicted that CR stimulation may
have long-lasting effects resulting from a downregulation of plastic
synaptic connections, in this way driving the network from a
pathological state, prior to stimulation, into the basin of attraction
of a stable physiological state in which the network remains after
cessation of stimulation (Tass and Majtanik, 2006). In previous
computational studies, CR stimulation was studied in different
network models with plasticity, including networks of phase
oscillators (Tass and Majtanik, 2006) and spiking neuronal
networks (Popovych and Tass, 2012; Manos et al., 2018; Kromer
et al., 2020). There, the focus was on the influence of stimulation
parameters such as the CR frequency and the stimulus amplitude on
synaptic downregulation and long-lasting desynchronization effects.
Here, we focused on networks with spatially dependent synaptic
connections and derived stimulation strategies for CR stimulation
that harness spatially inhomogeneous network structure for efficient
synaptic downregulation during stimulation.

Multiple stable states can coexist in plastic networks (Seliger
et al., 2002; Zanette and Mikhailov, 2004; Maistrenko et al., 2007;
Madadi Asl et al., 2016; Madadi Asl et al., 2018a; Madadi Asl et al.,
2018b). The networks studied here showed coexisting synchronized
and desynchronized stationary states (Figure 2) and partially
synchronized states in which the system remained for several
hours after cessation of shuffled CR stimulation with burst
stimuli (Figure 4 and Supplementary Figure S1). During CR
stimulation, we observed rapid changes of the synaptic
connectivity that were followed by sometimes long and complex
transient dynamics after cessation of stimulation before the network
eventually approached either stationary state (Figure 4). These
transient dynamics included short periods of rebound
synchronization (Figures 4D–I) (Tass and Hauptmann, 2006)
and long transient desynchronization that was sometimes
followed by a relaxation back to a stationary synchronized state
(Figure 4F). These results suggest that in a clinical setting therapeutic
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CR stimulation may be followed by epochs of transient dynamics,
that are potentially longer than the actual stimulation period.

Figure 4 also tells us that pronounced acute desynchronization by
CR stimulation does not necessarily imply long-term desynchronization:
For instance, while shuffled CR as well as all types of non-shuffled CR
induced a pronounced acute desynchronization for fCR = 21 Hz, shuffled
CR entailed partially synchronized network dynamics and the system
resynchronized after non-shuffled CR stimulation (see Figures 4G–I).
Hence, in this computational model, acute desynchronization, measured
during stimulus delivery, does not provide sufficient information for
calibration and/or prediction of long-term outcome of CR stimulation. In
clinical applications, this may make it difficult to predict long-term
therapeutic outcome based on solely measuring acute effects during
stimulus delivery.

Targeting synaptic plasticity for long-lasting therapeutic effects
remains challenging as stimulation solely provides control over the
synaptic weight dynamics during stimulation. However, even
networks with similar mean synaptic weights at the end of the
stimulation period may approach different stationary states after
cessation of stimulation (see, e.g., Figure 4F). Furthermore, it is
currently not possible to assess synaptic weights directly during
stimulation. In the present study, we implemented a procedure
suggested by Kromer and Tass (2022) during which an estimate of
the synaptic weight dynamics induced by the employed stimulation is
obtained during a two-site stimulation setup (Figure 8), and then this
estimate is used to predict which CR patterns lead to the desired
synaptic weight reshaping (Figure 9). However, it is unclear howdirect
estimates of synaptic weight changes can be obtained in patients as
classic STDP experiments, e.g., as performed in Bi and Poo (1998), are
not feasible. For such a procedure, one may rely on results from
corresponding animal experiments or indirect measures, such as
changes of evoked responses following stimulation as commonly
used in the context of plasticity induced by transcranial magnetic
stimulation (Kozyrev et al., 2018; Schwab et al., 2019).

Our results on CR stimulation of neuronal networks with
spatially dependent synaptic connections and STDP revealed that
fundamental characteristics of such networks can be harnessed to
adjust CR stimulation for efficient synaptic weight downregulation.
Considering CR stimulation of networks with different synaptic
length scales, our results suggest that the ratio between the
characteristic distance between stimulation sites, d, and the
characteristic synaptic length scale, s, determines whether a
network is dominated by intra-population connections (s ≪ d) or
inter-population synapses (s ≫ d). In the former case, the shape of
the employed stimulus, characterized by parameters such as the
number of pulses per stimulus burst, the intra-burst frequency, and
the stimulus amplitude, is critical for efficient synaptic weight
reduction. Our computational results suggested that such a
stimulus could be combined with the shuffled CR pattern (often
referred to as CR with rapidly varying sequence, Tass and Majtanik
(2006)) for effective synaptic downregulation. We find that shuffled
CR is capable of down-regulating synaptic connections between
separately stimulated neuronal subpopulation, whereas some of
these connections remain strong after non-shuffled CR (Figures
5, 6). The results in Figure 4 further suggest that long-lasting
desynchronization effects of shuffled CR are more robust with
respect to changes of the CR frequency and across networks with
different synaptic length scales than those of non-shuffled CR. This

