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Blood flow and glomerular filtration in the kidney are regulated by two
mechanisms acting on the afferent arteriole of each nephron. The two
mechanisms operate as limit cycle oscillators, each responding to a different
signal. The myogenic mechanism is sensitive to a transmural pressure difference
across the wall of the arteriole, and tubuloglomerular feedback (TGF) responds to
the NaCl concentration in tubular fluid flowing into the nephron’s distal tubule,.
The two mechanisms interact with each other, synchronize, cause oscillations in
tubular flow and pressure, and form a bimodal electrical signal that propagates
into the arterial network. The electrical signal enables nephrons adjacent to each
other in the arterial network to synchronize, but non-adjacent nephrons do not
synchronize. The arteries supplying the nephrons have the morphologic
characteristics of a rooted tree network, with 3 motifs characterizing nephron
distribution. We developed a model of 10 nephrons and their afferent arterioles in
an arterial network that reproduced these structural characteristics, with half of its
components on the renal surface, where experimental data suitable for model
validation is available, and the other half below the surface, from which no
experimental data has been reported. The model simulated several
interactions: TGF-myogenic in each nephron with TGF modulating amplitude
and frequency of the myogenic oscillation; adjacent nephron-nephron with
strong coupling; non-adjacent nephron-nephron, with weak coupling because
of electrical signal transmission through electrically conductive arterial walls; and
coupling involving arterial nodal pressure at the ends of each arterial segment, and
between arterial nodes and the afferent arterioles originating at the nodes. The
model predicted full synchronization between adjacent nephrons pairs and partial
synchronization among weakly coupled nephrons, reproducing experimental
findings. The model also predicted aperiodic fluctuations of tubular and arterial
pressures lasting longer than TGF oscillations in nephrons, again confirming
experimental observations. The model did not predict complete
synchronization of all nephrons.
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Introduction

Arteries within the kidney form a demand-driven, globally
connected network that distributes oxygenated blood to all
nephrons. Single-nephron autoregulation of blood flow provides
the demand, interactions in the network support continuous
perfusion of all nephrons, and the connection to the renal artery
as a single network source forms the basis for interactions among all
nephrons. Each nephron regulates its blood flow by controlling the
inner diameter of its afferent arteriole using a combination of two
mechanisms, one sensitive to the arteriole’s transmural hydrostatic
pressure difference and the other to the concentrations of Na+, K+,
and Cl− in tubular fluid as it flows from one renal tubular segment,
the thick ascending limb of Henle’s loop, into the next, the early
distal tubule. The pressure-sensitive mechanism, known as the
myogenic mechanism, is a general feature of arterioles
throughout the body while the concentration-sensitive
mechanism, called tubuloglomerular feedback (TGF), is unique to
the kidney. Epithelial transport properties of the thick ascending
limbs of Henle’s loop render the ionic concentrations of the tubular
fluid dependent on the fluid’s flow rate, so that TGF functions to
regulate the mass flow of Na+, K+, and Cl− into the distal nephron.

The macula densa, a specialized plaque of epithelial cells at the
beginning of the distal tubule, is TGF’s sensor, producing a signal
that reaches the vascular smooth cells of the afferent arteriole to
affect the vascular contractile mechanism. Each of the mechanisms
oscillates at its characteristic frequency. The mean arterial blood
pressure generates a 1/f spectrum with no spectral peaks at the
frequencies of the arteriolar oscillations (Marsh et al., 1990;
Holstein-Rathlou et al., 1995; Wagner and Persson, 1994)
suggesting that the arteriolar oscillations arise autonomously as
limit cycles. Each of these two have components described
mathematically with non-linear functions, and models
incorporating these functions simulate the observed oscillations
(Gonzalez-Fernandez and Ermentrout, 1994; Holstein-Rathlou
and Marsh, 1990; Marsh et al., 2005a). The two oscillations can
synchronize, forming an ensemble (Sosnovtseva et al., 2005;
Sosnovtseva et al., 2007). The TGF oscillation has the longer
period length of the two, and their interaction results in
amplitude and frequency modulation of the myogenic
mechanism by TGF Marsh et al. (2005b).

The smooth muscle controlling arteriolar diameter oscillates
because of periodic changes in membrane ionic permeabilities
and membrane electrical potential differences. The interaction
of TGF and the myogenic mechanism generates a bimodal
electrical signal that propagates along the network of arteries
toward the renal artery Marsh et al. (2009). Signals from
different afferent arterioles interact at arterial branch points,
the interactions allowing the nephrons to synchronize their
blood flows, their glomerular filtration rates, and their tubular
transport functions.

