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Homeostatic regulation plays a fundamental role in maintenance of multicellular
life. At different scales and in different biological systems, this principle allows a
better understanding of biological organization. Consequently, a growing interest
in studying cause-effect relations between physiological systems has emerged,
such as in the fields of cardiovascular and cardiorespiratory regulations. For this,
mathematical approaches such as Granger causality (GC) were applied to the field
of cardiovascular physiology in the last 20 years, overcoming the limitations of
previous approaches and offering new perspectives in understanding cardiac,
vascular and respiratory homeostatic interactions. In clinical practice, continuous
recording of clinical data of hospitalized patients or by telemetry has opened new
applicability for these approaches with potential early diagnostic and prognostic
information. In this review, we describe a theoretical background of approaches
based on linear GC in time and frequency domains applied to detect couplings
between time series of RR intervals, blood pressure and respiration. Interestingly,
these tools help in understanding the contribution of homeostatic negative
feedback and the anticipatory feedforward mechanisms in homeostatic
cardiovascular and cardiorespiratory controls. We also describe experimental
and clinical results based on these mathematical tools, consolidating previous
experimental and clinical evidence on the coupling in cardiovascular and
cardiorespiratory studies. Finally, we propose perspectives allowing to
complete the understanding of these interactions between cardiovascular and
cardiorespiratory systems, as well as the interplay between brain and cardiac, and
vascular and respiratory systems, offering a high integrative view of
cardiovascular and cardiorespiratory homeostatic regulation.
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1 Introduction

Claude Bernard was the first to propose in 1878 that life
results in a continuous balance, for which “the fixity of the
internal environment is the condition of free, independent life:
the mechanism that allows it is the one that assures in the interior
environment the maintenance of all the conditions necessary for
the life of the elements” (Bernard, 1878). This notion of the
internal environment – le milieu intérieur – and its interaction
with the external environment will later become the pillar of the
notion of homeostasis later proposed by Walter Cannon
(Cannon, 1929; Cannon, 1932). Based on this, Walter Cannon
proposed in 1929 the fruitful notion of homeostasis defined as the
following: “Homeo, the abbreviated form of homoio, is prefixed
instead of homo, because the former indicates “like” or “similar”
and admits some variation, whereas the latter, meaning the
“same”, indicates a fixed and rigid constancy. As in the branch
of mechanics called “statics”, the central concept is that of a
steady state produced by the action of forces” (Cannon, 1929).
This definition has put interactions between systems at the center
of organization and maintenance of multicellular life. This
concept explains how an organism can maintain near constant
internal conditions that allow, adapt and survive to changes and
hostile external environments (Goldstein and Kopin, 2017;
Billman, 2020).

Among the “constants” of the internal environments (Bernard,
1878), blood pressure (BP) could be considered as essential in
cardiovascular homeostatic control and for adequate perfusion of
tissues. Homeostatic regulation of BP is based on several
mechanisms of different nature including hormonal (Ziaja et al.,
2021), neuronal (Shivkumar et al., 2016) and mechanical controls
(Saks et al., 2006). These mechanisms have to deal with internal
constraints such as intrathoracic pressure related to respiratory

modulations (Yasuma and Hayano, 2004) as well as with external
environments and behavioral responses, including orthostatic
challenges (Furlan et al., 2019), physical exercise (Fu and Levine,
2013), and activities related to high levels of cortical processes, such
as during cognitive or emotional challenges (Ferraro et al., 2022).

This homeostatic regulation is mainly based on two controls:
negative feedback and anticipatory feedforward mechanisms
(Goldstein and Kopin, 2017). Negative feedback regulation is the
main mechanism to maintain physiological homeostasis, as
proposed by Walter Cannon: “When a factor is known which
can shift a homeostatic state in one direction it is reasonable to
look for automatic control of that factor or for a factor or factors
having an opposing effect” (Cannon, 1929; Cannon, 1932).
Anticipatory feedforward mechanisms are based on mediation by
anticipatory adjustments in physiological systems related to
knowledge of a previously experienced or instinctively recognized
signal. The latter mechanism is more efficient than the former, as it
decreases or eliminates the need for homeostatic adjustments that
occur later (Goldstein and Kopin, 2017). Concerning the
cardiovascular system and the regulation of BP, e.g., when going
from a supine to a standing position, this anticipatory feedforward
mechanism is illustrated by sympathoexicatory activation by the
vestibular system, while the blood volume does not yet undergo fully
its displacement towards the lower limbs by gravity (Carter and Ray,
2008). The sympathetic stimulation from arterial baroreflex
receptors rather illustrates a feedback mechanism (Goldstein and
Kopin, 2017).

These mechanisms play a role in generating fluctuations in
cardiovascular and respiratory parameters, including RR intervals
(RRI), systolic blood pressure (SBP) and respiration (RE), as they
evolve over time (Figure 1). This observation dates back to the
beginnings of modern medicine, almost 300 years ago, when
variations in heart rhythm were measured and associated with

FIGURE 1
Schematic representation of Granger causality analysis applied to cardiovascular, respiratory and electroencephalographic signals. The direction of
the arrows represents the direction of causality; two-way arrowsmean that the two variables covary instantaneously. The thicker the arrow line, themore
important is the causality link. (A) A bivariatemodel including only RR intervals (RRI) and systolic blood pressure (SBP) parameters. (B) Trivariatemodel also
including respiratory (RE) parameter. (C) Further multivariate models would include brain regulations from electroencephalographic (EEG) signal or
blood-oxygen-level dependent (BOLD) signal from functional magnetic resonance imaging.
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variations with BP and RE (Hales and Woodward, 1733; Ludwig,
1847). Our understanding and use of these oscillations in research
on the cardiovascular and respiratory systems advanced from the
1960s when these oscillations were considered as clinically and
physiologically relevant (Hon and Lee, 1963; Murray et al., 1975;
Wolf et al., 1978). Among the first, Hon and Lee (1963) reported that
fetal stress was preceded by a transitory decrease in RRI; Murray
et al. (1975) reported that short-term changes in RRI were altered in
diabetic patients with a diagnosis of neuropathy; and Wolf et al.
(1978) demonstrated for the first time a relationship between RRI
variability and mortality following myocardial infarction. Since
these pioneering studies, the field has rapidly expanded and the
question of physiological interpretation of these oscillations arose. In
the early 1970s, several groups applied power spectral analysis to
investigate the physiological basis that compose these periodic
variations in RRI and SBP (Hyndman et al., 1971); and later,
particularly pharmacological studies, enabled us to better
understand these rhythms (Akselrod et al., 1981; Pomeranz et al.,
1985). It is now clearly established from pharmacological blockades
of sympathetic and parasympathetic receptors that RRI variability
above 0.05 Hz is mainly due to change in autonomic control to the
sinoatrial node. A certain number of mathematical methods make it
possible to study in a noninvasive way these variations from a simple
electrocardiographic (ECG) recording, belonging to the fields of
temporal, geometric, frequency or nonlinear analysis (European
Society of Cardiology and the North American Society of Pacing
and Electrophysiology, 1996). For frequency domain, high
frequency (0.15–0.5 Hz) oscillations depend mainly on the
parasympathetic system and changing levels of vagal nerve
activity; while low frequency (0.04–0.15 Hz) oscillations may be
mediated by either cardiac parasympathetic or sympathetic activities
(Eckberg, 2000). Very low frequency fluctuations below ~0.04 Hz
may also be mediated by change in autonomic control as well as in
plasma hormones or other non-autonomic influences (Saul and
Valenza, 2021). Concerning the vascular system, pharmacological
blockage revealed that only low frequency power of SBP is mainly
under sympathetic control (Pagani et al., 1986), although indirect
parasympathetic modulations may influence low frequency power of
SBP (Fontolliet et al., 2018). Additionally, cross-spectral power
density and cross-correlation analyses allowed to study two
signals associated with a given time shift and/or frequency.
Applied to RRI, SBP and RE signals, they make it possible to
study the interactions between cardiac, vascular and respiratory
systems (Porta and Faes, 2013). Two mechanisms have emerged as
fundamental: 1) respiratory sinus arrhythmia resulting from an
interaction between the respiratory and cardiac systems (Yasuma
and Hayano, 2004); and 2) baroreflex loop based on interaction
between the cardiac and vascular systems (Wehrwein and Joyner,
2013). These interactions are fundamental for the adaptation of the
organism to external and internal constraints, as illustrated by their
ability to predict morbidity and mortality (Tsuji et al., 1994; Dekker
et al., 1997; Gerritsen et al., 2001; Hämmerle et al., 2020).

