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Over the past decades, studies of human brain networks have received growing
attention as the assessment and modelling of connectivity in the brain is a topic of
high impact with potential application in the understanding of human brain
organization under both physiological as well as various pathological conditions.
Under specific diagnostic settings, human neuronal signal can be obtained from
intracranial EEG (iEEG) recording in epilepsy patients that allows gaining insight into
the functional organisationof living humanbrain. There are two approaches to assess
brain connectivity in the iEEG-based signal: evaluation of spontaneous neuronal
oscillations during ongoing physiological and pathological brain activity, and analysis
of the electrophysiological cortico-cortical neuronal responses, evoked by single
pulse electrical stimulation (SPES). Both methods have their own advantages and
limitations. The paper outlines availablemethodological approaches and provides an
overview of current findings in studies of physiological and pathological human brain
networks, based on intracranial EEG recordings.
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1 Introduction

Over the past decades, the world neuroscience society became increasingly interested in
human brain connectivity so that the yearly number of publications available under these
keywords shows sustainable growth from several hundred in the early 2000s to several
thousands in the last years. The attention shifts from a single brain region, traditionally
considered a functional module, to interactions among distributed neuronal populations and
brain areas. Modern neuroscience theories do not consider the brain as a number of
fragmented components with a particular functional role, but rather emphasize the role of
dynamically organized neuronal systems, probably underlying flexible cognitive operations
and complex human behaviour (Bressler and Menon, 2010; Mill et al., 2017). This approach
gave rise to novel concepts encouraging research in the field of network neuroscience that
views the brain functioning in terms of dispersed but interconnected regions coordinating
their activity in time- or frequency-related manner (Bassett and Sporns, 2017).

OPEN ACCESS

EDITED BY

Michal Zochowski,
University of Michigan, United States

REVIEWED BY

Mani Ratnesh Singh Sandhu,
Yale University, United States
Vasileios Kokkinos,
Northwestern Memorial Hospital,
United States

*CORRESPONDENCE

Yulia Novitskaya,
yulia.novitskaya@uniklinik-freiburg.de

RECEIVED 19 September 2023
ACCEPTED 17 November 2023
PUBLISHED 30 November 2023

CITATION

Novitskaya Y, Dümpelmann M and
Schulze-Bonhage A (2023), Physiological
and pathological neuronal connectivity in
the living human brain based on
intracranial EEG signals: the current state
of research.
Front. Netw. Physiol. 3:1297345.
doi: 10.3389/fnetp.2023.1297345

COPYRIGHT

© 2023 Novitskaya, Dümpelmann and
Schulze-Bonhage. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Network Physiology frontiersin.org01

TYPE Review
PUBLISHED 30 November 2023
DOI 10.3389/fnetp.2023.1297345

https://www.frontiersin.org/articles/10.3389/fnetp.2023.1297345/full
https://www.frontiersin.org/articles/10.3389/fnetp.2023.1297345/full
https://www.frontiersin.org/articles/10.3389/fnetp.2023.1297345/full
https://www.frontiersin.org/articles/10.3389/fnetp.2023.1297345/full
https://www.frontiersin.org/articles/10.3389/fnetp.2023.1297345/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fnetp.2023.1297345&domain=pdf&date_stamp=2023-11-30
mailto:yulia.novitskaya@uniklinik-freiburg.de
mailto:yulia.novitskaya@uniklinik-freiburg.de
https://doi.org/10.3389/fnetp.2023.1297345
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org/journals/network-physiology#editorial-board
https://www.frontiersin.org/journals/network-physiology#editorial-board
https://doi.org/10.3389/fnetp.2023.1297345


