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Algorithms for the detection of COVID-19 illness from wearable sensor devices
tend to implicitly treat the disease as causing a stereotyped (and therefore
recognizable) deviation from healthy physiology. In contrast, a substantial
diversity of bodily responses to SARS-CoV-2 infection have been reported in
the clinical milieu. This raises the question of how to characterize the diversity of
illness manifestations, and whether such characterization could reveal
meaningful relationships across different illness manifestations. Here, we
present a framework motivated by information theory to generate quantified
maps of illness presentation, which we term “manifestations,” as resolved by
continuous physiological data from a wearable device (Oura Ring). We test this
framework on five physiological data streams (heart rate, heart rate variability,
respiratory rate, metabolic activity, and sleep temperature) assessed at the time of
reported illness onset in a previously reported COVID-19-positive cohort (N= 73).
We find that the number of distinct manifestations are few in this cohort,
compared to the space of all possible manifestations. In addition,
manifestation frequency correlates with the rough number of symptoms
reported by a given individual, over a several-day period prior to their imputed
onset of illness. These findings suggest that information-theoretic approaches
can be used to sort COVID-19 illness manifestations into types with real-world
value. This proof of concept supports the use of information-theoretic
approaches to map illness manifestations from continuous physiological data.
Such approaches could likely inform algorithm design and real-time treatment
decisions if developed on large, diverse samples.
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1 Introduction

The COVID-19 pandemic spurred many efforts to develop
algorithms that take in wearable sensor data (as in Oura Ring:
Mason et al., 2022; FitBits; Liu et al., 2022; Mishra et al., 2020; Nestor
et al., 2021; Shapiro et al., 2020; Natarajan et al., 2020; Apple
Watches; Hirten et al., 2021; Cleary et al., 2021; and Whoop;
Miller et al., 2020) and give back alerts for possible infections.
These algorithms are based on the idea that physiology changes
during illness, and that these changes, captured by wearable devices,
can be used to train machine learning algorithms. However, while
some physiological changes are anticipated with most
illnesses—such as elevated temperature and heart rate (Li et al.,
2017)—it is obvious that not all COVID-19 patients manifest illness
in the same way (Alimohamadi et al., 2020; Klein et al., 2022).
Methods are therefore needed to quantify the extent to which
different “manifestations” can be identified. This would allow
algorithms to be trained more precisely by separating
manifestations into different training pools. It might also impact
care decisions if it is found that different manifestations at the onset
of illness respond to different treatments, or are associated with
different outcomes.

Relatedly, another common assumption is that each physiological
systemmeasured is providing an independent measurement about only
itself. Instead physiological systems are known to influence each other,
acting as a network where organs or system components (nodes)
influence the activity of other nodes by way of internal signaling
(edges) (e.g., Grant et al., 2018; Sorelli et al., 2022; Zhang et al.,
2022; Campanaro et al., 2023; Hasselman et al., 2023). Without this
conceptual framework of a physiological network, health algorithms
commonly assess the weight of change in each physiological system as
an independent measure of change, and classify illness as the presence
of substantial change above some overall threshold, but where the
specific combinations of change-by-system might not be counted as
informative. That is, one person might be classified by an algorithm as
suffering illness due to changes in heart rate despite having a low
temperature, where someone else might be classified as suffering illness
due to elevated temperature despite less change in their heart rate than
the first person. If all we know is that both people appear ill, thenwe lose
the information about the different physiological manifestations that
took them past that threshold of detection. However, with the
physiological network framework, it might be possible to use
multimodal sensors to detect different conformations or states from
the resulting network, providing information beyond merely the sum
amplitude of change from each individual sensor modality
(physiological system). Since different treatments will interact with
different physiological systems, and since different patterns of infection
might be detected through comparison of those manifestations, we
sought here to test whether those different manifestations are indeed
detectable and if so, non-random, using data gathered during the
COVID-19 pandemic of 2020.