The renal artery enters the kidney as a single vessel and branches
at irregular intervals. The initial branches run parallel to the renal
surface without giving rise to arterioles or nephrons. Branches
emerge from this subsurface network and turn abruptly toward
the surface, forming rooted tree networks from which afferent
arterioles emerge. Each afferent arteriole enters a single
glomerulus, the starting point of a nephron. The renal arterial

network is thus a forest network, with individual trees running
orthogonally toward the renal surface. There are several sources of
variability in each tree. Terminal arteries reach their furthest extent
at the surface after as few as 2 or as many as 7 branches Marsh et al.
(2017). The distance separating the origins of nearest neighbor
afferent arterioles varies randomly (Postnov et al., 2016; Marsh
et al., 2017). The length of renal tubules is also variable. Tubular
length affects the transit time from the glomerulus to the macula
densa and the frequency of the TGF oscillation. Structural variability
will therefore provide a variety of pathways for electrical signal
propagation and interaction. Periodic withdrawal of blood from an
artery into an arteriole can impose a periodicity on blood flow
remaining in the artery and this rhythm can affect the dynamics of
downstream nephrons. TGF, the myogenic mechanism, and
rhythmic blood flow, each subject to the operation of its own
underlying mechanism, constitute a triad of interacting signals
that can affect tubular dynamics.

Measurements of tubular hydrostatic pressure provide reliable
experimental information about nephron blood flow dynamics. The
TGF and myogenic oscillations can be detected in proximal tubules
(Holstein-Rathlou and Leyssac, 1986; Holstein-Rathlou, 1987;
Holstein-Rathlou and Marsh, 1989; Sosnovtseva et al., 2005;
Sosnovtseva et al., 2007). Oscillations from near-neighbor tubules
synchronize, but oscillations from far-neighbor tubules do not
(Holstein-Rathlou, 1987; Yip et al., 1992). Near-neighbor refers
to nephron pairs whose afferent arterioles originate from a
common artery; arterioles supplying far-neighbor nephrons arise
from separate arteries. Synchronized nephron pairs constitute a
nephron cluster. Because nephrons can communicate across the
arterial network, we now consider the possibility that larger multi-
nephron clusters can form.

Nephrons and the arterial network that supplies them provide a
rich collection of interactions. We constructed a computer
simulation of this system to test whether it can organize itself
into clusters. This effort incorporates a nephron model that we
have used singly and in pairs and adds an arterial network whose
organization corresponds to patterns we found in a vascular cast of a
rat kidney Marsh et al. (2017).

Materials and methods

The simulation contains 10 copies of a single nephronmodel, each
with a single afferent arteriole, connected to an arterial network. The
nephron-arteriole model has been published (Marsh et al., 2005a;
Marsh et al., 2005b; Marsh et al., 2009; Laugesen et al., 2010), and the
numerical methods are the same as used in those publications. The
upper panel of Figure 1 is a causal diagram of a nephron and its
afferent arteriole; the equations and parameter tables are in the
Supplementary Material S1. In the current work the 10 versions of
the model are the same as the previously published versions except for
details of how afferent arterioles connect to the arterial network, as
explained below. To provide a basis for comparison with the
performance of this nephron model when operating as part of the
network, the lower panel shows the predicted proximal tubule
pressure as a function of time in the original one nephron model.

Figure 2 is a diagrammatic representation of the model we used.
Measurements on a vascular cast of a rat kidney revealed 3 main
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patterns of afferent arteriolar origins Marsh et al. (2017). Fifty-three
percent of all afferent arterioles arose from paired terminal arterial
branches at the furthest extent of arterial trees. Nephrons 6 through
10 conform to this description and would be on or near the renal
surface. Physiological measurements have been made exclusively
from such nephrons. Twenty three percent of afferent arterioles
arose from unpaired sub-surface arteries, and are represented in the
model by nephrons 1, 2, and 3. The remaining afferent arterioles
branched directly from subsurface arteries, and are shown as
nephrons 4 and 5.

Each of the 10 nephron models begins with a calculation of
glomerular filtration rate for that nephron by solving an ordinary
differential equation for plasma protein concentration as a function of
distance along an idealized glomerular capillary. The glomerular
filtration rate provides an initial flow condition for the tubular
model, which calculates hydrostatic pressure, flow, and NaCl
concentration as functions of time and distance along the nephron.
The nephrons are mechanically compliant tubules formed by epithelial
cells that transport water and solutes across their walls between the
lumen and the interstitial fluid. Each tubule model is divided into