However, using RRI and SBP variabilities remain complex to
interpret and does not allow a completely satisfactory exploration of
the interactions between the different physiological systems
involved. Indeed, these methods present some difficulties. Firstly,
strong criticism has emerged regarding the ability of low frequency
RRI to approach cardiac sympathetic tone (Billman, 2013; Heathers,

2014; La Rovere et al., 2020). Autonomic influence on the spectrum
of RRI is essentially parasympathetic and the contribution of
sympathetic modulation in RRI variability is very modest
(Akselrod et al., 1981; Pomeranz et al., 1985; Eckberg, 2000),
resulting in a lack of precision to quantify the cardiac
sympathetic tone (Billman, 2013). Secondly, interactions between
the cardiac, vascular and respiratory systems are more complex; and
other mechanisms such as the Windkessel effect or mechanical
interactions between pulmonary tissue and heart volume are not
taken into account in these analyses (Centracchio et al., 2022).
Moreover, cardiovascular parameters are characterized by
complexes and beat-to-beat interactions within the cardiovascular
system, from heart to vascular (Westerhof et al., 2009) and from
cranial and vascular systems to heart control (Beiner et al., 1997;
Wehrwein and Joyner, 2013), with other biological systems such as
the respiratory system (Yasuma and Hayano, 2004), as well as with
external constraints through anticipatory feedforward controls such
as pain (Chouchou et al., 2011; Fauchon et al., 2018). Thirdly, cross-
spectral power density and cross-correlation analyses do not account
for either the direction of the interactions or the temporal sequence
of the activation of the mechanisms contributing to the observed
association (Porta and Faes, 2013; Schulz et al., 2013; Müller
et al., 2016).

Thus the need has arisen to use new closed loop models applied
to cardiovascular and respiratory signals in order to deepen our
knowledge of the underlying physiological regulatory processes and
to possibly obtain better indices for predicting morbidity and
mortality (Porta and Faes, 2013; Schulz et al., 2013; Müller et al.,
2016). For this, the analysis of causal relationships within dynamic
systems has become more and more used in the physiological field
and seems to be suited to capture complex interactions between time
series such as RRI, SBP and RE, allowing the detection and
quantification of the strength and direction of couplings. The
most studied and promising approach is based on the notion of
Granger causality (GC), implying that if one time series has a causal
influence on a second time series, then the knowledge of the past of
the first time series is useful to predict future values of the second
time series (Granger, 1969).

In this review, the aim is to introduce GC and provide an
overview of the key GC tools available. These tools can help enhance
our comprehension of physiological processes underlying
cardiovascular homeostasis. For this, 1) we describe approaches
based on GC applied to detect couplings between time series,
especially focusing on cardiovascular and respiratory parameters;
we present their theoretical background and their usefulness for
detecting causality. Then 2) we discuss results of coupling analyses
in cardiovascular and cardiorespiratory studies, including those
comparing the results of these presented methods and those of
traditional approaches. Lastly, 3) we suggest potential approaches to
optimize their utilization in relation to these physiological
parameters and why these analyses naturally lead to an interest
in the heart-brain relationship. To address these questions, this
review is based on a search of Medline and the Cochrane Library up
to March 2024. Keywords used to research cardiovascular
homeostasis were “Granger causality” associated with “cardiac”,
“heart”, “respiratory”, or “blood pressure”. To fully understand
this review, two precautions are necessary: 1) we have
deliberately limited this review to articles using Granger’s
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temporal and frequency methods applied to cardiovascular and
respiratory signals; other methods dealing with causality, in the
sense of transfer entropy for example, are not covered in the review;
2) we have considered SBP and its changes as representative of the
vascular system, despite the fact that we are well aware that other
parameters can influence SBP, notably RRI. Throughout this review,
it should be kept in mind that the three physiological signals of RRI,
BP and RE are highly interconnected, hence the value of using these
Granger methods.

2 Causality: generalities and methods

2.1 Generalities

Causality is a generic term meaning cause-effect relationships
between systems, subsystems, processes or phenomena. In our
research on cardiovascular homeostasis, we investigated
physiological processes by focusing on key signals, including RRI,
SBP and RE (Figure 1). Causality analysis between RRI, SBP and RE
can reveal mechanisms governing RRI ↔ SBP ↔ RE dynamic
interactions (Cohen and Taylor, 2002; Porta et al., 2013b).
Granger’s definition of causality in multivariate stochastic
processes provided a framework for estimating causality in time
series (Granger, 1980). Given a set of M signals, Ω, describing the
behavior of a system, the time series Xj(t) causes Xi(t) in Ω if the
inclusion of past observations of Xj(t) reduces the prediction error
of Xi(t). In the literature, GC is described using time-domain and
frequency-domain approaches. The latter has been widely developed
in a strictly causal multivariate (MVAR) model by Kaminski and
Blinowska (1991), introducing a newmeasure from directed transfer
function (DTF) (Baccala et al., 1998; Baccalá and Sameshima, 2001)
with directed coherence (DC) and partial directed coherence (PDC).
Faes and Nollo (2010) proposed to extend theMVAR representation
by introducing extended directed coherence (eDC) and extended
partial directed coherence (ePDC).

The GC time series approach is separated into two MVAR
representations: strictly causal and extended. The strictly causal
approach is the origin of GC (cGC) where a MVAR only contains
the past terms (k> 0). The causality from i to j is given by
cGCi→j � ln(var �Uj(t)

varUj(t)), where var �Uj(t) is the variance of the
restricted regression and varUj(t) the variance of the
unrestricted regression. Porta et al. (2013a) defined the
directionality index as DIij � cGCi→j − cGCj→i. DIij > 0
indicates that the causal direction from Xj(t) to Xi(t) is
prevalent over the reverse one, while DIij < 0 is the opposite
situation. The directionality index is capable to give dominant
causality. For example, DIij > 0 or DIij < 0 does not exclude
bidirectional interactions. DIij close to 0 might indicate:

(i) A full uncoupling between Xi(t) and Xj(t)
(ii) Closed loop interactions between Xi(t) and Xj(t)with no

dominance of Xi(t) or Xj(t)
(iii) Synchronization between Xi(t) and Xj(t)

In its original formulation, GC results from strictly causal
MVAR representation of the observed processes and is described
in terms of linear regressions. This presupposes that the considered

model has the full interaction structure of the observed processes.
However, if the causal interpretation is not sufficient from regression
coefficients, GC may measure misleading patterns of causality.
Actually, strictly causal MVAR interpretation is a restricted form
of the GC approach since this formulation only includes time-lagged
and not instantaneous effects. The consequence is to propose a
complete representation including instantaneous effects (k � 0)
through a new GC approach named extended GC (eGC). Studies
(Hyvärinen et al., 2010; Schiatti et al., 2015) have demonstrated the
adverse impact of neglecting instantaneous effects on causality
analysis based on the MVAR model, providing theoretical
arguments showing that the omission of zero-lag correlations
from the model can change drastically the values of time-lagged
coefficients, and thus of the causality measures based on the model.
As a possible solution, these studies proposed the utilization of an
extended MVAR model including both instantaneous and lagged
effects. The extendedmodel was devised combining a classical MVAR
model and amodel of the instantaneous causal interactions among the
observed variables commonly known as a structural equation model
(SEM). Model estimation was performed using conventional least-
squares regression for the VAR part, and amore sophisticatedmethod
called linear non-Gaussian acyclic model (LiNGAM) (Shimizu et al.,
2006) that exploits non-Gaussianity to address the known
identifiability problem of SEM models. The extended causality
from i to j is given by eGCi→j � ln(var �Wj(t)

varWj(t)), where var �Wj(t) is
the variance of the restricted regression and varWj(t) the variance of
the unrestricted regression.