We hypothesize that there is more than one identifiable way in
which COVID-19 illness manifests across individuals, and that
appropriate tests could add numerical weight to determining if
these differences are random, or cohere into subtypes of
manifestation in physiological data, which might then be
correlated to aspects of the illness (in our case, symptom density
of the participant with COVID-19).With the hypothesis that there is

more than one identifiable way in which COVID-19 illness
manifests across individuals, we aim here to present a
generalizable framework to test whether there are certain
manifestations that occur more frequently than others, and
whether the physiological manifestations detected correlate with
other aspects of the illness experience. We are not aware of a
commonly accepted method of quantifying these physiological
changes that occur during illness, so the point of this study was
to developed a simple method as a proof-of-concept to do so, relying
on data from a previously published cohort of confirmed COVID-19
cases gathered across 2020 (Mason et al., 2022). To do so, we draw
on two information-theoretic paradigms—binning or categorizing
many-valued variables into coarse stratifications of only a few
“summary” elements, and observing how evenly the values of one
such stratified variable “spread” in trying to predict another.

2 Methods

2.1 Subjects and data collection

The N = 73 participants included in this case study are a group of
individuals from a larger data set from the TemPredict study, as
described in detail in Mason et al. (2022), in which participants
provided data collected with the commercially available wearable
device Oura Ring (Oura Health Oy, Oulu, Finland). Additional
details on specific data as well as the recruitment and exclusion
criteria of the initial cohort are outlined in Mason et al. (2022);
however, here we additionally outline relevant details of the subset
used in this study. The original TemPredict study contained
63,153 individuals, 704 of whom self-reported COVID-19 in 2020.
Of these 73 had confirmatory tests and also consistent data collection
throughout several weeks surrounding their illness. Within the 73,
28 were male and 44 were female, 1 declined to report gender. For the
purposes of this manuscript, the data contain five physiological data
streams: heart rate (HR), heart rate variability (HRV) defined by the
root mean squared of successive differences in heart beats (RMSSD),
respiratory rate (RR), metabolic activity (MET), and distal skin
temperature (T), which are provided from the Oura App. These
were summarized into 30 min means, with a 15 min step size,
resulting in summary values per 15 min for each physiological data
stream. MET, provided in units of metabolic equivalents (rest being
1 and higher values being multiples of this value, whereas in much of
actigraphy, rest is 0 and absolute activity, as in steps per minute, is used
instead; the exact formula is proprietary and not known to the authors)
was used across the whole 24 h, while HR, HRV, and RR were only
available to us during sleep times. T was similarly divided into wake and
sleep times, and we reference only sleep T here. Participants were also
given the option to respond to daily surveys which included the
opportunity to report COVID-19 symptoms along with means of
testing and case confirmation. The present set of 73 participants
represent the subset of participants from the larger study who
provided both confirmed COVID-19 diagnoses and maximal data
quality. The quality of individuals’ data was judged by the
completeness of their wearable-device-derived temperature data,
i.e., how often data were missing in the period of approximately
14 days surrounding their COVID-19 diagnoses. Moreover, these
participants had no anomalies in their physiological data streams.
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2.2 Baseline period

For each participant, an individually-curated period equivalent
to 21 total days of high-resolution data (sampling rate 15 min) at
least 10 days before their COVID-19 diagnosis was created to
represent their physiology prior to illness. This period was not
necessarily a continuous 3 weeks for everyone due to gaps in data
availability. Hence, we call this a curated three-week baseline period.
In the cases where the 21 days’ worth of data were from a non-
continuous three-week period, the curation ensured a proportionate
representation of both weekend and weekday records (Figure 1).

2.3 Illness window

In order to define an “illness window” for each individual from
which to draw samples for comparison with baseline physiology, we
made use of the physiological disruption (PX) dates used during the
first TemPredict study (Mason et al., 2022). Using two of the five
physiological data streams (HR and RR), the PX computation
attempts to impute the maximally discernible deviation from
baseline physiology in the periods leading up to, and including,
an individual’s diagnosis date, as detailed in (Mason et al., 2022).

We defined the illness window for each individual as a
consecutive, three-day period starting on the date of
physiological disruption onset (PX date, defined further in Mason
et al., 2022) and ending 2 days following PX (i.e., PX+2) (Figure 1).
Three days were chosen so as to provide enough measurement
points to observe any potential physiological disruptions, without
including so many points that the detection of a distribution shift
from baseline would become diluted due to large-scale averaging.