Brain connectivity can be described as structural (or
neuroanatomical), functional, and effective connectivity.
Structural connectivity refers to existing neuroanatomical links
and can be evaluated over various neuroimaging modalities that
provide comprehensive network maps of anatomical connections
among neural elements. Although MRI-based tractography can
identify fiber locations of white matter bundles (Grier et al.,
2020), it is limited to major tracts and does not provide
information about directionality of the connections. Functional
MRI (fMRI) is a valuable non-invasive research tool for
measuring and mapping brain activity with high spatial precision
(up to 1,5–3 mm) in default state or during specific tasks. However,
due to its low temporal resolution, limited by the haemodynamic
response introducing a time delay of several seconds range between
neuronal firing and changes of the BOLD signal (Harris et al., 2011;
Drew, 2019; Amemiya et al., 2020), fMRI cannot be used for
dynamic mapping of neural activity operating on a timescale of
milliseconds. Non-invasive EEG and MEG, two connectivity
methods with high temporal resolution in the required time
range, are characterized, however, by relatively low spatial
precision in the range of 4–5 cm as well as little or no sensitivity
to activity in neuronal circuits located deeply under the scalp surface
(Barkley and Baumgartner, 2003; Burle et al., 2015).

Under specific diagnostic settings, neural activity can be
recorded directly from the living human brain by means of
intracranial EEG. This method offers the opportunity to record
neuronal signals precisely defined in space and time, also from deep
brain structures not accessible for non-invasive EEG (Gonzalez-
Martinez, 2016; Khoo et al., 2020). Here we review the method of
invasive EEG and its application in modern connectivity research.

2 Measurement of intracerebral
connectivity

2.1 Methodological approach of invasive
brain research

Intracranial EEG (iEEG) signal in the living human brain can be
recorded in tertiary epilepsy centres in patients with therapy
resistant epilepsy as a part of presurgical evaluation. Presurgical
epilepsy diagnostics is designed to delineate an epileptogenic focus
that can be surgically removed in order to cure or substantially
reduce seizures (Gonzalez-Martinez, 2016; Khoo et al., 2020). Due to
very diverse localisation of epileptogenic focus, no other
neurological condition allows the same opportunities for
intracranial electrophysiological studies in neuroscience.

There are two most common methods for recording directly
from the cortex in epilepsy patients: stereoelectroencephalography
(SEEG) and subdural electrode recordings (SDEs) (Katz and Abel,
2019). SEEG requires insertion of intracerebral depth electrodes
through drilled holes in the scull to stereotactically targeted cortical
areas which are hypothesized to be involved in the seizure onset,
propagation of epileptic activity or generation of seizure symptoms.
SDEs are implanted through a craniotomy and, in case of strip
electrodes, also through drilled holes. These two approaches can be
combined, for example, for a dense coverage of the temporal lobe
including anterior mesial structures. Whereas SDEs provide a dense

coverage of the gyral surface, SEEG allows implantation of sulcal
gray matter and deep brain structures, not accessible by SDEs. The
obtained iEEG signal represents a two-dimensional view of cortical
activity when recorded with SDEs and a three-dimensional view
when recorded with SEEG. SEEG depth electrodes can be modified
by adding microwires. Such combined (hybrid) electrodes contain a
set of eight microwires protruding from the electrode tip that allows
to simultaneously record intracranial EEG and single-unit activity,
so called a hybrid SEEG (Miller et al., 2013; Nagahama et al., 2023).
iEEG signal can be recorded at high sampling rates >2,000 Hz to
cover high-frequency oscillations or even unit activities, and has a
good signal-to-noise ratio with low artefact contamination (Ball
et al., 2008; 2009).