The causality from frequency approach has been widely
investigated for two representations: strictly causal and extended
MVAR. Strictly causal MVAR representation provided
measurements such as DC and PDC (Baccala et al., 1998; Baccalá
and Sameshima, 2001). In the extended representation, eDC and
ePDC have been presented (Faes and Nollo, 2010); therefore, these
measures indicate the following.

(i) the direct causality from PDC
(ii) the extended direct causality from ePDC
(iii) the causality from DC
(iv) the extended causality from eDC

For strictly causal MVAR representation, consider
Zj � Xl, l � 1, . . . ,M, l ≠ j{ }, where Xl � Xl(t − 1) . . .{
Xl(t − d)} the set of the past values of all processes except Xj.
Direct causalityXj(t) → Xi(t) exists if the prediction ofXi(t) based
on Zj and Xj is better than the prediction of Xi(t) solely based on
Zj. Causality Xj(t)0Xi(t) exists if a cascade of direct causality
relationsXj(t) → Xm(t) . . .→ Xi(t) occurs for at least one valuem
in the set (1, . . . ,M). Analogously, extended MVAR representation
denotes Ẑj � X̂l, l � 1, . . . ,M, l ≠ j{ }, where X̂l �
Xl(t)Xl(t − 1) . . . Xl(t − d){ } the set of the past values of all

processes exceptXj. Extended direct causalityXj(t) �→Xi(t) exists if
the prediction of Xi(t) based on Ẑj and X̂j is better than the
prediction of Xi(t) solely based on Ẑj. Extended causality
Xj(t) �0Xi(t) exists if a cascade of extended direct causality
relationship Xj(t) �→Xm(t) . . . �→Xi(t) occurs for at least one
value m in the set (1, . . . ,M). Expressions of DC (resp. eDC) are
established from coherence (Coh) and PDC (resp. ePDC) from
partial coherence (PCoh). Below, mathematical aspects for GC in
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time-domain and causality-based coherence in frequency domain
are described.

2.2 Different methods to explore causality

In this part, we present a nonexhaustive description of main
tools and mathematical aspects applied in physiology in order to
yield for the user a basic knowledge. The central subject concerns
causality. We will try to present a limitedmathematical development
that only focuses on GC and causality-based coherence used in the
field of cardiovascular and respiratory interaction explorations (see
Supplementary Tables S1, S2).

2.2.1 Causality based granger approach in
time domain

Assessing causality from the Granger approach is the most
popular method, including the multivariate GC (MVGC) toolbox
(Barnett and Seth, 2014). GC or classical GC (cGC) is a popular
tool for the user for assessing the presence of directional
interactions between two time series of a multivariate data set
(Wiener, 1956; Granger, 1969). However, cGC only includes the
time-lagged effects between processes. In respiratory and
cardiovascular physiology, significant instantaneous effects are
present (Faes, 2014; Schiatti et al., 2015). Subsequently, cGC may
lead to an incomplete description of the “real” phenomenon
between processes. As a possible solution, the utilization of an
extended model accounting for both instantaneous and lagged
effects has been proposed. This modelling is named eGC. Both
methods are described below.

2.2.1.1 Classical GC
In 1969,Granger introduced aGC approach in terms ofmultivariate

linear regression modeling (Granger, 1969). For example, according to
GC,Xj(t) causesXi(t) if the inclusion of (Faes, 2014) past observations
of Xj(t) reduces the prediction error of Xi(t) in a linear regression
model of Xi(t) and Xj(t), as compared to a model including only
previous observations ofXi(t). Let X(t) be the signal vector, such that
X(t) � (X1(t) . . . XM(t) )T. The VAR model of order d is:

X t( ) � ∑d

k�1A k( )X t − k( ) + U t( ) (1)

where U(t) are model residuals, and A(k) are M × M coefficients
matrices with elements Aji(k).

To compute cGC from the ith process Xi(t) to the jth process
Xj(t), two linear regressions are considered starting from (Eq. 1).
First, Xj(t) is described in terms of the past of all processes in X(t)
by means of a so called unrestricted regression, such that:

Xj t( ) � ∑d

k�1Aj k( )X t − k( ) + Uj t( )

with Aj(k) the jth row of A(k). Then Xj(t) is described in terms of
the past of all processes in X(t) exceptXi(t) by means of a so called
“restricted” regression:

Xj t( ) � ∑d

k�1Âj k( )Xi t − k( ) + Ûj t( )

where Xi(t) � (X1(t) . . . Xi−1(t)Xi+1(t) . . . XM(t) )T denotes
the original vector process devoid of the ith scalar process.

Moreover, Âj and the residuals Ûj of the restricted regression
are different than Aj and the residuals Uj of the unrestricted
regression. The cGC measure is given by:

cGCi→j � ln
varÛj t( )
varUj t( )( )

The model of 1) is a strictly causal model that describes only the
time-lagged interactions between the processes. Thus cGC is
computed without considering the instantaneous effects among
observed time series. This approach is applied in several studies
concerning the interactions between cardiovascular and respiratory
systems in heathy volunteers (Porta et al., 2013b) and clinical
populations (Riedl et al., 2010; Bassani et al., 2012; Bassani et al.,
2013; Bassani et al., 2014; Zamunér et al., 2017).

2.2.1.2 Extended GC
The possible presence of zero-lag effects is known to also have an

impact on the time-lagged effects (Hyvarinen et al., 2008; Hyvärinen
et al., 2010; Faes, 2014; Schiatti et al., 2015), and hence may affect the
reliability of the observed GC patterns. To overcome this problem,
an extended GC combining both instantaneous and lagged effects is
given by:

X t( ) � ∑d

k�0B k( )X t − k( ) +W t( ) (2)

where W(t) are model residuals, and B(k) are M × M coefficients
matrices with elements Bji(k). The zero-lag effects are contained in
matrix B(0) of 5): allowing an effect at lag zero between two
processes, where Xi(t) and Xj(t) correspond to set either
Bij(0) ≠ 0 or Bji(0) ≠ 0. The coefficients cannot both be nonzero
because the presence of a pairwise loop would make the extended
model unidentifiable (Shimizu et al., 2006; Hyvärinen et al., 2010;
Faes et al., 2013).

To compute eGC from the ith process Xi(t) to the jth process
Xj(t), two linear regressions are considered starting from (Eq. 5).
First, Xj(t) is described in terms of the present and past of all
processes in X(t) by means of a so called “unrestricted” regression,
such that:

Xj t( ) � ∑d

k�0Bj k( )X t − k( ) +Wj t( ) (3)

with Bj(k) the jth row of B(k). Then Xj(t) is described in terms of
the present and past of all processes in X(t) except Xi(t) by means
of the so called “restricted” regression:

Xj t( ) � ∑d

k�0B̂j k( )Xi t − k( ) + Ŵj t( ) (4)

where Xi(t) � (X1(t) . . . Xi−1(t)Xi+1(t) . . . XM(t) )T denotes
the original vector process devoid of the ith scalar process. The
cGC measure is given by:

eGCi→j � ln
varŴj t( )
varWj t( )( ) (5)

The estimation of eGC requires identifying the presence and
causal direction of the zero-lag effects between the observed
processes to be incorporated into the regression models (6) and
(7). Therefore, to accomplish this task a two-step procedure base is
used: first on estimating the existence of zero-lag correlations in an
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undirected sense, and then on finding their directions using pairwise
measures of non-Gaussianity (Hyvärinen and Smith, 2013). The
matrix B(0) is related to instantaneous effects. This approach has
been applied in several studies concerning the interactions between
cardiovascular and respiratory systems in healthy volunteers
(Schiatti et al., 2015).

2.2.1.3 Causal direction or direction of effects
From a causality point of view and before estimating the MVAR

model, an important step is required by determining measures of the
causal direction. We present main tools used by the community
based on pairwise likelihood ratios (Hyvärinen and Smith, 2013).

Denote the two observed random variables by x and y. Assume
these variables are non-Gaussian standardized to zero mean and
unit variance. The goal is to distinguish two causal models: y � ρx +
d and x � ρy + e, where disturbances d is independent of x and e
independent of y. The parameter ρ is the correlation coefficient.
Hyvärinen and Smith (2013) showed that the likelihood ratio R
normalized by 1

N is:

R � 1
N

∑N
t�1

log px xt( ) + Gd
yt − ρxt					
1 − ρ2

√( ) − log py yt( )[
−Ge

xt − ρyt					
1 − ρ2

√( )]
whereGd andGe are the standardized log-pdf’s of the residuals when
regressing y on x and x on y, respectively.