2.4 Manifestation labels

Changes to each physiological data stream for each individual
were assigned a change label of +1, 0, or −1 at the individual’s PX
date. To generate these labels, we compared our baseline periods
to our illness windows and performed a series of Mann-Whitney
U Tests for each individual, independently for each physiological

data stream, provided that stream contained at least
15 observations in the baseline period and also 15 in the
illness window periods. There was no minimum spacing
applied to these 15 observations. If the distribution of values
for a given physiological data stream during the illness window
demonstrated an overall shift down from the values in the
baseline period through stochastic dominance (McFadden,
1989) in the Mann-Whitney U Test, we assigned that stream a
label of −1 for the participant in question. Similarly, if the
distribution of the physiological data stream values in the
illness window demonstrated an overall shift upward from the
values in the baseline, we assigned that stream a label of +1 for
that participant. Finally, if the distribution of values in the illness
window represented no statistically significant shift from the
values in baseline, we assigned that stream a label of 0 for that
participant. For those cases in which a participant had less than
15 observations for a given physiological data stream, in either
the baseline or illness window period, we assigned that stream a
label of NaN (i.e., “Not a Number”) for that participant.

The above process of label generation was applied to all
physiological data streams for each of the 73 participants,
creating a five-dimensional vector of labels. We refer to each
individual’s resultant vector as a manifestation, because it reflects
the full available physiological disruption pattern that was observed
at the onset of illness. For labeling and notation convenience, the
labels for all participants were then concatenated together as a
record of all the manifestations observed in this particular cohort
(i.e., a 73 × 5 matrix).

2.5 Common/rare manifestations

We categorize a given manifestations as common if it appears
more than once in our data set, and rare if it appears exactly once.
The threshold of “one or more-than-one” is a simple choice that
avoids the need for any more complex argument in the absence of
strong, pre-analytic justification. While a manifestation that shows
up only once in this small data set might well appear more frequently
in a larger one, this is unverifiable here. A manifestation that shows
upmore than once in the context of a small sample size is more likely
to also be more frequent in a larger data set. Expressed another way,
naive estimators of entropy (Bein, 2006) (i.e., those based on
observed frequencies of appearance of distinct manifestations)
tend to underestimate entropies and overestimate information
conveyed by manifestation frequencies about outcome variables;
our categorization-labeling threshold here represents a conscious
choice to “err on the safe side” by not assuming that singularly-
appearing manifestations will appear with proportionally more-
frequent rates in larger datasets.

2.6 Most common manifestation: M0

We defineM0 as the most common manifestation.M0 appeared
in our data set 11 times, and includes an increase in HR, decrease in
HRV, increase in RR, increase in MET, and increase in sleep T. It is
represented by the vectorM0 = [1, -1, 1, 1, 1], corresponding to each
of the aforementioned physiological changes.

FIGURE 1
Example data structure and timeline for N = 73 samples. At least
10 days between physiological onset of symptoms (PX) and baseline
samples. Baseline samples can be non-consecutive 21 days. Illness
period begins on PX and ends 3 days later. Each day of data
produces 5 physiological data streams (modalities).
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2.7 Distance

Simply labeling different manifestations, as described above, does
not render salient any low-dimensional patterns to which they might
collapse—for instance, their spanning of a formal subspace in their
shared, five-dimensional vector space. Thus, we developed a custom
“distance” metric to quantify the relative separations between
manifestations in that original, shared space. This metric was
formed by modifying the traditional Hamming distance (Ruan et al.,
2017) to accommodate ternary, instead of binary, difference classes.

A weight was assigned to each individual physiological
manifestation label according to its element-wise (Hamming-
style) separation from the single, most commonly-occurring label
M0. These individual weights were then added together to generate a
pairwise, weighted distance for each manifestation from M0. In
particular, a weight of zero (0) was assigned if the change in a given
stream was identical to the corresponding label for the same stream
inM0. A weight of +1 was assigned for any case in which the single-
stream change differed by one unit from that of M0 in either
direction. In principle, this would apply to any “1” (representing
a physiological-value upshift) or “-1” where there was a “0” in M0,
and a “0” where there was a “1” or “-1” in M0; in practice, since the
M0 vector contained no “0” entries (i.e., no physiological data stream
in the most common manifestation “stayed the same” as its pre-
illness value, according to the Mann-Whitney U test) a distance
value of “+1” could only occur in the latter ways.