Providing a great opportunity for human brain research,
intracranial EEG studies have certain limitations. Although
intracranial recording can be potentially performed in any brain
region, the indication to undergo invasive EEG and the sites of
electrode implantation are based exclusively on clinical reasons in
order to localize the seizure onset zone, and cannot be justified by
scientific interest only (Männlin et al., 2023). Therefore, the electrodes
placement, their spatial orientation and implantation density may
vary significantly among patients. For the same reason, invasive brain
coverage is usually restricted by one or several cortical areas, forming a
“tunnel view” and excluding large brain areas from the assessment of
intracerebral communication in the same subject. Furthermore,
interpretation of intracranial EEG findings needs to be done
careful considering possible misinterpretation of the properties of
interdependent neuronal circuits due to a large number of influencing
factors, including also epileptogenicity and effect of antiseizure
medication taken by patients. iEEG evaluation has to be performed
by skilled EEG readers who are trained to distinguish between
pathological and normal physiological neural activity that might
appear to be epileptiform, for example, hippocampal theta waves
(Lega et al., 2012), hippocampal ripples (Zhen et al., 2021), or sleep
spindles (Gonzalez et al., 2022). Besides the factors mentioned above,
the EEG findings can be influenced by recording technologies and
filters incorporated in medical devices, since neuronal connectivity
values have been reported to differ between depth electrodes and
subdural electrodes (Sanz-Garcia et al., 2018; Bernabei et al., 2021),
probably due to different patterns of spatial sampling.

2.2 Estimates of EEG-based brain
connectivity

There are basically two approaches to assess brain connectivity
in the EEG-based signal: evaluation of spontaneous neuronal
oscillations during ongoing brain activity (Mayhew et al., 2013;
Cantou et al., 2018) termed functional connectivity, and analysis of
the electrophysiological neuronal responses, evoked by a SPES,
single pulse electrical stimulation (Lacruz et al., 2007; David
et al., 2010; Mandonnet et al., 2010; Keller et al., 2014; Kunieda
et al., 2015; Krieg et al., 2017), so called effective connectivity.
Measurements of functional connectivity estimate whether
spatially disparate neurophysiological events appear to be
temporally related (Friston, 1994; Daunizeau et al., 2011; Friston,
2011). Functional connectivity measurements do not require any
direct intervention in the nervous system and can be implemented
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either in the absence of identifiable stimuli or in the context of
performing a specific task. The SPES approach, on the contrary, uses
active interference with the implanted cortical areas (Catenoix et al.,
2005; Catenoix et al., 2011; David et al., 2013). In this setting, direct
cortical stimulation at a low frequency of up to 5 Hz evokes
electrophysiological responses (corticocortical evoked potentials,
CCEP) at other intracranial recording sites (Figure 1). The SPES
procedure has been shown to be safe for patients under the
established protocol (Kobayashi et al., 2021). This renders

cortical stimulation an important tool for mapping effective
connectivity between brain regions which can be determined as
quantification of the causal influence that one brain area may have
over another (Friston, 1994; Friston, 2011; Trebaul et al., 2018).

Connectivity evaluation based on the analysis of spontaneous
neuronal oscillations addresses various types of linear (Kramer et al.,
2009) and non-linear (Lehnertz, 1999; Elger et al., 2000)
relationships between the ongoing EEG dynamics recorded in
regions of interest, allowing by that an assessment of functional

FIGURE 1
(A). MRI imaging (T1-MPRAGE) in a representative patient showing intracranial positioning of depth electrodes in the right temporal lobe, adjacent
insular cortex (IR) and Heschl’s gyrus (HQR). (B). Exemplary SEEG snapshot showing cortico-cortical evoked potentials (CCEP), the most prominent on
PHR1-2 (parahippocampal gyrus) and a smaller response on AR1-3 (amygdala) after stimulation on HAR1-2 (hippocampus). Sensitivity 70 μV/mm, low
pass 120 Hz, high pass 1.6 Hz. (C). A representative CCEP trace showing a typical curve with clearly visible sharp potential and a following slow-wave
like discharge, corresponding to early N1- and late N2-components of CCEPwaves respectively. The zoomed-in insert demonstrates themagnified early
N1-component of the same CCEP trace. The shaded area indicates the time interval (10–110 ms) during which assessment of the early N1-component is
typically made.
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connectivity, which is defined as “temporal correlation of a
neurophysiological index measured in different brain areas”
(Friston, 1994; Daunizeau et al., 2011; Friston, 2011). There are
various methods operating with phase synchrony, a measure of
consistency in phase difference, in a frequency domain between
pairs of oscillatory signals across a set of observation, or purely with
amplitude of the oscillations in order to quantify amplitude
correlations independent of phase relations. Among measures of
phase synchrony widely applied in neuroscience, some methods,
such as phase slope index and phase locking value, are aimed to
capture synchronized interactions between neuronal signals, yet
limited to predominantly unidirectional interaction (Bastos and
Schoffelen, 2016). Methods quantifying bidirectional interactions
between two signals have also found broad application in
neuroscience. These methods, such as Granger causality and
alternative causality measures designed on its background, for
example, directed transfer function and partial directed
coherence, are based on the statistical dependencies between
different neuronal signals estimated on the basis of multivariate
linear models or cross-spectral densities. They provide information
about bidirectional interactions, thus quantifying the directed
influence of signal x on signal y and vice versa (Chen et al., 2006;
Kaminski et al., 2016; Heyse et al., 2021).