The rule of causal direction is chosen as:
• x → y if R is positive
• y → x if R is negative
However, the choice of the four log-pdf’s ( log px(xt),

log py(yt), Gd, and Ge) can be difficult for the modelling.
Therefore, various parametric approximations have been given by
Hyvärinen and Smith (2013).

2.2.2 Causality based coherence approach in
frequency domain

Notions of causality are commonly formalized in the context of a
MVAR representation of time series in order to allow time- and
frequency-domain pictures. Several frequency domain measures of
causality have been introduced. Actually, measures to quantify
causality in the frequency domain have been proposed from a
strictly causal MVAR representation (see (1)): DTF (Kaminski and
Blinowska, 1991), DC (Baccala et al., 1998), and PDC (Baccalá and
Sameshima, 2001). Faes and Nollo (2010) have extended DC and PDC
measures to extended causal MVAR representation (see (5)) to provide
eDC and ePDC. A synthesis of all measures of causality and coupling
has been proposed in Faes et al. (2011).

Denoting in the strictly causal MVAR interpretation
Zj � Xl, l � 1, . . . ,M, l ≠ j{ }, where Xl � Xl(t − 1) . . . Xl{
(t − d)} the set of the past values of all processes except Xj. Direct
causality Xj(t) → Xi(t) exists if the prediction of Xi(t) based on Zj

andXj is better than the prediction ofXi(t) solely based onZj.Causality
Xj(t)0Xi(t) exists if a cascade of direct causality relations
Xj(t) → Xm(t) . . .→ Xi(t) occurs for at least one value m in the
set (1, . . . ,M). DC and PDC are measures of the direct directed
interaction occurring from Xj(t) to Xi(t) at the frequency f. PDC
measures the direct causality and DC the causality.

2.2.2.1 Coherence in strictly causal MVAR representation
The Fourier transform (FT) of 1) is X(f) � A(f)X(f) + U(f)

and from H(f) � [I − A(f)]−1 � Â(f)−1 the power spectral
density (psd) is S(f) � H(f)ΣH†(f), where (†) is the
Hermitian transpose and Σ � cov(U(f)) � (σ ij) the variance/
covariance matrix of U(f). Let Sij(f) and Hij(f) be
components of S(f) and H(f), respectively. The DC γij(f) is
given by:

γij f( ) � σjHij f( )														∑M
m�1σ2m HI f( )∣∣∣∣ ∣∣∣∣2√

and the PDC by:

γij f( ) � 1
σi
Âij f( )															∑M

m�1
1
σ2m

Âmj f( )∣∣∣∣ ∣∣∣∣2√
This approach has been applied in several studies concerning the

interactions between cardiovascular and respiratory systems in
heathy volunteers (Javorka et al., 2017) and clinical populations
(Lachert et al., 2019).

2.2.2.2 Coherence in extended MVAR representation
The FT of 5) is X(f) � B(f)X(f) +W(f) and from G(f) �

[I − B(f)]−1 � B̂(f)−1 the psd is S(f) � G(f)ΛG†(f), where Λ �
cov(W(f)) � (λij) the variance/covariance matrix of W(f). Let
Sij(f) and Gij(f) be components of S(f) and G(f), respectively.
The eDC ξij(f) is given by:

ξ ij f( ) � λjGij f( )														∑M
m�1λ

2
m GI f( )∣∣∣∣ ∣∣∣∣2√

and the ePDC by:

χij f( ) � 1
λi
B̂ij f( )														∑M

m�1
1
λ2m

B̂mj f( )∣∣∣∣ ∣∣∣∣2√
This approach has been applied in several studies concerning the

interactions between cardiovascular and respiratory systems in
heathy volunteers (Faes and Nollo, 2010) and clinical populations
(Charleston-Villalobos et al., 2019; Reulecke et al., 2019).

3 Applications of cardiovascular and
cardiorespiratory coupling analyses

3.1 First studies using GC applied in
cardiovascular field

Porta et al. (2002) followed by Nollo et al. (2005) were the first to
apply these methods to the cardiovascular and respiratory systems
(Supplementary Tables S1, S2). These first studies are already very
complete, carried out in dogs, patients and healthy volunteers,
demonstrating the interests of the approach (Porta et al., 2002;
Nollo et al., 2005). Porta et al. (2002) applied GC from coherence
functions of RRI and noninvasive finger SBP monitoring. Applied to
12 instrumented conscious dogs (4 dogs with total baroreceptor
denervation), 7 heart transplant recipients and 7 matched healthy
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subjects, they observed that the causal direction from RRI to SBP
predominated in the HF band in dogs, in absence of any effect of
baroreceptive denervation. In heart transplant recipients, they
observed only coupling from the RRI to SBP direction in the LF
bandwidth, but in both directions in HF bandwidth in the matched
healthy subjects. In the same way, based also on causal coherence
between RRI and SBP in 15 healthy young subjects, Nollo et al.
(2005) reported predominance of the causal direction from RRI to
SBP in the LF band but balanced in the HF band during supine at
rest. During tilt, the causal direction from SBP to RRI increased and
predominated in both LF and HF bands. These first studies showed
that this type of analysis makes it possible to study the main
mechanical or neuronal interactions between the cardiac and
vascular systems: these results were interpreted as the Windkessel
and Starling effects and are captured by the interaction from RRI to
SBP; whereas the interaction from SBP to RRI was considered as
from feedback baroreflex activations, and interactions from RRI to
SBP as non-baroreflex mechanisms including neural and
mechanical (Windkessel and Starling effects) controls (Fuchs and
Smith, 2001; Westerhof et al., 2009). More recently, Krohova et al.
have clearly demonstrated the causal link between SBP and
peripheral vascular resistance (Krohova et al., 2020). It is
interesting to note here that traditional arterial baroreflex or
autonomic analyses show an activation of parasympathetic
baroreflex sensitivity in the supine position and a sympathetic
activation by the tilt test (Wehrwein and Joyner, 2013). Here, the
causality undoubtedly informs us about the quantity of interaction
between these two systems but not about the gain or the nature of
these interactions between these signals (Porta and Faes, 2013;
Schulz et al., 2013; Müller et al., 2016). As a result, the two
indices derived from the traditional and GC methods do not
provide the same information but are complementary.

GC analysis methods have been progressively adapted to the
constraints of physiological signals (Faes et al., 2010; Porta et al.,
2013b). In this way, a zero-lag effect has been demonstrated, i.e., an
instantaneous causality effect visible more particularly on the
BP→RRI index, due to the fast response of the parasympathetic
arm within a cardiac cycle and RE→RRI and RE→BP relationships,
due to the rapid mechanical effect of respiration motion on cardiac
filling (Hyvarinen et al. 2008; Faes et al., 2010; Faes, 2014; Reulecke
et al., 2019). This methodological aspect is discussed in Section 4.2.
Readers should be aware that early studies of GC in the cardiovascular
and cardiorespiratory fields did not take this zero-lag effect into
account and may sometimes present slightly different results from
more recent studies for certain indices. Finally, despite their obvious
interests, these studies raise questions about the role of respiration in
this closed loop regulation and, therefore, the question of a bi- or
trivariate modelling. This was subsequently addressed in numerous
studies (Faes et al., 2006; Faes et al., 2011; Faes and Nollo, 2010; Riedl
et al., 2010; Porta et al., 2012) and is discussed below (Section 4.4.).