A weight of +2 was assigned for a two-unit difference—which
occurred when the change in a physiological data stream had the
opposite sign of the corresponding label inM0. This slightly stronger
weighting was implemented on the assumption that manifestations
are more fundamentally different from one another, all else being
equal, if a given physiological data stream changed sign—e.g., a
relative shift downwards instead of a shift upwards—as opposed to
shifting without changing sign (potentially just a difference in
amplitude of the same nature of change).

Finally, a weight of 0.4 was assigned to labels that were NaNs,
which means that there was not enough data in that stream to
calculate a label for that person (see “Manifestation Labels” above).
The NaN weights of 0.4 were used to distinguish manifestations that
included NaN labels from manifestations that did not; this distance
allows disambiguation across distance sums otherwise derived from
integers, while being of low amplitude to reflect the uncertainty in
actual distance.

2.8 Symptom density classes

As described in (Mason et al., 2022), participants reported daily
experience of COVID-19 symptoms independent from and in
addition to providing physiology data from their wearable device.
Based on the total number of unique symptoms each person reported
starting at PX and ending 2 days following (PX+2), they were
classified as having undergone either asymptomatic (0 symptoms),
mild (1-3 symptoms), or severe (4+ symptoms) symptomaticity for the
purposes of our analyses. If symptom reports weremissing for a given
participant during the aforementioned window (lack of reports being
different from a report of 0 symptoms), this participant was assigned a
symptom class of NaN.

2.9 Statistical test of scatter

To test the significance of the manifestation categorization relation
to symptom density, we ran two Student-T simulations for each
symptom density category (Mishra et al., 2019). In the first
simulation, we utilized the naive, zeroth-order, maximum entropy
distribution, i.e., the assumption that we know nothing about the
population’s probabilities and thus each manifestation category has a
probability of one half of being associated with the symptom density
classification being tested. In the second simulation, we utilized the first-
order maximum entropy distribution, with the assumption that the
existing probabilities in the sample of manifestation category sizes are
the population probabilities and thus each manifestation category’s
probability is equal to the proportion of that category’s presence in the
sample of N = 73. The difference between the two simulations for each
symptom density classification was an estimate of the population
probability for the manifestation categories.

Both simulations entailed a random draw, with replacement,
from a population of the two manifestation categories (common/
rare), for a total number of draws equal to the number of
appearances in a given symptom density classification.

2.10 Sign switches

We defined sign switch in a manifestation as having an opposite
label in a physiological data stream comparative toM0. For example, if
a manifestation had a −1 for heart rate, then since M0 has a +1 for
heart rate, this manifestation was said to have a sign switch. However,
if that manifestation had a 0 for heart rate, it would not be defined as a
manifestation with a sign switch. The manifestations without sign
switches are referred to as being from one branch while the
manifestations with sign switches are from an alternate branch, as
can be seen for common manifestations in Figure 3. The reason for
considering manifestations with sign switches to be from an alternate
branch is that, if a physiological data stream changes in the opposite
way from how it changes in M0, it is most likely not a “less severe”
form of the same manifestation, but must in fact be of a different
physiological response. In contrast, if the change in physiology is
simply undetectable, there is no clear indication that this
manifestation is caused in a way that is different to the
manifestation represented by M0, so the manifestation representing
this illness would still be considered as part of the M0 branch.

2.11 Principal component analysis

Briefly, Principal Component Analysis identifies the composite
dimensions that best account for the variance within a high
dimensional data set. This allows for description of variance in a
compressed, lower dimensional space in which the new dimensions
cross-cut the originals, as in the hypotenuse of a right triangle
containing some information from both orthogonal legs. PCA is
commonly performed in biochemical and biomolecular analyses, as
well as in behavioral and physiological data sets (e.g., Reich et al.,
2008; Adolfo et al., 2021). We performed PCA on 39 unique
manifestations (2 of the 41 unique manifestations contained NaN
values), using the 5-dimensional vectors of physiological change
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labels (i.e., −1, 0, +1) as inputs. More specifically, we perform PCA
on the table with 39 rows (each a manifestation) with five columns
(each column being the row’s physiological change label).