FIGURE 1
Upper panel: Causal loop diagram of a single nephron. This model was used for each of the nephron-afferent arteriole ensembles shown in Figure 2.
Tubular pressure, flow rates, and NaCl concentrations were solved with a set of partial differential equations, using glomerular filtration rate, end distal
tubule hydrostatic pressure, and initial NaCl concentration as boundary conditions. NaCl concentration in tubular fluid at the macula densa generates a
signal thatmodulatesCa2+ conductance in afferent arteriolar smoothmuscle cells. Increases in theCa2+ current and the K+ current produce changes
in membrane potential difference of opposite sign because the reversal potential, Vca and VK, respectively and the membrane potential have opposite
signs. Membrane potential between the afferent arteriole and its adjacent vascular node (not shown in the diagram) is propagated along the vascular net
of Figure 2, interacting with similar electrical signals fromother nephrons. Myosin light chain abundance (MLC) varies with intracellularCa2+ concentration
and the change in cross-bridge abundance modulates the circumference of fhe afferent arteriole. The afferent arteriole was represented with a set of
initial valued ordinary differential equations. Reproduced from Laugesen et al. (2010). Lower panel: Predicted time series of tubular pressure from a
1 nephron version of the nephron-afferent arteriole model.
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3 segments - proximal tubule, descending limb of Henle’s loop, and
thick ascending limb of Henle’s loop - and each is assigned epithelial
transport properties identified from experimental studies. The initial
boundary conditions are fluid flow rate from the calculation of
glomerular filtration rate and the same NaCl concentration as in
the blood plasma. The outflow fluid resistance into more distal
regions of the nephron is calculated from the hydrostatic pressure
at the end of the thick ascending limb of Henle’s loop and serves as a
boundary condition for the model. The action of TGF is a function of
the NaCl concentration at the end of the thick ascending limb and acts
on the smooth muscle of the afferent arteriole to adjust its contractile
mechanism.

The arterial network model is designed to represent a set of
vessels that lie below the renal surface and that supply blood to the

nephrons. To the best of our knowledge no observations have been
reported of any of the network’s dynamic behavior from intact
kidneys operating under normal physiological circumstances. We
have therefore constructed the model under the assumptions that all
regulatory vascular activity occurs in afferent arterioles (Carlstrom
et al., 2015; Marsh et al., 2019), and that the arteries maintain
constant diameters throughout the course of simulations. To
provide a set of these diameters that meets the needs of the
nephrons, we conducted a set of iterations of the system until the
difference between successive values of the Euclidian norm of the
vector of arterial nodal pressures reached an asymptote. Murray’s
law Murray (1926) was used to update the radius of each branch
after each iteration. Each iteration simulated 1,000 s. Once the
asymptote was reached, a 4,000 s simulation was run while
holding the arterial radii constant. The results from the first
1,000 s of this final simulation were used to allow additional
relaxation, and the results of the final 3,000 s were recorded for
analysis and presentation. All the results presented in the tables and
figures are from this last 3,000 s of simulation.

The information streams that affect nephron dynamics flow
through the arterial network. Blood flow is described by the Hagen
Poiseuille equation, leading to the following set of equations for the
pressures at the arterial nodes, under the assumption that blood flow
is conserved at each node. These are the pressures at the origins of
the afferent arterioles.

PN 11( ) � root pressure (1)

PN n( ) � PN m( ) − 8μLA m, n( )
π RA m, n( )4( )( )∑10

i�1
QA i( ), m � 11, n � 12

(2)

PN n( ) � PN m( ) − 8μLA m, n( )
π RA m, n( )4( )( )∑3

i�1
QA i( ), m � 12, n � 13

(3)

PN n( ) � PN m( ) − 8μLA m, n( )
π RA m, n( )4( )( )∑3

i�2
QA i( ), m � 13, n � 14

(4)
PN n( )�PN m( )− 8μLA m,n( )

π RA m,n( )4( )( ) ∑10
i�1

QA i( )−∑3
j�1

QA j( )⎛⎝ ⎞⎠, m�12, n�15

(5)

PN n( )�PN m( )− 8μLA m,n( )
π RA m,n( )4( )( ) ∑10

i�1
QA i( )−∑4

j�1
QA j( )⎛⎝ ⎞⎠, m�15, n�16

(6)

PN n( )�PN m( )− 8μLA m,n( )
π RA m,n( )4( )( ) ∑10

i�1
QA i( )−∑5

j�1
QA j( )⎛⎝ ⎞⎠, m�16, n�17

(7)

PN n( ) � PN m( ) − 8μLA m, n( )
π RA m, n( )4( )( )∑7

i�6
QA i( ), m � 17, n � 18

(8)

PN n( ) � PN m( ) − 8μLA m, n( )
π RA m, n( )4( )( )∑10

i�8
QA i( ), m � 17, n � 19

(9)

PN n( ) � PN m( ) − 8μLA m, n( )
π RA m, n( )4( )( )∑10

i�9
QA i( ), m � 19, n � 20

(10)