is in accordance with previous computational (Kromer and Tass,
2024) and experimental results in Parkinsonian monkeys that
reported that shuffled CR outperformed non-shuffled CR in
terms of long-lasting therapeutic effects (Wang et al., 2022). We
speculate that in some target brain regions, it may not be necessary
to stimulate according to a CR pattern to induce long-lasting
therapeutic effects as long as appropriate stimuli are employed.
In this context, we note that periodic delivery of burst stimuli to the
external segment of the globus pallidus, which is strongly
interconnected with the STN, of dopamine-depleted mice
induced long-lasting therapeutic effects that depended on the
stimulus triggering certain neuronal responses (Spix et al., 2021).
In contrast, if networks consist of mostly inter-population synapses,
our results suggest that the employed CR pattern is of great
importance, and that the choice of parameters characterizing the
CR pattern, such as the CR frequency and the CR sequences and
their shuffling, has a strong impact on synaptic weight reduction, as
suggested by our computational results (Figures 5, 6). So far, clinical
studies in PD patients used CR frequencies of 3–20 Hz that were
adjusted to the individual patients’ dominant peaks in the LFP
power spectrum between 2 and 35 Hz (Adamchic et al., 2014). An
adjustment of the CR frequency to the frequency of the dominant
synchronous rhythm was suggested by the original computational
studies on CR in networks of phase oscillators (Tass, 2003b). Later,
computational studies in plastic networks found a non-trivial
dependence of long-lasting effects on the CR frequency and
observed substantially weaker long-lasting effects for certain
unfavorable frequencies (Manos et al., 2018; Kromer and Tass,
2020). Another study found that the interplay of synaptic
transmission delays, plasticity parameters, and stimulation
determines ranges of unfavorable CR frequencies. Robust long-
lasting desynchronization was observed for low CR frequencies
(approximately ≤ 20 Hz for four stimulation sites) (Kromer
et al., 2020). As details on individual plasticity parameters in the
STN are currently not known (see, however, Shen et al. (2003)), it
remains to be seen to which extend the CR frequency impacts long-
lasting effects in STN CR DBS.

We further found that carefully selected stimuli have the
potential to induce non-trivial local network structure in the
vicinity of the stimulation site (Figure 5). In particular, CR
stimulation employing burst stimuli resulted in the
strengthening of local synaptic connections with postsynaptic
neurons that were very close to the site and a weakening of the
connections with postsynaptic neurons that were further away
from the site (Figure 5). This is a consequence of a complex
interplay of synaptic plasticity and the distance dependence of
stimulus-induced spiking responses due to the spatial stimulus
profile (Eq. 8). Specifically, neurons close to the center of the
stimulus profile experienced stronger stimulation (Eq. 8) that was
able to induce one neuronal spike per stimulus pulse. In contrast,
neurons further away from the center responded only reliably to
the first stimulus pulse in each stimulus burst as they experienced
a weaker stimulation that was not able to cause a spiking response
shortly after a neuron’s spike. As a consequence, several
postsynaptic spikes followed one presynaptic spike, leading to
the upregulation of synapses with postsynaptic neurons close to
the center of the stimulus profile (Figure 5). In marked contrast,
single-pulse stimuli caused a single synchronized spiking
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response of high fidelity that is known to lead to synaptic
downregulation in networks with axonal transmission delays
that are longer than the width of the synchronized spiking
response (Lubenov and Siapas, 2008; Knoblauch et al., 2012).
Here, neurons were distributed along a line and the stimulus
profile depended solely on the distance to the stimulation site. It
would be interesting to study the stimulus-induced local network
structures in higher-dimensional distributions of neurons with
stimulus profiles without spherical symmetry, which could be
realized by directional steering in DBS (Contarino et al., 2014) or
as a consequence of anisotropic tissue in the target brain area
(McIntyre et al., 2004).