2.12 Software analyses/tools

All statistical analyses were done with the Python3 scikit-learn
package except for the Kruskal–Wallis test, which was done with the
scipy.stats package, and the Student-T simulations, whichwere custom
written using Python3. Figures were built using Python3 except for
Figure 3, which was created using Adobe Photoshop.

3 Results

3.1 Manifestations span non-random, low-
dimensional spaces

It was previously reported that illness is associated, on average, with
a shift in the values of physiological variables compared to baseline (pre-
illness) periods (Mason et al., 2022). Here, we quantify differences in

each physiological modality, on an individual basis, at the time of
reported illness onset (Figure 2) and confirm by inspection that all
individuals do notmanifest their deviations in the same way. From our
N = 73 cohort, 41 unique manifestations were observed; the most
common of these, to which we attach the label M0, occurred 11 times
(see “Most Common Manifestation” above). As described in Methods,
M0 can be illustrated as [1,−1, 1, 1, 1]. Out of the 41 totalmanifestations,
13 were categorized as common (observed more than once), and the
other 28were categorized as rare (observed only once). The 13 common
manifestations accounted for 45 (61% probability weight) of the
73 participants, whereas the rare manifestations had a collective
probability of 39%. Among the common subset, metabolic activity
and heart rate variability differed from their respective values in M0

more often (8 times each) than the other physiological
features (Figure 3).

3.2 “Common” manifestations cluster
around shared physiological characteristics

The Hamming-style distance metric applied to each individual’s
manifestation revealed that the common manifestations had

FIGURE 2
M = 41 unique manifestations and their corresponding vectors (y-axis). Counts (x-axis), Summed Hamming-Inspired distance value (value to the
right of the bar). Common (blue), rare (red).
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significantly lower distances from M0 than did the rare ones (mean
distance of M0 to common: 2.2; mean distance of M0 to rare: 4.9;
Kruskal–Wallis: p = 1.4e−2; distance in Figure 2, relative relationship
in Figure 4B).

PCA revealed that the majority of manifestations from the
same branch as M0 were tightly clustered around M0. Alternate-
branch manifestations appeared around the edge of the PCA
projections (Figure 4). Moreover, alternate branches and
Hamming-style distance values were highly correlated, with
alternate branching becoming more likely as distance values
increased. Additionally, as distance value increases, the
proportion of common manifestations at a given distance
value decreases (Distance vs. Commonality: r2 = 7.6e−1, p =
7.2e−9; Distance vs. Alternative Branching: r2 = 7.4e−1, p =
3.0e−8; Figure 4).

3.3 Manifestation rarity and reported
symptom density

Student-T simulations were used to aid in estimating
correlations between manifestation categorization (common/rare)
and symptom density, performed with both the zeroth- and first-
order maximum entropy distributions to set the prior odds as either
uniform (50/50), or mean-matching values (~60/40), respectively
(see Table 1). For both versions of prior odds, we found significant
departures from the prior odds for the rare manifestation and mild
symptom density combination (Zeroth: p = 4.8e−2; First: p = 5.5e−3),
and for the common and severe pairing (Zeroth: p = 5.0e−4; First: p =
4.6e−2) (Figure 5).

3.4 Manifestation rarity and participant sex

Using the same process as the previous section, Student-T
simulations were used to estimate correlations between
manifestation categorization and sex of the participant, again
performed with both the zeroth- and first-order maximum
entropy distributions (see Table 2). For the zeroth-order
maximum entropy distribution simulation, we found significant
departures from the prior odds for females and the common
manifestation (p = 3.2e−2); however, upon utilizing the first-order
prior odds, this relationship become not statistically significant (p =
8.7e−1). For both versions of prior odds, there was no statistically
significant relationship between males and either common or rare
manifestations (Zeroth: p = 1.3e−1; First: p = 5.6e−1) (Figure 6).

4 Discussion

Our findings support the use of information-theoretic statistical
approaches to quantify differences between physiological
manifestations of illness. The approach allows for categorizing
manifestations based on likelihood of appearance and developing
relational trees across different observed manifestations. The notion
of differing physiological “manifestations” has been explored before
under broader contexts through concepts such as endotype (Kuruvilla
et al., 2019) or physiotype (Ren et al., 2022).We found that an approach
motivated by information-theoretic considerations building on this
concept led to meaningful results that others may find useful.