FIGURE 2
Diagram of the nephron-arterial network used for simulations.
Not drawn to scale. The distribution of afferent arterioles corresponds
to the distribution found in a renal vascular cast Marsh et al. (2017).
Terminal arteries end in paired afferent arterioles. Sub-terminal
arteries supply terminal arteries.
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PN(m) and P(n) are the arterial pressures in the mth and nth
nodes, repectively, of Figure 2. The root pressure was 85 mmHg in
all simulations, a value chosen to approximate the local arterial
pressure when the mean pressure in the aorta is 100 mmHg. LA (m,
n) and RA (m, n) are the lengths and radii, respectively, of the arterial
segments beginning at arterial nodesm and ending at n, QA(i) is the
blood flow into the arteriole of the ith nephron, and μ is blood
viscosity.

The arterial network also serves as the pathway for electrical
signals originating in the afferent arterioles. The TGF signal
originates in the macula densa and passes through several cells
and intercellular spaces before reaching the afferent arteriole, having
been transformed into a chemical signal in the process. The final
signal likely binds to the afferent arteriole at or near its entrance into
the glomerulus. The effect of this binding site location is that the
signal is not applied uniformly over the length of the afferent
arteriole. To account for this localizing effect we divided the
afferent arteriole into 2 coupled segments of unequal length, each
receiving a different fraction of the TGF signal. All other functions of
the 2 arteriolar segments were identical. In the original version of the
nephron model the second segment of the afferent arteriole was
connected to ground through an electrical resistance specified by a
single parameter. In the current work that connection is to the
arterial network at a vascular node, and the current pathway to
ground is through the network.

To calculate the distribution of electrical signals we modeled the
arterial network as a linear bridge resistor with 10 nephrons; Figure 2
is its diagrammatic representation. Twelve non-linear ordinary
differential equations comprise the set of model equations
describing the dynamics of each afferent arteriole. This model is
based on the work of Gonzalez-Fernandez and Ermentrout who
simulated the dynamics of small cerebral arteries Gonzalez-
Fernandez and Ermentrout (1994). The model used in our work
was modified to include an action of TGF. The 120 equations for all
afferent arterioles were solved simultaneously at each time step, and
provided the values of the transmembrane electrical potential
differences. Electrical potentials imposed by afferent arterioles at
the periphery of the arterial network uniquely determine the
potentials on each of the internal nodes. These internal node
voltages are calculated from ]unknown = −D−1C]known, where C is
an 11 × 9 matrix, and D is a symmetric 9 × 9 matrix; ı designates
columns and J rows in both matrices. The Cı,J are the conductances
between nodes on the periphery, ı, and those in the interior, J, the off-
diagonal terms, Dı,J are the conductances among the interior nodes.
The diagonal terms, Dı,ı are the negative of the sum over all of the
conductances in row ı of C and D; ]known is the vector of known
electrical potentials; and ]unknown is the vector of unknown electrical
potentials. The 11 elements of ]known are the electrical potentials in
each of the 10 afferent arterioles and the electrical ground. The
elements of ]unknown are the electrical potentials of the 9 vascular
nodes. The quantity D−1C is only dependent on network topology
which does not change throughout each simulation. The conductance
of each arterial segment is the product of the conductivity and the
length, both of which remained constant during the course of a
simulation, and the radius, and was adjusted after each iteration.
Conductances of each arterial segment were assumed proportional to
the circumference of the segment, and inversely proportional to its
length. gm,n � gA2πRA(m, n)/L(m, n), where g(m,n) is the

conductance of the arterial segment connecting the mth and nth
nodes, and gA is the conductivity of the arterial wall.

Renal tubules vary in length, and the distances separating the
origins of their afferent arterioles follow a Poisson distribution
(Postnov et al., 2016; Marsh et al., 2017). Although no distance
measures accompanied reports of tubule pressure measurements,
each experiment is likely to have been conducted in a unique
structure, and the simulations were designed to capture this
variability. The process that produces the time varying TGF
signal at the macula densa depends on a fluid wave originating
with glomerular filtration. The wavelength in turn depends on the
nephron length. We used a random number generator to assign
lengths of nephrons and arterial segments. Each simulation received
a unique seed. Tubule lengths were 1.95, 1.97 1.99, and 2.1 cm. The
patterns of arterial network topology and the lengths of individual
segments were based on measurements of a vascular cast of a rat
kidney (Marsh et al., 2017). The length of each arterial segment was
varied with a random number generator to assign the length a value
in the interval [75%,125%] of the measured mean value.