Interpretation of estimated functional connectivity has to be
performed with caution since there are several methodological issues
that might influence the results (Friston et al., 2014; Bastos and
Schoffelen, 2016). The main issue relates to the fact that EEG-
recorded signals contain a poorly known mixture of signal-of-
interest and background “noise” that might require a post hoc
signal correction (Sommerlade et al., 2015). Another concern in
interpretation of neuronal interactions is caused by volume
conduction, a spatial spread of electromagnetic fields picked up
by recording electrodes from multiple neuronal sources (Lopes da
Silva, 2004). There are several strategies to overcome the influence of
volume conduction in EEG signal: applying non-zero-time lags
between the signals, or using connectivity metrics that
functioning on the out-of-phase interaction, discarding the
interactions that are at a phase difference of 0° (or 180°) (Bastos
and Schoffelen, 2016). After all, observed connectivity patterns can
be erroneously interpretated due to the fact that it is impossible to
state whether an observed connection is a direct connection, or
whether this connection is mediated through a third unobserved
source.

Graph measures can be also applied for connectivity estimation,
however, in case of iEEG, mainly as a measure of relatively closely
spaced nodes (local topology) than long-range connections over the
whole brain (global topology). These metrics nevertheless allow to
rank the explored structures according to their degree of
connectivity (Wilke et al., 2011; Gleichgerrcht et al., 2015;
Hatlestad-Hall et al., 2021).

3 Effective brain connectivity

3.1 CCEP as a brain mapping tool

The first attempts to probe connectivity in the living human
brain date back to 1980’s when bidirectional connections between

human amygdala and hippocampus were stated through electrical
stimulation in one structure and recording of the elicited response in
another structure in the intracranial EEG (Buser and Bancaud,
1983). Nearly a decade later, single pulse electrical stimulation
was applied to detect adjacent and remote cortical responses in
the human temporal lobe, including cortical evoked potentials in the
contralateral mesial temporal regions (Wilson et al., 1990; Wilson
et al., 1991). In the early 2000s, several groups across the world
established SPES-based methods to map cortical connectivity
through cortico-cortical evoked potentials (Valentin et al., 2002;
Matsumoto et al., 2004), considering cortical stimulation as an
important tool for mapping effective connectivity between brain
regions.

CCEP-based effective connectivity has been traced in numerous
brain circuits, including language system (Matsumoto et al., 2004;
David et al., 2013), motor system (Matsumoto et al., 2007; Kikuchi
et al., 2012), frontal lobe network (Garell et al., 2013), temporal lobe
and limbic network (Catenoix et al., 2005; Kubota et al., 2013;
Takeyama et al., 2019; Novitskaya et al., 2020; Oane et al., 2020),
parietal cortices (Togo et al., 2022) as well as auditory (Howard et al.,
2000; Brugge et al., 2003) and visual (Sugiura et al., 2020) systems.
The presence of CCEP in investigated brain regions is interpreted as
functional tractography in comparison to anatomical fiber
tractography derived from diffusion tensor imaging.