The space of the 41 unique manifestations observed was smaller
than the total space of possibilities (35 = 243) and the theoretical
upper bound of possibilities (N = 73; i.e., 1 per illness). This result
cannot simply be explained by under-sampling and supports the
hypothesis that the true structure of the system requires fewer
dimensions than would a random permutation of all possible
label results. Moreover, we found that not all manifestations are
equally likely. Instead, the few most common manifestations cover a
majority of cases, and these tend to be similar, clustering around a
single physiological template, or cladistic-style branch. Figure 3
shows this idea that by viewing manifestations through the lens
of this branch structure, not all illnesses that are different in one way
need to be treated as wholly new. Instead, meaningfully different
branches might be identified, and correlated to treatment choices.

Both the mild and severe symptom density classes had a
statistically significant relationship to rarity. Rare manifestations
were more likely to be associated with a mild symptom density
class, whereas common manifestations were more likely to have a
severe symptom density class, as seen in Table 1. These common
manifestationsmostly conform to the clinically expected physiological
template of acute illness (e.g., elevated temperature, elevated heart
rate, etc.) (Li et al., 2017). However, the appearance of anomalies
among commonmanifestations that did not fit this expected template
(evident in Figure 4B) highlights the potential importance of
numerical techniques that can differentiate cases using physiologic
data, as different physiological responses may have clinical relevance,
indicating the need for different interventions. We were especially
interested to see the apparent peak in physiological space (the largest
dot in Figure 4A) with slopes down to a sparse, distributed plane of
rare alternative manifestations. This suggests that there is likely one

FIGURE 3
Step-by-step changes in commonmanifestations fromM0. Each
manifestation is represented by a circle, and the area of each circle is
proportional to the number of people who had that manifestation (n).
Change of each physiological data stream label is denoted by an
annotated arrow. heart rate (H), heart rate variability (V), respiratory
rate (R), activity (MET, M), temperature (T). Each stream label is colored
differently based on whether it indicates a value carried from the
previous manifestation (black), reduction to 0 (gold), a sign switch
(green), or NaN due to lack of data (gray). Bold indicates a value shared
with M0.
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main peak, but that higher resolution analyses of larger data setsmight
reveal topological relationships that could highlight families of
response type to different conditions. If this is proven true, then
the techniques we develop here could help support precision in

clinical decisions when such decisions can be supported by
longitudinal data.

Additionally, these correlations reveal that asymptomatic cases
show up with equal frequency in both common and rare

FIGURE 4
PCA 2-dimensional projection plot of five vector physiological changes (A). Main branch of non-switch manifestations seen in bottom left corner
(circles), with more sparse peripheral cases with switches (“X”s). Unique Manifestations (B) ordered horizontally by distance and stacked vertically in
arbitrary order. Shape marks switch and color marks common/rare. Row below the line is a summation of figures above to represent average ‘color’
(i.e., how common versus rare the manifestations at this distance are). Below, mean ± std for each group reflect statistical differences by condition;
marker area is proportional to n of that condition.
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manifestations, as seen in Figure 5. It is possible that this is an artifact of
self-selection, whereby individuals with mild cases are less likely to seek
testing. Taken at face value, it suggests that someone’s reporting of the
absence of a symptom might be uncorrelated to the presence of a
physiological sign for that symptom; this is consistent with early
observations that many COVID-19 positive individuals had severely
reduced blood oxygen upon admission to hospitals while reporting no
shortness of breath (Couzin-Frankel, 2020). If this lack of correlation is
verified in other datasets, it would both call for the adoption of
continuous physiological measurement for illness detection and
classification, and suggest the need for further study into the cause
of asymptomatic individuals either not being aware of or reporting
physiological changes. The presence of asymptomatic individuals who
were unaware that their body was undergoing severe physiological
changes highlights a potential psychological axis to COVID-19 illness.

To further showcase the use of this method, our analysis of the
relationship between sex and manifestation categorization emphasizes
alternative use cases to the method than symptom density. We find a
statistically significant result using zeroth-order prior odds between
females and common manifestations (Table 2). However, we caution

readers against over interpretation of this result due to female-biased
samples, with 43 out of the N = 73 (Figure 6). The loss of statistical
significance when considering first-order prior odds adds to this point,
as it shows that it is likely a statistically insignificant portion of the more
frequently appearing sex (females) in the more frequently appearing
manifestation category (common). Nevertheless, this exploration
furthers that our method could be used to support similar
investigations in future studies with larger population numbers.