Data analysis

We sought to determine whether signals generated by the
periodic activity of renal afferent arterioles produce interactions
that lead to nephron cluster formation. Clusters are defined by
synchronization of rhythmic activity. Each afferent arteriole
generates a bimodal electrical signal from the interacting
operations of TGF and the myogenic mechanism, and interacts
with similar but not necessarily identical bimodal signals from other
afferent arterioles. We began the analytical process by applying
complex demodulation to each simulated time series, a process that
separated the bimodal signal into high (myogenic)- and low (TGF)-
frequency components.

The dispersion of the phase angle difference over time is a
measure of the extent of synchronization of 2 processes, and its
mean value characterizes the type of synchronization Mormann
et al. (2000). Application of their method requires techniques of
directional statistics to provide these estimates from simulation
results. Simulations provided time series of proximal tubule
hydrostatic pressure sampled at 4/s. After complex demodulation,
mean values were subtracted from each individual value of a given
pair of time series, yielding 2 real-valued processes, x(k) and y(k), 1 ≤
k ≤ N, N = the number of sample points Berens (2009). The
instantaneous phase of a real-valued discrete process, x(k) can be
defined as the argument of the corresponding analytic signal, x

~
,

which is complex valued and given by x
~ � x(k) + i ·H[x(k)],

where H[x(k)] is the Hilbert transform of x(k) and i is the
imaginary unit Vakman (1998). The instantaneous phase
difference between two processes, Δθ(k), is the argument of the
complex number z

~ (k), where z
~ (k) � y

~ (k)
x
~ (k), 1 ≤ k ≤ N. The mean

resultant vector, �ρ, is given by �ρ � 1
N∑N

n�1
z
~ (k)
|z~(k)|. �ρ is a complex number

that lies on or inside the unit circle in the complex plane; |�ρ| is its
length. Because we are calculating the phase angle difference, the
length of the mean resultant vector will be 1 if the two processes are
phase locked, but 0 if they are completely desynchronized because
then the phase angle differences are distributed uniformly on the
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unit circle. We designate |�ρ| as the synchronization metric. A high
value of |�ρ| reflects strong interaction between the nephrons in the
pair, and that they are synchronized or close to synchrony. The
argument of �ρ is the mean phase angle difference, Δϕ. This analytic
procedure generated estimates of myogenic-myogenic and TGF-
TGF synchronization in nephron pairs, and was applied to all
45 possible nephron interactions in the 10 nephron set.

Results

To validate the single nephron - afferent arteriole model we used
experimental results collected from surface nephrons of intact kidneys
of anesthetized young adult male rats (Holstein-Rathlou and Leyssac,
1986; Holstein-Rathlou, 1987; Holstein-Rathlou andMarsh, 1989; Yip
et al., 1992; Yip et al., 1993). These experimental results are time series
of hydrostatic pressuremeasured in proximal tubules on the surface of
the kidneys. The nephron - afferent arteriolar model has been
implemented in one- and two-nephron versions (Marsh et al.,
2005a; Marsh et al., 2005b; Marsh et al., 2009; Laugesen et al.,
2010). The coefficient representing the TGF-myogenic coupling is
a bifurcation parameter for this model, with negative Lyapunov
exponents for the parameter set we used in the present

studyLaugesen et al. (2010). These earlier versions of the model
also predicted an interaction between TGF and the myogenic
mechanism that produced frequency and amplitude modulation of
the myogenic mechanism by TGF. Analysis of experimental data with
wavelet transforms confirmed these predictions (Marsh et al., 2005a;
Marsh et al., 2009; Sosnovtseva et al., 2005).

Figure 1, lower panel, displays predicted hydrostatic pressure in a
single nephron implementation of the model. This figure is intended
to provide a comparison with the behavior of the same model in the
multi-nephron configuration of Figure 2. Each of the simulations
presented below were run with a constant arterial pressure of
85 mmHg at node 11. This choice was based on the assumption of
a mean arterial blood pressure in the aorta of 100 mmHg, with
pressure drops from the aorta to the renal artery through a series
of branches proceeding toward the renal surface.

Figures 3, 4 show time series of predicted tubule pressures in each
of 10 nephrons, using the configuration depicted in Figure 2. Figure 4
displays the entire run. Figures 5, 6 show the pressures in each of the
9 arterial nodes from the same simulation. Figures 3, 5 show the first
500 s of the simulation, a duration chosen to provide resolution
sufficient to visualize the details of individual time series. The
model contains 3 nephron pairs whose afferent arterioles originate
at the end of terminal arteries: nephrons 2 and 3, 6 and 7, and 9 and