Since these pioneering works, we have identified 42 additional
studies applying this principle of GC in the field of cardiovascular
and respiratory interactions, where the population sample which can
range from 1–100 healthy volunteers (Faes et al., 2006; Faes et al.,
2008; Faes and Nollo, 2010; Porta et al., 2012; Porta et al., 2012; Porta
et al., 2013b; Porta et al., 2014a; Porta et al., 2014b; Faes et al., 2013;
Faes et al., 2015b; Porta et al., 2015; Song et al., 2015; Javorka et al.,
2017; Porta et al., 2018; Saleem et al., 2018; Lachert et al., 2019;

Corbier et al., 2020; Nuzzi et al., 2021) or increasingly in diverse
populations of patients (Porta et al., 2002; Porta et al., 2013a; Porta
et al., 2013b; Bassani et al., 2014; Faes et al., 2015b; Javorka et al.,
2015; Schiatti et al., 2015; Zamunér et al., 2015; Bose et al., 2017;
Zamunér et al., 2017; Charleston-Villalobos et al., 2019; Reulecke
et al., 2019; Schulz et al., 2019; Stramaglia et al., 2021) (see
Supplementary Tables S1, S2). The trivariate approach is
increasingly used to integrate the respiratory signal in order to
not only to draw up the more complete picture possible of the
interactions of these systems but also to properly analyze the BP-RRI
relationship. These multivariate approaches were also supplemented
by the introduction of other parameters such as cerebral blood flow
velocity (Faes et al., 2015b; Schiatti et al., 2015; Saleem et al., 2018),
cerebral oxygenation (Song et al., 2015), peripheral blood oxygen
saturation (Bose et al., 2017), peripheral vascular resistance
(Krohova et al., 2020) and left ventricular ejection time (Javorka
et al., 2015), QT interval (Porta et al., 2015) or end-tidal CO2

(Saleem et al., 2018), as well as by electroencephalographic (EEG)
signals in particular (Schulz et al., 2019; Hartmann et al., 2021).

3.2 Comparison with
pharmacological studies

Among the studies that have made it possible to better
understand how GC can improve our understanding of
physiological system interactions, GC was applied to
pharmacological maneuvers allowing blocking the sympathetic
and/or parasympathetic influence on the sinoatrial node. Indeed,
the blockage of the cardiovascular autonomic nervous system can
allow to highlight a neuronal contribution in these cardiovascular
and respiratory interactions (Pomeranz et al., 1985; Pichot
et al., 1999).

Thus Porta et al. (2013a) applied trivariate GC in time domain
on RRI, SBP and RE in 9 healthy volunteers under autonomic
pharmacological blockages. Atropine, propranolol and clonidine
were administered to block muscarinic receptors, β-adrenergic
receptors and centrally sympathetic outflow, respectively. They
observed that, as expected, a lengthening of the RRI and an
increase in SBP in atropine and atropine + propranolol
conditions without major changes in respiratory frequency
consistent with previous studies (Pomeranz et al., 1985; Pichot
et al., 1999), and propranolol and clonidine decreased RRI,
whereas clonidine decreased SBP. Concerning causality, they
reported that firstly RRI and SBP interacted at rest in a closed
loop with a dominant causal direction from RRI to SBP, and that
pharmacological blockades did not alter the bidirectional closed
loop interactions between RRI and SBP; whereas atropine reduced
the dominance of the causal direction fromRRI to SBP. These results
indicated that Windkessel and Starling effects may dominate the
interaction from RRI to SBP, but this result points out a contribution
of parasympathetic cardiac control that may favor cardiac filling
(Fuchs and Smith, 2001; Westerhof et al., 2009). Saleem et al. (2018)
extended these results by studying the relationship between very
slow components of SBP, RRI and cerebral blood flow velocity
fluctuations using α1-adrenergic blockade in healthy volunteers.
They observed bidirectional interaction between cerebral blood flow
velocity and BP, consistent with the Cushing mechanism, regulating
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cerebral flow based on sympathetic control (Beiner et al., 1997;
Ayling, 2002). In Porta et al. (2013a), at baseline, bidirectional
interactions between RRI and RE were frequently found and this
closed loop relationship was unmodified by the administration of
drugs, illustrating nonneural interactions from RE to RRI, and
potentially related to respiratory changes in intrathoracic pressure
(Berntson et al., 1993; Hayano et al., 1996). Conversely, the result of
causality from RRI to RE may be related to central respiratory drive
(Porta et al., 2013b). Finally, unidirectional interactions from RE to
SBP were often found at baseline, but atropine induced frequently an
uncoupling between RE and SBP; whereas clonidine favored
bidirectional interactions, pointing out an indirect
parasympathetic contribution to the RE-SBP relationship through
cardiac and large vessel fillings reversed by clonidine (Porta
et al., 2013b).

These results prove that trivariate time domain measures of
GC can contribute to the description of cardiovascular control
by suggesting the temporal direction of the interactions and by
separating different causality schemes. Causality analysis
provides complementary information of classical
mathematical tools including arterial baroreflex analysis, RRI
and SBP variabilities that inform about baroreflex gain and
autonomic/reactivity of the autonomic nervous system
(Malliani et al., 1991; Laude et al., 2004; Saul and Valenza,
2021). Finally, expanding to encompass other cardiovascular
and respiratory parameters can provide a more comprehensive
perspective on cardiovascular regulation (Faes et al., 2015b;
Javorka et al., 2015; Porta et al., 2015; Song et al., 2015; Bose
et al., 2017; Saleem et al., 2018).

3.3 Comparison with autonomic
measurements

To gain a deeper insight into the underlying mechanisms
influencing the outcomes of GC and its relevance in clinical
populations, several studies have compared GC with traditional
physiological indices (see Supplementary Tables S1, S2). In essence,
these studies conducted causality analyses, which were broadly
compared to different types of analyses such as coherence or
phase analyses, between BP, RRI, sometimes including RE, and
compared to RRI and SBP variabilities.

In healthy volunteers, it has been reported that causality analyses
varied in a consistent manner with analyses of coherence between BP,
RRI and RE in relation to age (Porta et al., 2014a), in paced breathing
(Porta et al., 2012), in mental stress (Javorka et al., 2017), and in
standing or lying position (Porta et al., 2014a; Javorka et al., 2017). It
also appears that this type of analysis could bemore informative because
in both temporal or frequency domains, causal analysesmake it possible
to specify the nature of the relationship between RRI, SBP, RE or other
physiological parameters studied (Faes et al., 2015b; Javorka et al., 2015;
Porta et al., 2015; Song et al., 2015; Bose et al., 2017; Saleem et al., 2018).
By studying baroreflex gain, we still note discrepancies with the study of
causality (Porta et al., 2002; 2014b; Nollo et al., 2005; Javorka et al., 2017;
Saleem et al., 2018). These two approaches could provide different
information: unlike the gain which reflects the sensitivity of the
baroreflex arc, the causality from SBP to RRI could reflect the
presence of baroreflex feedback but not its sensitivity (Javorka et al.,

2017). The dissociation of these two components of the baroreflex could
allow study of two facets of this cardiovascular control that may be
relevant in clinical perspectives. When these GC analyses were applied
to patients, they make it possible to confirm certain mechanisms
involved in certain diseases, such as in orthostatic intolerance and
syncope (Faes et al., 2015b; Schiatti et al., 2015; Charleston-Villalobos
et al., 2019; Reulecke et al., 2019). Consistently also with more
traditional measurements, we have noted a decrease in the causality
RE to RRI with age, probably related to the decrease in respiratory sinus
arrhythmia; or the causality from RE to SBP, probably related to the
decrease of cardiac function with age (Porta et al., 2014a); or even the
preservation of a causality of RRI to SBP in the transplanted patient that
indicates a contribution here of nonneural mechanisms (Porta et al.,
2002).We canmention the study of Lenis et al. (2017) who used the GC
method to separate the respiratory part responsible for RRI variability
from the other mechanisms also involved. By comparing traditional
heart rate variability (HRV) indices before and after decoupling, they
showed that a large part of the interindividual differences in HRV was
due to the different strengths among subjects, and they assumed that the
calculation of HRV indices decoupled from respiration might add new
relevant insights to the interpretation of HRV parameters. These studies
revealed that causal analysis can effectively emphasize alterations or
changes in cardiac regulation distinct from those identified by
conventional tools. While the interpretation of causal relationships
within the cardiovascular and respiratory systems remains somewhat
hypothetical, these markers do not duplicate the information provided
by traditional indices. In fact, they can sometimes exhibit a high
sensitivity and a synergy between them that appears highly promising.