CCEPs frequently contain two major components: an early
negative component (N1; <100 ms; Figure 1C) reflecting
oligosynaptic connectivity in local cortical circuits (Matsumoto
et al., 2004) as well as a late (N2; >100 ms) component generated
via either cortico-cortical or cortico-subcortico-cortical
polysynaptic pathways (Matsumoto et al., 2004; Matsumoto et al.,
2007; Keller et al., 2014). The early N1-components are considered
to reflect structural and effective connections between cortical
regions and are used for brain mapping, whereas the late N2-
components are considerably modulated by excitability of regions
involved, such as an epileptogenic zone (Valentin et al., 2005).
CCEPs have been demonstrated to have some variations in
waveform and latency in different anatomical areas (Keller et al.,
2011; Keller et al., 2014; Novitskaya et al., 2020). One study reported
amplitude differences depending on hemispheric dominance in
CCEPs obtained from temporoparietal areas (Kanno et al., 2018).
The N1 peak latency has been demonstrated to correlate with the
distance between stimulated and recorded areas, which may suggest
the cortico-cortical propagation as a major cause of observed delays
in the N1 response (Trebaul et al., 2018). The applied stimulation
current is known to influence amplitude and spatial spread of CCEP
(Kundu et al., 2020).

A recent work devoted to mapping large brain areas based on
774 445 cortico-cortical evoked potentials obtained from 780 patients
with epilepsy revealed that the cortico-cortical axonal conduction
delays between 57 investigated cortical areas were globally short with
the median latency of 10.2 ms and associated to a median velocity of
3.9 m/s in a group of probands older than 15 years old (Lemaréchal
et al., 2022). Axonal conduction delays were significantly larger in the
group of subjects younger than 15 years, which corroborates that
brain maturation increases the speed of brain dynamics (Lemaréchal
et al., 2022; van Blooijs et al., 2023).

Changes in N1-components have been also shown in the context
of sleep/wake cycle and the changes depended on the sleep stage.
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Compared with the awake state and, less prominent, with REM
sleep, single-pulse stimulation during NREM sleep revealed
increased connectivity and neuronal excitability which was
expressed in the increased size of N1-waves and CCEP-related
high-gamma activities, most noticeable in the frontal lobe (Usami
et al., 2015). The finding suggests more intense neuronal activation
occurred during NREM sleep than in the awake state. Increased
cortical excitability during sleep regardless of epileptogenicity has
been also confirmed in a recent CCEP-study (Arbune et al., 2020).

3.2 CCEP studies of the epileptogenic
network

Cortical stimulation has been used for diagnostical purposes in
epilepsy since more than 50 years. During invasive epilepsy
evaluations, cortical stimulation in range of 25–50 Hz is applied
to delineate eloquent (i.e. carrying out basic neurological functions)
cortical regions and confirm epileptogenic cortex (Trébuchon and
Chauvel, 2016). The SPES method that utilizes low frequency (up to
5 Hz) electrical stimulation has been also reported for the purpose of
localizing the seizure onset zone and mapping the seizure
propagation zone. In this case, besides the early CCEPs discussed
above, late responses occurring later than 100 ms after stimulus (i.e.
N2 component), as well as repetitive responses with longer lasting
oscillations are linked to areas with changed (increased) excitability,
such as an epileptogenic zone (Valentín et al., 2002; Valentín et al.,
2005).

Several studies have reported changes in the morphology,
latency and response rate of evoked potentials in epileptogenic
brain regions (Rosenberg et al., 2009). Higher CCEP-amplitude
have been shown in relation to seizure onset zone (Zhang et al.,
2018; Hays et al., 2023) and seizure propagation zone (Lega et al.,
2015). Large amplitude oscillations evoked through single-pulse
electrical stimulation in clinically suspected epileptogenic areas
have been recently proposed as an additional biomarker of the
seizure onset zone (Smith et al., 2022).