It remains to be shown whether CR stimulation with single
pulses (Figure 6) as opposed to bursts (Figure 5) is actually
feasible in pre-clinical and clinical applications. So far, in pre-
clinical and clinical CR studies bursts were used instead of single
pulses (Tass et al., 2012; Adamchic et al., 2014; Wang et al., 2016;
Bore et al., 2022; Wang et al., 2022). Based on the results obtained
above, one may try to deliver single pulse CR as it might be more
effective in inducing synaptic downregulation. The decoupling
properties of single-pulse stimulation were also observed in
hippocampus (Lubenov and Siapas, 2008); however, it is
unclear whether this also applies to target regions for DBS in
PD, e.g., the STN. We also want to note that qualitatively
different model neurons as well as biological neurons may
require stronger stimuli. In this case, bursts may provide
stimuli of sufficient strength obeying tissue safety limits, as,
e.g., demonstrated for tremor entrainment computationally as
well as in a patient with spinocerebellar ataxia type 2 (SCA2) with
periodic stimuli delivered through a subthalamic-thalamic DBS
electrode (Barnikol et al., 2008). For the computational part of
that study a network of FitzHugh-Nagumo neurons (FitzHugh,
1961; Nagumo et al., 1962) was used.

Our results suggest that the shuffling of CR sequences
substantially improves the induced downregulation of synaptic
weights (Figures 4, 9). While the outcomes of non-shuffled CR
with different CR sequences differed in some networks, shuffled CR
consistently led to either similar or better long-lasting
desynchronization effects then non-shuffled CR with the best-
performing sequence. It is important to note that this effect may
be due to the considered spatial dependence of synaptic connections.
In particular, the probability for synaptic connections between two
neurons was decaying exponentially in our networks, which was
motivated by previous works (Hellwig, 2000; Ebert et al., 2014).
However, the resulting connectivity diagrams are approximately
symmetric (Figure 1), and the networks do not realize a preferred
direction of synaptic connections. The differences between CR
sequences in networks with preferred direction of synaptic
connections may be larger (see Kromer and Tass, 2024). For
instance, based on Figures 8A’, D’, we would expect that the CR
stimulation-induced mean synaptic weight for the CR sequence
shown in Figure 8D would approach zero for long stimulation times
if a network had only connections between neurons close to the
following sites: I→ III, II→ IV, III→ II, and IV→ I, the first Roman
numeral indicating the site closest to presynaptic neurons and the
second one the site closest to postsynaptic neurons.

It will be important to test our results and predictions in
detailed models of the basal ganglia region, in particular, the STN

and globus pallidus. STN neurons are subject to several inputs
from other nuclei, e.g., gamma-aminobutyric acidergic inputs
from neurons in the external segment of the globus pallidus. In
our model, we only considered excitatory neurons. Furthermore,
synaptic inputs to the STN and its projections to other nuclei are
somatotopically organized (Nambu, 2011). Studies in animal
models of PD suggest that PD is accompanied by substantial
synaptic reorganization (Fan et al., 2012; Miguelez et al., 2012;
Chu et al., 2017; Pamukcu et al., 2020; Madadi Asl et al., 2022),
and that the somatotopic organization of synaptic inputs is
perturbed (Filion et al., 1988; Boraud et al., 2000; Cho et al.,
2002). In our LIF model, stimulation-induced downregulation of
synaptic connections leads to a stabilization of desynchronized
neuronal activity. Evidence from other computational studies
suggests that CR is not only able to downregulate synaptic
connections, but also to restore more complex physiological
connectivity (Hauptmann and Tass, 2010). This is important
as more complex synaptic reshaping might accompany long-
lasting therapeutic effects of CR stimulation in animal models
and PD patients (Tass et al., 2012; Adamchic et al., 2014; Wang
et al., 2016; Bore et al., 2022; Wang et al., 2022). The qualitatively
different results for networks dominated by local as opposed to
by non-local connections in our LIF model suggest that one
might observed different stimulation-induced dynamics of
connections between neurons representing similar versus
different body parts. In the future, we plan on studying CR
stimulation in more detailed computational models to
understand how more complex synaptic connectivity affects
long-lasting effects.

Our computational study reveals that knowledge of
fundamental characteristics of target neuronal networks with
spatially dependent synaptic connections and STDP can be
harnessed to adjust CR stimulation parameters for improved
synaptic downregulation. Downregulation of pathological
synaptic connectivity (Tass and Majtanik, 2006) is currently
assumed to be the mechanism by which CR stimulation
induces long-lasting therapeutic effects in PD patients and
related animal models (Tass et al., 2012; Adamchic et al.,
2014; Wang et al., 2016; Pfeifer et al., 2021; Wang et al.,
2022). Thereby, our results provide important hypotheses for
future clinical studies and computational studies on CR
stimulation of detailed computational models of target brain
regions for deep brain stimulation, e.g., the STN, or
vibrotactile stimulation, e.g., sensorimotor cortical areas.
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