4 Methodological considerations
and cautions

4.1 Quality of the MVAR model

As described above, GC analyses are based initially on modelling
the signals under consideration, i.e., here, RRI, BP and RE (Figure 2).
These modelled signals must therefore be as faithful as possible to the
original signals since they are used to calculate the causality indices
linking them together (Granger, 1969; Porta et al., 2002). Model quality
is generally estimated using the r-squared index which is the
proportion of the variation in the predicted values of the signal
compared to the true signal values, normalized by a value between
0 and 1; the closer the value is to 1, the better the model. Stationarity is
an important prerequisite for the MVAR framework because the
process characteristics must not change over time. In physiology,
perfect signal stationarity is rarely achievable, but exclusion criteria
are set before a signal is modeled, and the quality of the modelling is
checked. This quality of the MVAR model, namely the fit index, must
be considered before calculating causality indices. Empirically, a
minimum value of 0.60 is often taken to validate sufficient model
quality. Below this value, the modeled signal is not close enough to the
original signal, and the resulting causality values should be disregarded.

In our experience, SBP signals are the best fits generally around
0.80–0.90, followed by RRI around 0.70–0.80 (Corbier et al., 2020).
For respiration, we have noticed that the fit can be very variable
(0.10–0.90) depending on the subjects and above all on the sensors
used (nasal cannula, belt, ECG-derived respiration, etc.). The
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inherent differences in signal characteristics, such as sampling
frequencies, can pose challenges when conducting a
comprehensive analysis of causality. Consequently, considering
the adequacy of signal alignment becomes a crucial factor in
deciphering the outcomes of various studies.

It may be noted that the values of the quality index are never
mentioned in articles dealing with interactions between RRI, SBP
and RE using GC methods, nor is it ever specified whether certain
data were discarded for these reasons. This may explain some of the
variability in the results and the sometimes large standard deviations
in certain causality indices in published studies, particularly those
including respiration (Porta et al., 2013b).

4.2 Zero-lag effect

Causality in the classical Granger sense is defined as a cause
taking place at a certain time before its effect, and the information

about the process of this cause being unique, i.e., not present in
any other process (Granger, 1969). Effects that might appear
instantaneously are not considered in the classical method.
Indeed, in fields such as physics or electronics, signals are
sampled at a frequency such that there is always at least one
delta of time above this frequency before a cause produces an
effect. For cardiovascular and cardiorespiratory signals, the
sampling frequency is set by the time interval between two
heartbeats (around 1 s). However, certain regulatory
mechanisms, such as the baroreflex due to the rapid response
of the parasympathetic nervous system or the mechanical effects
of respiration on stroke volume and cardiac filling, may be
shorter than this time interval (Hyvarinen et al., 2008; Faes
et al., 2010; Faes, 2014). As a result, cause and effect occur
over a period of less than one cardiac cycle, indicating an
instantaneous effect, i.e., a zero-lag effect, which must be
considered at the risk of overlooking all the physiological
processes involved. For this reason, the “extended” methods

FIGURE 2
Representation of cardiovascular, respiratory and cortical raw signals and their corresponding beat-to-beat series according to the cardiac cycle are
; modelled signals used for Granger causality analyses are in red color. From top to bottom: ECG, RR intervals (RRI), continuous blood pressure (BP),
systolic blood pressure (SBP), respiration (RE), electroencephalographic (EEG) signals, and the resulting standard δ, θ, α, β, γ spectral power bands (only α
band is shown on the figure).
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described above have been developed to take into account these
instantaneous effects (Faes and Nollo, 2010; Porta et al., 2013b).
When performing GC analyses for RRI, SBP and RE signals, it
may also be useful to look specifically at the coefficients
corresponding to this zero-lag effect in order to isolate the fast
processes from the others.

In the study by Reulecke et al. (2019) for example, the
authors clearly demonstrated the contribution of the
extended method. In their example carried out during a tilt
test on a healthy woman, the value of the causal link between
SBP→RRI calculated with the extended method was higher than
that obtained from the classic method due to the A (0)
coefficient reflecting the rapid vagal response of the
baroreflex taking place in the time interval of a heartbeat
cycle. On the other hand, this instantaneous effect was not
present for the inverse link, RRI→SBP. In the research
conducted on syncope, it is noteworthy that the expansion of
instantaneous analyses has proven particularly valuable in
elucidating the dynamics of cardiovascular control
disturbances (Schiatti et al., 2015; Saleem et al., 2018;
Charleston-Villalobos et al., 2019). These studies demonstrate
the benefits of using so called extended methods instead of the
original one to study physiological signals in which sampling
rate is determined by heartbeats.

4.3 Bivariate or trivariate models?

In many studies, particularly those focusing on the baroreflex,
only the RRI and SBP signals are recorded and analyzed. However,
for GC analyses applied to cardiovascular and respiratory systems,
considering only these two signals can significantly modify the
results (Porta et al., 2012; Bassani et al., 2013). Indeed, if these two
signals interact in a closed loop, they are also both influenced by
the respiratory signal. Porta et al. (2012) have studied this problem
using simulated and real signals. In this study, the authors first
explain using theoretical examples that the fact of not considering
a signal z interacting with two other signals x and y, which
themselves interact together, leads to an error in the calculation
of the causal links between these two signals x and y. This error
depends on the gain of the influence of signal z on signals x and y.
Applied to RRI, SBP and RE signals, this means that if respiration
has a significant effect on RRI and SBP signals, the joint variations
in RRI and SBP will be falsely attributed to links between them if
the respiratory signal is not included in the model. The results of
the study by Porta et al. (2012) concerning real signals then clearly
showed that not considering the respiratory signal when analyzing
the causal links between RRI and SBP leads to an overestimation of
the role of the baroreflex in these relationships. The authors even
raised the question of the standard calculation of baroreflex
sensitivity, which is based on the gain between variations in
arterial pressure and the resulting variations in RRI (Parati
et al., 1988; Bassani et al., 2012; Bassani et al., 2013) also
showed in two studies investigating the causal links between
RRI and SBP during anaesthesia, one including breathing and
the other not, that the results and resulting interpretations could
differ depending on whether the model was bivariate or
trivariate (Figure 2).

Finally, without knowing the sufficient number of signals to be
considered to model the cardiovascular and cardiorespiratory
systems reliably, users should be aware that neglecting the
influence of breathing on RRI and SBP could lead to erroneous
results. This example unquestionably underscores the significance of
adopting an integrative approach to studying the cardiovascular
system, especially when utilizing such tools.

4.4 Different types of respiration sensors

Generally, the values of RRI and BP do not pose any particular
problems in the context of measurements designed to analyze
cardiovascular and cardiorespiratory regulation. In all cases, an
ECG is recorded from which the time sequence of RRI is
calculated. The only parameter to be monitored is the sampling
frequency in order to obtain good precision in localizing R peaks; but
nowadays this frequency is no longer limited by the storage
capacities of the equipment as it once was, and we therefore no
longer encounter undersampled signals. For BP, the equipment used
is generally based on a finger photoplethysmographic arterial BP
(Imholz et al., 1998), but it can also be measured with an intra-
arterial catheter (see Supplementary Tables S1, S2). In addition to
the precautions to be taken when choosing the sampling frequency,
the experimenter must ensure that the position and height of the
arterial pressure sensor are respected (Imholz et al., 1998). In all
cases, whatever the equipment used, the type of signal recorded here
is always an electrical voltage resulting from cardiac activity for the
ECG signal (and therefore the RRI) and BP at artery level for the
BP signal.