Several studies have provided evidence that focal epilepsy arises
from disordered neural connectivity in localized cortical regions that
involves a concept of abnormal cortical networks with nodes and
pathological connections also beyond the seizure onset zone.
Epileptic networks have been found to include highly
interconnected nodes with the highest number of outgoing
connections (van Mierlo et al., 2013; Courtens et al., 2016) or
ingoing connections (Li et al., 2016) in the seizure onset zone in
patients with good postoperative outcome. These findings have been
recently reassessed by means of early CCEP in epilepsy patients who
underwent intracranial electrocorticography. The constructed
effective networks revealed a high level of ingoing and outgoing
connections, and a higher proportion of bidirectional connections in
epileptogenic tissue, confirming that the epileptogenic tissue is
densely connected with itself and, again, suggesting the SPES
method as a valuable tool for localization of epileptogenic area
(van Blooijs et al., 2018; Guo et al., 2020).

Focal epilepsy is frequently associated with a structural cortical
lesion visible in brainMRI scans. Effective connectivity that seems to
reflect anatomical oligosynaptic pathways in local cortical circuits
can be potentially altered by any structural abnormalities in the

assessed regions. Epileptogenic lesions are histologically various and
can be roughly attributed to either local cellular loss (e.g.,
hippocampal sclerosis, posttraumatic lesion) or cortical
malformations (e.g., focal cortical dysplasia, tuberous sclerosis,
tumors). Influence of structural brain abnormalities on CCEP
properties has not been systemically explored yet.
Electrophysiological study in vitro using hippocampal slices
obtained from epileptic patients who had undergone epilepsy
surgery did not reveal any effect on stimulus-evoked action
potential in slices with mesiotemporal sclerosis compared to the
hippocampal samples without a structural lesion (Knowles et al.,
1992). Nevertheless, effects of electrical stimulation might be
different on systemic levels. A single observation of Catenoix
et al. (2011) provided evidence that severe hippocampal atrophy
might be associated with disappearance of physiological CCEPs,
suggesting that cellular loss could result in the degeneration of some
hippocampal projections. A recent work which assessed
hippocampal fast ripples evoked by parahippocampal SPES
indirectly supports this assumption as it has been revealed that
probability to evoke fast ripples decreased with the severity of
hippocampal sclerosis in the areas CA2-3 but increased in the
subiculum (Tóth et al., 2021).

Regarding malformational lesions such as a focal cortical
dysplasia (FCD), a single report is available that demonstrates a
difference in the amplitude of the SPES-responses with larger
responses in patients with FCD type I compared to FCD type II
(Shahabi et al., 2021). Another recent SPES-study in epilepsy
patients with nodular heterotopias, a brain malformation of
cortical development, has revealed that nodular heterotopias have
widespread CCEP-based connectivity with the overlying cortex but
also with distant cortical regions and other nodules (Boulogne et al.,
2022).

4 Functional brain connectivity

4.1 Measures of “information flow”

Evaluation of spontaneous neuronal oscillations during ongoing
brain activity does not require any direct intervention in the nervous
system and can be implemented either in the absence of identifiable
stimulus or during task performance as well as in the context of
specific brain activity such as sleep or epileptic seizure. Neural
activity evaluated as statistical dependencies among time series
can be termed “Neural Information Flow,” meaning how much
information is transferred between regions within the nervous
system, the process which might underlie communicational
processes within the brain (Dimitrov et al., 2011). Despite the
promising application value, only few published works involve
assessment of functional connectivity based on the iEEG signal,
most likely due to methodological issues discussed above
(Section 2.2).

Intracerebral functional connectivity has been mostly
investigated within auditive and language networks. Regarding
auditive perception, the timing and distribution of left perisylvian
electrophysiological activity has been analysed using the Granger
causality method in a single patient during a speech processing task
and revealed a widespread activation over all temporal structures
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involved in the ventral speech processing pathway (Gow et al., 2009).
In another study of emotional musical perception, information flow
from the amygdala to the orbitofrontal cortex and from the
amygdala to the auditory cortex was considerable and reliable
across seven subjects, confirming the involvement of amygdala
into emotional processing (Omigie et al., 2015). A functional
connectivity study in a lexical selection task demonstrated that
the Broca’s area was more active and also exhibited more local
network interactions with posterior temporal cortex during the task
(Wang et al., 2021).