FIGURE 3
Time series of proximal tubule pressures in a run of the model shown in Figure 2.
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10. Each pair originates from a single point in the arterial segment
supplying them, examples of strong coupling. The unpaired nephrons
are separated from their neighboring nephrons by lengths of arterial
segments; interposing a non-active arterial segment creates weak
coupling. Nephron 1 is adjacent to nephrons 2 and 3 but
separated from them by an arterial segment; nephron 8 has a
similar relationship to nephrons 9 and 10. Nephrons 4 and 5 arise
separately from a sub-terminal artery, but are not adjacent to any of
the 3 nephron pairs. The identical configuration was used in
15 simulations, with the set of nephron and arterial lengths
determined by a random number generator, each of the
15 simulations receiving a unique seed value and producing a
unique set of results. The results in Figures 3, 4 are from a single
simulation selected because it exhibits an extensive repertoire of the
kinds of behaviors we found to a greater or lesser extent in the other
14 simulations. All simulations were run for a total of 3,000 s. Tables
1-3 contain the synchronization measures for TGF, the myogenic
mechanism, and the arterial nodal pressures, respectively. Table 4

provides the same measures for the interactions between pressures in
the proximal tubules and in the arterial segment supplying blood to
the nephron.

The time series for nephrons 2 and 3 oscillate at identical
frequencies for both TGF and the myogenic oscillations. The
amplitudes differ because the 2 nephrons were assigned different
lengths. Five smaller oscillations appear during each of the longer,
larger TGF oscillations, illustrating the 5:1 synchronization ratio
found experimentally (Sosnovtseva et al., 2005; Sosnovtseva et al.,
2007). The oscillations produced by the simulation of Nephron 1 do
not have exactly the same frequencies as those of nephrons 2 and 3,
indicating that nephron 1 has not fully synchronized with the other
2. Nephrons 4 and 5 exhibit time series similar to each other for the
first 600 s, but then a phase difference appears between them and
grows over the next 400 s. Since the models for these nephrons
would generate stable limit cycle oscillations, we conclude that the
change emerging at 600 s is a result of interactions with other
elements in the network. The time series produced by nephrons

FIGURE 4
Time series of proximal tubule pressures in a run of the same model shown in Figure 3, extended to a duration of 3,000s.
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6 and 7 have variable amplitudes, but the myogenic:TGF ratios do
not change and both oscillations remain fully synchronized. Despite
the fact that the 2 afferent arterioles originate as a pair with no
arterial segment separating them, the variability of the oscillation
amplitudes likely reflects interactions with other elements in the
network. Nephrons 8, 9, 10 have a spatial relationship similar to that
of nephrons 1,2, and 3. The oscillations of nephrons 9 and 10 are
fully synchronized but nephron 8 is not in phase with those of 9 and
10, and the phase angle difference between 8 and the other two varies
during the course of the simulation.

None of the time series in Figure 2 through 5 is periodic. The
effect is more prominent in some of the nephrons than in others.

Each of the 15 simulations showed these low frequency fluctuations,
but the distribution among nephrons varied from one simulation to
the next. The single nephron result shown in Figure 1 remains stable
indefinitely, indicating once again that the low frequency
fluctuations arise from interactions in the network. The lower
frequency fluctuations are seen more clearly in Figures 4, 5.

Figures 5, 6 show time series of the blood pressure in each of the
arterial nodes of the network, for the same time intervals in Figures
3, 4, respectively. The pressure at the network root, node 11, is a
constant 85 mmHg. The pressure fluctuations arise because of the
periodic withdrawal of blood into each afferent arteriole. The
pressure drop over the extent of the network was approximately
4 mmHg, and the fluctuation amplitudes were less than 1 mmHg.
Blood flowing through a network will necessarily require a pressure
difference, the consequence of which is that except for the
2 nephrons of each pair, origins of the other afferent arterioles
do not experience identical arterial blood pressures and must be able
to exercise local regulation of their arteriole’s hydraulic conductance.
The variety of arterial pressures among the afferent arterioles has the
potential for affecting the network electrical signalling.

Tables 1, 2 contain the averages and standard deviations of the
2 measures, |�ρ| and Δϕ. For these and subsequent tables,
15 simulations were run using a random number generator to
determine the lengths of nephrons and of arteries, each run
using a unique seed value. Ten nephrons generate 45 interactions
at each of 2 frequencies. The synchronization metrics were
calculated for each interaction, and the average values and
standard deviations for each of the 90 interactions in each of the
15 simulations are presented in the tables. Table 1 shows complete
synchronization of the TGF oscillations of each of the nephron pairs
2 v 3, 6 v 7, and 9 v 10. The values of |�ρ| for all other tubular
interactions fell short of reaching the unit circle, and the phase angle
differences were dispersed. A similar pattern of results were found
for the myogenic oscillation.