Importantly, several caveats are notable in this context of this
framework. First, we did not have a large enough sample size to
conclude that this particular mapping of physiological data is
representative of the entire COVID-19-positive population - that is,
we make no claim that these are ideal or template manifestations of
COVID-19, only that these manifestations appear substantially non-
random in this data set, and that this technique appears adequate to
reveal such patterns. Another caveat is that the COVID-19 strains being
studied here are early strains of the virus, with all data collected in 2020.
Thus, results pertaining to symptom density may not replicate in data
from other COVID variants. Moreover, using the same process as
described in this paper, we could have studied other factors such as
age and sex. However, we chose to focus on symptom density on the
assumption that symptom reports are to some degree independent from
physiological measurements under examination. This particular
investigation reveals that continuous physiological data contain a non-
negligible amount of information regarding the symptom experience of a
patient. Additionally, different devices will no doubt provide different
modalities of physiological data in the future. Our approach here is device
agnostic, and could be applied to any dataset of multimodal physiological
data. As the number of modalities measured increases, the resolution of
possible manifestations is expected to increase in proportion.

Beyond this, there could be an issue of self-selection, as participants
in this study may not be representative of the entire population, and
people who chose and were able to access COVID-19 testing in

TABLE 1 P values associated with Student-T simulations for analysis of
statistical significance of commonality ratios associated with symptom
class densities.

Symptom density class p (Zeroth) p (First)

NaN 3.6e−1 6.3e−1

Asymptomatic 6.4e−1 3.7e−1

Mild 4.8e−2 5.5e−3

Severe 5.0e−4 4.6e−2

Bold face indicates statistically significant at the significance level of α = 0.05.

FIGURE 5
Correlation between commonality and symptomaticity of illness. Higher proportion values denote stronger correlation (colorbar, proportion Y
commonality of X severity). Cell numeric label: total number of subjects within the given cell.
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2020may differ frompeople whowere infected but not able orwilling to
confirm their infection status through testing. Differences in
manifestations across more diverse populations and the interactions
of baseline “physiotypes,” or “physiolotypes” (Ivanov, 2021), with
specific illness manifestations must be fleshed out before approaches
using our framework could be of reliable utility. Additionally, different
physiological metrics might show different relationships to different
specific symptoms. As such, different sensors would likely yield
somewhat different specific numbers in our results. These specific
relationships are beyond the scope of our analyses here, however.
Despite these important considerations, the methods, as a proof of
concept, support the use of our information-theoretic framework for
manifestation quantification. One of the “grand challenges” in network
physiology is the detection of clusters within “physiolomes” (Ivanov,
2021), analogous to genotyping for risk. Although we use COVID-19
manifestations as a test for our hypothesis about non-random
assortment of nodes in a network, from an information point of
view, this approach may help contribute to this challenge. We
recently showed in sleep that network models reveal additional
information about illness risk beyond means or sums (Viswanath
et al., 2024), and our methods described here further support the
framework of mining for network states as a way to gain insight when
dealing with physiological systems, especially when capturing dynamics
over time within individuals.

In conclusion, we find that COVID-19 infection does seem to
present in multiple specific, non-random physiological
manifestations, and these manifestations are able to be mapped
and classified from continuous physiological data. With sufficiently
large samples, such approaches could be more widely validated. If
successful at that point, these tools might enable faster identification
of illness manifestation types in individual cases. This could not only
aid in the selection of more specifically targeted COVID-19
treatment protocols tailored to particular physiologic
manifestations, but it also seems likely that the same analytic
approach may be useful in other illnesses as well.
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FIGURE 6
Correlation between commonality and sex. Higher proportion values denote stronger correlation (colorbar, proportion Y commonality of X
severity). Cell numeric label: total number of subjects within the given cell.

TABLE 2 P values associated with Student-T simulations for analysis of
statistical significance of commonality ratios associated with sex.

Sex p (Zeroth) p (First)

Female 3.2e−2 3.8e−1

Male 1.3e−1 5.6e−1

Bold face indicates statistically significant at the significance level of α = 0.05.
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