As can be seen in Supplementary Tables S1, S2, the same is not
exact for respiratory measurement that may be taken from
different places (oral or nasal flow or both, nasal capnogram,
tidal movements of the chest or the abdomen, mathematical
reconstruction from the ECG, etc.) resulting from or entailing
various physiological mechanisms. The devices used for this
purpose may be breathing belts with strain gauges or
inductance placed on the thorax or abdomen, a nasal cannula, a
thermistor, a full face mask including nose and mouth, or even an
ECG from which the respiration is derived using the distortion of
the QRS peak due to electrode motion and changes in the heart’s
electrical axis synchronously to respiration induced thorax
movements namely, ECG derived respiration (EDR) (Moody
et al., 1985). Clearly, the principles of device measurement and
signal collection sites can differ completely from one method to
another. The shape of the signals and their temporality are affected,
and this can be a problem when modeling the signal or calculating
lag. For example, the shape of a respiratory signal arising from a
chest or abdominal belt will differ from one subject to another,
depending on the person’s breathing patterns, and may even be in
phase opposition. Furthermore, how does the phase of a
respiratory signal, whether measured by airflow at the mouth or
reconstructed from ECG-derived respiration, come into play? To
this must be added the fact that a sneeze, a sigh, even touching a
measuring belt during a recording, or the approximations used in
calculating the EDR will result in very significant artifacts which
will not always be correctable and will potentially result in an
inaccurate quality of the modelled respiration signal.
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Porta et al. (2013b) had already mentioned the possible
differences in physiological interpretation depending on the
respiratory sensors used. Indeed, they demonstrated that the
signals from a chest belt and EDR were similar in order to
compare their results with other studies. Also, in another study
in which cardiovascular interactions were calculated using the
transfer entropy method, Gelpi et al. (2023) showed that
causality values could be different depending on whether the RRI
and SBP signals were conditioned by a respiratory signal from the
chest belt or nasal capnogram. However, the form and temporality
of the respiratory signals from different methods are not always
comparable, and the difficulties in interpreting the causality results
are still open to discussion (Porta et al., 2013b). It is therefore
advisable to consider the type of equipment used for respiratory
signal acquisition when interpreting causality results and
comparisons with other studies should be made with caution. A
study in which the different ways of measuring respiration and
calculating causality are compared would be useful to clarify this
methodological problem.

4.5 Available tools to study cardiovascular
and respiratory interactions

In general, the tools available for calculating GC indices are
aimed at people with a background in mathematics and
programming. Below, three toolboxes (MATLAB and Python)
were proposed and offered the most possibilities. Many other
functions can be found on the internet, written in MATLAB,
Python or R, but they are often restrictive such as being only
suitable for bivariate analyses, for example,.

- The MVGC Multivariate Granger Causality (MATLAB): This
free toolbox, developed at the Sackler Centre for
Consciousness Science, University of Sussex, UK, provides
MATLAB routines for efficient and accurate estimation and
statistical inference of multivariate GC from time series data
(Barnett and Seth, 2014).

- Luca Faes personal webpage (MATLAB): A comprehensive
free library of functions in the field of causality, including
extended versions of Granger’s analyses (Faes, 2021).

- The MVGC Multivariate Granger Causality (Python): This
free toolbox is a simple multivariate GC Python tool rewritten
from part of MATLAB MVGC toolbox (Qu, 2018).

- We also proposed one solution for nonprogrammer
physiologists to analyze the causal links between RRI, BP
and RE signals: CVRanalysis software is available for free at
anslabtools. univ-st-etienne.fr (Pichot et al., 2023).

5 Clinical applications

Numerous studies have recently tested GC analysis in clinical
applications. Two of these stand out from the rest in terms of the
number of articles published: anaesthesia and orthostatic syncope or
intolerance (Supplementary Table S2).

With regard to orthostatic syncope and intolerance, GC analyses
have enabled to identify different mechanisms involved in healthy

and pathological subjects (Schiatti et al., 2015; Charleston-
Villalobos et al., 2019; Pernice et al., 2022b; Porta et al., 2023)
as well as the kinetics of cardiovascular adaptation during a
standing test (Reulecke et al., 2019). In particular, these studies
showed that there was an increase in the causality index SBP→RRI
with standing and that this index was higher in the supine position
in patients compared to healthy subjects. Similarly, the causality
values RRI→SBP were higher in patients than in healthy subjects
in the supine position and during tilt tests. It was concluded that
the increase in this index corresponded to an increase in
baroreflex information flow resulting in an increase in
sympathetic activity but also indicating impaired baroreflex
function, and that the increase in this information flow in both
directions in pathological subjects reflected the attempt to
preserve sufficiently adequate cardiovascular regulation despite
cardiovascular dysfunction. One study also showed that
cardiorespiratory interactions were also affected in patients
suffering from orthostatic intolerance (Charleston-Villalobos
et al., 2019).

Concerning anaesthesia in an initial study, in which only the
RRI and SBP signals were taken into account, Bassani et al.
(2012) were able to show that during anaesthesia, there
remained a causal link SBP→RRI due to baroreflex activity
even when its sensitivity was collapsed. Two other studies
that included the respiratory signal in the model confirmed
that baroreflex was indeed involved in cardiovascular
regulation during anaesthesia, but that the conventional
methods used to validate measures of baroreflex sensitivity
(RRI-BP squared coherence) overestimated its role because
they integrated all the mechanisms acting on RRI and SBP
indiscriminately (Porta et al., 2013a; Bassani et al., 2013). In
addition, the authors observed that the type of ventilation or
strategies of anesthesia had different effects on the SBP-RRI
coupling and could be used by anesthetists to improve patient
monitoring. Finally, these mathematical tools could be helpful to
identify patients at-risk of hypotension during anesthesia
(Dorantes Mendez et al., 2013) and those at-risk of atrial
fibrillation after coronary artery bypass grafting, while the
classical indices of variability and baroreflex were unable to
do so (Bari et al., 2018).

In other clinical fields, GC analyses have shown interesting
clinical results in various populations: changes in RE-SBP
coupling in patients suffering from pre-eclampsia were reported
(Riedl et al., 2010) and in RRI-SBP in Parkinson’s patients (Bassani
et al., 2014). Interestingly, these causal analysis were related to
quality of life in fibromyalgia patients (Zamunér et al., 2017) and
can bring clinical information to aortic valve stenosis patients (Bari
et al., 2023), patients with idiopathic pulmonary fibrosis (Santiago-
Fuentes et al., 2022), pediatric cardiac patients (Rosol et al., 2022),
heart failure populations (Radovanović et al., 2018), or patients with
sleep apnea syndrome (Günther et al., 2022).

Many of these studies have consistently demonstrated that
causal markers can effectively illuminate changes in
cardiovascular and respiratory interactions that traditional indices
often struggle to detect and bring information about physiological
regulations. From a clinical perspective, the potential significance of
these approaches lies in their ability to provide valuable markers for
clinical assessment tools.
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6 Perspectives

6.1 Central autonomic network and
allostasia

Studying the interactions between the cardiovascular and
respiratory systems provides valuable insights into the
functioning of these systems, but the brain plays a key regulatory
role, particularly in response to exteroceptive disturbances such as
pain or any stimulation perceived as threatening. It is now well
documented that through autonomic control, the brain controls the
activity of major physiological systems. Here, GC is therefore a
relevant approach integrating EEG or blood-oxygen-level dependent
(BOLD) signals from functional magnetic resonance imaging
(Figure 2), especially since recent work has shown that the brain,
through interoception, receives a lot of visceral and somatic
information that modifies its activity. In this view, a central
autonomic network (CAN) as introduced in 1993 by Eduardo
Benarroch, ensures the control of sympathetic and
parasympathetic preganglionic neurons through a constant and
integrative regulation of the functions of the different tissues and
organs, maintaining homeostasis while ensuring responsiveness to
external and internal changes (Benarroch, 1993). Functional
magnetic resonance imaging studies have shown a close
relationship between autonomic cardiac reactivity and cortical
activities: whatever emotional, cognitive, sensorial or voluntary
motor tasks applied in healthy subjects, a set of consistently
activated brain regions, comprising amygdala, anterior and
posterior insula and anterior cingulate cortices, supports cardiac
reactivity and is supposed to form the CAN (Thayer et al., 2012;
Beissner et al., 2013; Ruiz Vargas et al., 2016; Ferraro et al., 2022).