Several recent studies addressed the issue of verification the
results of functional connectivity methods by comparing them with
CCEP networks. Hebbink et al. (2019) compared the overlap in
connectivity between functional methods (cross-correlation and
Granger causality) and the SPES-induced network in order to
assess their ability to reveal well-known anatomical connections
in the language circuit. Crocker et al. (2021) investigated effective
and functional connectivity measures across numerous frontal and
temporal sites during resting state. Both studies reported a
divergence between effective and functional networks in vivo,
suggesting unlike the evoked connectivity that revealed to be
stable under different conditions, functional connectivity can be a
dynamic process in spatial and temporal scales and probably vary
state-dependently.

4.2 Functional connectivity in the
epileptogenic network

Intracranial EEG is aimed to delineate the epileptogenic area, and
the seizure onset zone is traditionally defined visually by treating
epileptologists that can be sometimes very challenging. In order to
support clinical iEEG interpretation, a computer-assisted approach
named Epileptogenicity Index has been proposed (Bartolomei et al.,
2008). The method was designed to quantify the level of involvement
of each brain region in the ictal onset, and was based on a spectral
analysis of the iEEG signal, emphasizing activity in the high frequency
bands. In the following years, different computer-assisted signal
analysis methods have been introduced and, when compared,
showed highly discordant results depending on the specific seizure
pattern (Andrzejak et al., 2015). That promoted research aimed to
delineate the seizure onset zone based on its connectivity.

Focal epilepsy is considered to result from disordered local
hyperexcitability and connectivity, originating from “driver”
regions (Bui et al., 2015; Hebbink et al., 2017). In the last decade,
numerous connectivity measures have been applied to study the
epileptogenic network, including directed transfer function,
Granger causality, linear and non-linear correlation, imaginary
coherence, partial directed coherence and cross-frequency
directionality, in time or time-frequency domains (Lagarde et al.,
2022). Graph-theory measures have been also used in order to
estimate the level of involvement of each brain region (i.e., graph
node) within the epileptogenic network (Panzica et al., 2013;
Gleichgerrcht et al., 2015; Ren et al., 2019; Hatlestad-Hall et al.,
2021). The results of the studies suggest higher functional
connectivity in brain areas located in the epileptogenic zone with
gradual decrease in the connectivity level in propagation zone,
irritative zones, and zones, not involved in the seizure generation

(Lagarde et al., 2018; Goodale et al., 2020; Narasimhan et al., 2020).
Moreover, epileptogenicity has been shown to be in causal
relationships with the surrounding neuronal populations (Sabesan
et al., 2009; Wang et al., 2017). From the clinical point of view,
causalitymeasures are interesting in order to define the network nodes
with the largest sum of outgoing links from a given brain region which
indicates the regions with higher outflow as correlate to the seizure
onset zone (van Mierlo et al., 2013; Courtens et al., 2016). Changes in
the pattern of functional connectivity have been barely studied in the
context of cortical lesions. Focal cortical dysplasia, a brain
malformation associated with intrinsic epileptogenicity, has been
shown to be characterized by abnormal outgoing connectivity in
comparison with the other examined areas (Varotto et al., 2012).

Functional connectivity studies suggest that epileptogenic
networks exhibit aberrant dynamics not only at the time of
seizure onset, but also during interictal seizure-free periods. A
causality-based analysis has revealed that persistence of inflows
and outflows of high frequency activity was a good indicator of
the seizure onset zone, also observed during interictal periods
(Korzeniewska et al., 2014). Interictal connectivity directed
towards the assumed seizure onset zone gave rise to the interictal
suppression hypothesis that suggests that epileptogenic zones have
an increased inward connectivity which could relate to interictal
suppression of epileptiform activity as a control mechanism during
seizure-free periods (Vlachos et al., 2017; Narasimhan et al., 2020;
Jiang et al., 2022; Johnson et al., 2023).