The average value of the synchronization metric is 0.99 for the
TGF oscillation in the nephron 2 v. 3, 6 v. 7, and 9 v. 10 interactions,
indicating full synchronization in each pair. The phase angle
differences for this group of nephron pairs averaged 0.13 radians,
small deviations from 1.0 to 0.0, arising from the differences in
nephron lengths. These 3 nephron pairs share the property that their
electrical interactions are directly from one afferent arteriole to
another, and do not involve an intermediate length of artery.
Interactions of nephrons 1, 4, 5, and 8 with other nephrons
include arterial segments as part of their signal pathways. The
synchronization metrics for these 4 unpaired nephrons with any
other nephrons have smaller values and larger phase angle
differences than are generated by the strongly coupled nephrons.
The 3 nephron pairs are separated from each other by arterial
segments, and the synchronization metrics and phase angle
differences between different nephron pairs are similar to those
generated by the unpaired nephrons. This set of results is consistent
with a pattern of partial synchronization (Pikovsky et al., 2001;
Dahms et al., 2012; Pecora et al., 2014; Steur et al., 2016; Su et al.,
2019).

Analysis of the myogenic oscillation revealed interaction
patterns different in various aspects from the TGF waveforms.
Results from the nephron pairs, 2 v. 3, 6 v. 7, and 9 v. 10 were
similar in the myogenic and TGF dynamics: synchronization

FIGURE 6
Time series of vascular hydrostatic pressures in the same run
shown in Figure 4. Numbers at the right refer to the nodes in Figure 2.
Pressure in node 11 was 85 mmHg throughout the simulation.

FIGURE 5
Time series of vascular hydrostatic pressures in the same run
shown in Figure 3. Numbers at the right refer to the nodes in Figure 2.
Pressure in node 11 was 85 mmHg throughout the simulation.
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metrics close to 1.0 and phase angle differences close to 0. For all
interactions involving unpaired nephrons the synchronization
metrics had lower values in the myogenic than in the TGF
dynamics, and the phase angle differences were larger.

From the same run displayed in Figure 3; Figure 5 displays time
series of blood pressure in the 9 nodes of the arterial network. Tables
3, 4 contain the synchronization metrics and phase angle differences
for the TGF and myogenic oscillations. Compared with the data
shown in Tables 1, 2, the synchronization metrics in these nodal
pressure calculations show partial synchronization for both the TGF
and myogenic oscillations and that the extent of the synchronization
is inversely proportional to the distance between the nodes.

Blood flow into all nephrons is periodic because of the actions of
TGF and the myogenic mechanism operating in each afferent
arteriole. The periodic withdrawal of blood into upstream
afferent arterioles introduces periodicities into the blood flow in
the arterial segments supplying downstream arterioles. The periodic
variation of arteriolar hydraulic conductances may or may not be
synchronized with the periodic flow arriving from upstream regions
of the network, and the vascular pressures in the arterial nodes will
therefore depend on the specific structural details of each region.

Table 4 contains the synchronization metrics and phase angle
differences between the hydrostatic pressure in each tubule and
the arterial pressure in the nodes from which their arterioles arise.
The synchronization metrics (Columns A and C)are higher for the
strongly coupled nephron pairs than for the other nephrons, and the
same is true for the phase angle differences. The increased
synchronization metric of strongly coupled nephrons with the
arterial nodes supplying them is therefore likely the result of the
increased signal strength emerging from the strong coupling.

Discussion

Experimental results reveal the presence of proximal tubular
hydrostatic pressure oscillations at 2 distinct frequencies in
individual nephrons of rat kidneys. The oscillations reflect the
operation of 2 separate mechanisms regulating blood flow into
each afferent arteriole and glomerular filtration into its associated
nephron. Both mechanisms act on ionic permeabilities of arteriolar
smooth muscle cells, interact with each other, and generate a
bimodal electrical signal that propagates along arterial segments

TABLE 1 Synchronization measures for the TGF interactions among 10 nephrons. In each of 15 simulations a random number generator with a unique seed
assigned values of the lengths of nephrons and arterial segments. The cells in the tables shown with a light blue background are from nephrons whose afferent
arterioles are paired directly with no intervening arterial segments.