In this view, several studies applied GC between time series
derived from EEG signals (typically δ, θ, α, σ and β frequency
bands) and signals used to study cardiovascular and respiratory
systems (such as RRI, SBP and RE) (Faes and Nollo, 2010; Faes
et al., 2015a; Faes et al., 2016; Schulz et al., 2016; Valenza et al., 2016;
Greco et al., 2019; Won et al., 2019; Orjuela-Cañón et al., 2020;
Nardelli et al., 2021; Abdalbari et al., 2022). These studies aimed to
document the central control on cardiovascular and respiratory
systems and their interactions (Supplementary Table S3). First,
applied between RRI and EEG signals, found bidirectional
interaction between EEG signal and indices reflecting
parasympathetic activity in healthy controls during sleep with a
predominance from parasympathetic indices to EEG signal.
However, a predominance from EEG to cardiac and autonomic
parameters where frequently reported (Pardo-Rodriguez et al.,
2021; Abdalbari et al., 2022; Pernice et al., 2022a; Orjuela-Cañón
et al., 2022). Using high density EEG, Greco et al. (2019) observed a
coupling predominance in fronto-central regions during emotional
picture testing. It has frequently been shown that the power of rapid
EEG oscillations evolves in the same trend as the LF andVLF variables
(Faes et al., 2015a; Pardo-Rodriguez et al., 2021; Pernice et al., 2022a;
Orjuela-Cañón et al., 2022). Applied during sleep, the brain-cardiac
interaction seems to be decreased especially during slow wave sleep
and paradoxical sleep (Orjuela-Cañón et al., 2020; Orjuela-Cañón
et al., 2022; Pardo-Rodriguez et al., 2021; Günther et al., 2022);
whereas Hartmann et al. (2021) showed a reciprocal interaction
between cardiac and vascular autonomic parameters and cortical

reactivity during sleep. In patients suffering from sleep diseases,
this approach showed that a low causality in patients with sleep
apnea was restored by continuous positive airway pressure therapy
(Orjuela-Cañón et al., 2020). Finally, in clinical populations such as in
schizophrenia, during sedation or in temporal epilepsies, these studies
have made it possible to show alterations in the connectivity between
the cardiovascular system and the brain which can be complex (Schulz
et al., 2016; Won et al., 2019; Orjuela-Cañón et al., 2022). Also in the
field of CAN studies, Yu et al. (2016) used Granger analyses applied to
the BOLD time series arising from fMRI to study the functional
connectivity of the respiratory neural network in chronic obstructive
pulmonary disease patients and healthy controls. Although taken
together, these data draw promising results regarding the relevance of
this type of approach to better understand the repercussions of heart
disease on cortical functions as well as of cortical functions on cardiac
activity (Critchley and Harrison, 2013; Shivkumar et al., 2016).

6.2 Methodological perspectives

In the cardiovascular and cardiorespiratory fields, GC analysis
has provided a complementary view to traditional analysis methods
such as RRI or BP variabilities or cardiac baroreflex, which focus on
the activity of the autonomic nervous system. GC methods have
confirmed that cardiac baroreflex measurement alone is limited to
explain the closed loop interrelationships between RRI and BP
variations. Indeed, numerous studies have shown that the values
of the BP→RRI causal links, representing baroreflex activity, were
lower than those of the inverse link, RRI→BP. Studies have also
shown the influence of respiratory movements on RRI and BP which
is integrated in a very limited way into traditional analyses.

In fact, studies to validate the causal indices between RRI, BP
and RE have been carried out using pharmacological blockades or
stimulus tests such as the comparison between supine position and
tilt test. All these studies have therefore essentially explored the
autonomic part of these causality indices. However, it was clearly
shown, for example, that autonomic pharmacological blockades
did not alter the values of the BP→RRI causality indices, whereas
one of the underlying relationships is parasympathetic activity. In
that case, it was deduced that the value of the corresponding
causality index did not provide information on the sensitivity of
the baroreflex, but rather on the importance of recruitment of this
reflex in regulation, and that the existence of this causal link was a
prerequisite for reliable assessment of the baroreflex. Other
mechanisms have been suggested as contributors of causality,
including mechanical influences such as Starling and the
Windkessel effects in RRI→BP coupling that mechanically
relate changes in intracardiac pressure and stroke volume to
blood pressure or even mechanical effects of respiratory on
intrathoracic pressure (RE→BP) and on the sinus node tissue
(RE→RRI). More complex and hypothetical neural influences
emerge that could contribute to these couplings such as
influences of respiratory centers and vagal efferent activities, or
the activation of cardiopulmonary reflexes explaining bidirectional
coupling between respiratory and cardiac changes. Studies
specifically exploring the relationship between these
mechanisms and GC in isolation are still lacking, and they
could give greater weight to the results and interpretations of
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the calculated indices, particularly for their use in clinical
applications or morbimortality prediction.

There is, however, a methodological difficulty to be
circumvented, which forces us to make compromises in the
analyses. The frequency bands of interest for EEG are much
higher than those for RRI signals. EEG sampling frequencies are
generally at least 256 Hz, and the resulting brain rhythms (delta,
theta, alpha, beta and gamma spectral power bands) range from
1–120 Hz; whereas for RRI signals the time interval between
individual heartbeats corresponds to a sampling frequency of the
order of 1 Hz. In this case, it is not easy to calculate a causal link
between the two types of signals or to interpret the results
physiologically. Some authors have used GC methods to study
heart-brain interactions based on RRI and EEG signals (Faes
et al., 2015a; Greco et al., 2019; Orjuela-Cañón et al., 2020).
However, there remains a wide field of exploration and clinical
application in this area which cannot be achieved without improving
investigative methods.

6.3 Clinical and morbimortality prediction

Cardiovascular variability indices have been widely democratized,
first in the field of cardiology with tabletop ECGs and especially Holter
systems, then more widely into the fields of sports and wellness with
RRI monitors and connected watches (European Society of Cardiology
and the North American Society of Pacing and Electrophysiology,
1996). Indices of parasympathetic and sympathetic nervous system
activity are commonly considered in the monitoring of cardiac
populations (Manresa-Rocamora et al., 2021), the severity of
autonomic neuropathy in diabetic patients (Žnidarič et al., 2023) or
maturation of premature babies (Patural et al., 2008), for example, as
well as in sports training to optimize sessions and avoid overtraining
(Plews et al., 2013). Certain indices of RRI variability or baroreflex
related indices are well known to be good predictors of all-cause
mortality or the occurrence of cardiovascular or cerebrovascular events
in pathological or healthy populations (Tsuji et al., 1994; Dekker et al.,
1997; La Rovere et al., 1998; Berger et al., 2022).

As described above, the study of the causal links between RRI,
BP and RE using Granger analysis provides complementary
information to so called traditional methods when applied to
protocols carried out in both healthy and pathological subjects.
These analysis methods could therefore be used to monitor the
training of athletes or the exercise rehabilitation of pathological
patients. These complementary indices could make it possible to
focus on the effects of training on much more precise
mechanisms, as suggested by the study by de Abreu et al. (de
Abreu et al., 2022), thus helping to better target the type of
exercise used in the training or rehabilitation program.
Moreover, to our knowledge, no cohort study has yet
demonstrated the usefulness of these indices in predicting the
occurrence of diseases, events or mortality (Schulz et al., 2013;
Müller et al., 2016). It would therefore be interesting to test the
predictive capacities of causality indices in cohorts of healthy or
cardiac subjects, for example,. The results could perhaps highlight
other pathophysiological mechanisms linked to morbidity and
mortality than reduced autonomic nervous system activity or
baroreflex sensitivity.

7 Conclusion

Cardiovascular and cardiorespiratory control is formed by
multi-interacting mechanisms and systems, and GC analysis is
particularly suitable for identifying these interactions. Clinical
and experimental studies support that causality analysis
provides nonredundant information with respect to more
traditional means obtained using bivariate, trivariate or
multivariate approaches. It appears that neural and
mechanical mechanisms are probably responsible for these
interactions between RRI, BP and RE, including Windkessel
and Starling effects, Cushing reflex, autonomic control and
other more indirect mechanisms to be defined. Their clinical
interests in understanding and predicting diseases must be
specified and these issues merit further investigation.
Finally, Walter Cannon laid the foundations of an
experimental and theoretical framework characterizing the
general response of the body to external stresses or during
disturbances of homeostasis, speaking of “emotional stress” in
1935 (Cannon, 1935). Afterwards, the concept of allostasis that
incorporates changes of steady state level – “stability through
change” - was proposed (Sterling and Eyer, 1988). These
mathematical tools appear helpful for gaining a deeper
understanding of the various interactions at play, especially
in discerning the contribution of the CAN within these
allostatic regulations.
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