5 Challenges and future directions

iEEG is a valuable tool for neuroscience studies in the living
human brain, however, its scientific implementation can be
challenging. Firstly, invasive EEG recording is restricted to
investigations in epilepsy patients, and can be performed only in
clinically relevant cortical regions in a given patient limiting the area
of investigation. This issue can be overcome by collecting iEEG data
from many patients in multiple tertiary epilepsy centers and fusing
them to a large database (for example, see f-tract.eu; Lemaréchal
et al., 2022) which allows for sampling information across extended
brain. Yet, the inhomogeneity of the data should be considered as the
iEEG recordings are acquired from patients of different sex, age and
neurological conditions. Strategies of electrode placement and iEEG
acquisition can vary substantially between epilepsy centers. Also,
SEEG cortical stimulation practices have been recently shown to be
very different across hospitals (Cockle et al., 2023). Additionally,
epilepsy patients often have cognitive impairments and psychiatric
comorbidities which may affect memory formation, affective
processing and other fundamental functions of human cognition.
Depending on the degree of such impairments, this may limit the
extrapolation of iEEG-based research results to the healthy
population.

iEEG-based connectivity assessment has a promising
application in mapping epileptogenic networks. Nowadays, the
identification of the SOZ during presurgical evaluation is a
manual, time-consuming process which operates with large
amounts of disparate neural data and has a basically unexplored
reliability (Flanary et al., 2023). Although a number of automated
approaches using machine and deep learning have been applied to
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identify SOZ, the visual iEEG reading by epileptologists remains the
gold diagnostic standard worldwide. Whereas an unsupervised
automated iEEG exploration is still not the matter of the nearest
future, developing neural biomarkers that have a supportive value
for visual SOZ search is encouraging. So far, a few retrospective
SEEG studies have found structural and functional connectivity to
be predictive markers for postsurgical outcomes (Shamas et al.,
2022; Stone et al., 2022; Matarrese et al., 2023; Sinha et al., 2023; Xu
et al., 2023). The assessment of neural connectivity may thus in the
future becomes a tool of presurgical evaluation for better patient
selection, and for improved strategies of tailored brain resection or
neurostimulation of the epileptogenic focus (Khambhati et al.,
2021). Beyond the field of epileptology, iEEG-based studies of
human brain connectivity may gain an insight into the brain
organization under different physiological and pathological
conditions such as sustained wakefulness, NREM sleep, mental
disorders, pain, cognitive impairments, or cognitive performance.
Intracranially recorded brain activity can be used to identify circuit-
level electrophysiological correlates of neurological and psychiatric
symptoms in order to modulate the circuits over targeted electrical
stimulation to disrupt the symptoms. This approach has been
successfully applied since decades by the example of deep brain
stimulation in thalamus for treatment of movement disorders, most
commonly Parkinson disease (Lozano et al., 2019). The same
strategy can be used for targeting electrophysiological features
which correspond to affective, cognitive or sensory symptoms.
This can provide a starting point for developing more effective
neuromodulation interventions and extending treatment options in
psychiatry or pain management (Bormann et al., 2021).

Besides spontaneous neural activity, intracranial EEG recording
can be performed in association with stimuli of different modalities,
allowing investigation of human event-related potentials. This found
application in studies of cognitive or affective activity involved in
processing the stimulus or preparing an action (Fernández et al.,
1999; Helfrich and Knight, 2019). Event-related potentials recorded
in the substructures of the human medial temporal lobe have been
shown to differentiate in the latency and localization in a paradigm
of language comprehension (Meyer et al., 2005) and a paradigm of
face recognition (Dietl et al., 2005), thus suggesting functionally
distinct aspects of language integration and associative semantic
memory processes. Recordings of single unit activity can be
beneficial for such kind of studies (Lakretz et al., 2021).

Lastly, the assessment of electrophysiological connectivity
can add an extra-layer of information onto structural networks

derived from brain topography methods such as DWI, or
supplement functional fMRI-based networks in the context of
task performance or other psychological processes. Future
studies may integrate data from the iEEG-based connectivity
research with the MRI tractography methods to determine the
precise relationship between cognition and observed structural
networks.
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