A.: Synchronization metric, |�ρ|, mean ± SD, for TGF dynamics

Nephron 2 3 4 5 6 7 8 9 10

1 0.78 ± 0.23 0.78 ± 0.23 0.72 ± 0.24 0.79 ± 0.19 0.41 ± 0.27 0.41 ± 0.27 0.38 ± 0.22 0.43 ± 0.24 0.42 ± 0.24

2 0.99 ± 0.01 0.72 ± 0.29 0.76 ± 0.27 0.51 ± 0.26 0.51 ± 0.26 0.50 ± 0.24 0.45 ± 0.26 0.45 ± 0.26

3 0.72 ± 0.28 0.76 ± 0.27 0.51 ± 0.26 0.51 ± 0.26 0.50 ± 0.24 0.45 ± 0.26 0.45 ± 0.26

4 0.74 ± 0.34 0.46 ± 0.25 0.46 ± 0.25 0.49 ± 0.26 0.52 ± 0.30 0.52 ± 0.30

5 0.52 ± 0.23 0.53 ± 0.23 0.50 ± 0.29 0.45 ± 0.27 0.45 ± 0.27

6 0.99 ± 0.01 0.60 ± 0.34 0.59 ± 0.25 0.59 ± 0.25

7 0.59 ± 0.34 0.58 ± 0.25 0.59 ± 0.25

8 0.62 ± 0.26 0.62 ± 0.26

9 0.98 ± 0.02

B. Phase angle difference, Δϕ, mean ± SD, for TGF dynamics

Nephron 2 3 4 5 6 7 8 9 10

1 2.13 ± 1.06 2.13 ± 1.05 1.55 ± 1.06 1.77 ± 0.97 1.60 ± 0.98 1.58 ± 0.97 1.15 ± 1.02 2.07 ± 0.81 2.06 ± 0.79

2 0.12 ± 0.09 1.81 ± 0.73 1.89 ± 0.94 2.05 ± 0.93 2.05 ± 0.99 2.01 ± 0.97 1.31 ± 1.13 1.25 ± 1.00

3 1.78 ± 0.74 1.94 ± 0.94 2.02 ± 0.95 2.02 ± 0.99 1.95 ± 0.86 1.38 ± 1.11 1.30 ± 1.00

4 1.92 ± 0.68 1.75 ± 0.92 1.73 ± 0.82 1.56 ± 0.82 1.94 ± 0.93 1.91 ± 1.00

5 1.75 ± 0.72 1.71 ± 0.78 1.35 ± 0.95 1.58 ± 1.04 1.65 ± 1.08

6 0.13 ± 0.15 1.77 ± 0.67 2.17 ± 0.46 2.28 ± 0.44

7 1.88 ± 0.70 2.07 ± 0.56 2.19 ± 0.54

8 2.44 ± 0.76 2.42 ± 0.81

9 0.15 ± 0.13
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to neighboring arterioles. The arteriolar oscillations synchronize
fully if the arteriolar sites of origin are from the same artery, but not
otherwise. The experimental observations supporting these
conclusions were all made on nephrons at the renal surface.
Most nephrons lie below the surface, and are therefore not
available for measurement in vivo. We have now developed a
model of a network of arteries, arterioles, and nephrons to
determine the extent of synchronized nephron fields, and the
conditions that affect synchronized field formation.

The model was formed from a model of single nephrons and
their arterioles Marsh et al. (2005a) that was later expanded to
2 nephrons (Marsh et al., 2009; Laugesen et al., 2010), and then to 24
(Marsh et al., 2013). This last model used an idealized symmetric
representation of the arterial network, with all its nephrons in
2 nephron pairs on the renal surface. We later performed
computed tomography on a vascular cast of a rat kidney, and
found variable arterial branching patterns, and afferent arteriolar
origins conforming to 3 different motifs. The network model in this
paper reproduces each of the 3 motifs Marsh et al. (2017). New
features of this model are the presence of variable lengths of arterial
segments and the different patterns of arteriolar origins.

The afferent arteriole-nephron model has been validated against
experimental results, and we have used it in this work as originally
presented. The new problem to be solved is determining the
dimensions of the arterial components of the network. The
length of arterial segments separating adjacent afferent arterioles
follows a Poisson distribution (Postnov et al., 2016; Marsh et al.,
2017), which we reproduce with a random number generator. The
dimension question then becomes solving the system for the radius
of each arterial segment in the model. These segments lie entirely
below the renal surface and, to the best of our knowledge, no
measurements of their dimensions have been made in vivo.

We used the network model to predict the radius of each arterial
segment. The hypothesis that forms the basis for our approach is
that nephrons and their afferent arterioles exercise all regulatory
activity affecting blood flow, and that the arteries maintain constant
radii over epochs of 2–3 h. There is abundant evidence for the
operation of both TGF and the myogenic mechanism, and no
evidence for participation of intra-renal arteries in the regulation
of blood flow to individual afferent arterioles. Starting from an
arbitrary set of initial conditions, we calculated the vascular pressure
in each arterial node, applied Murray’s Law to adjust the arterial

TABLE 2 Synchronization measures for the myogenic interactions among 10 nephrons. In each of 14 simulations a random number generator with a unique seed
assigned values of tubule length. The cells in the tables shown with a light blue background are from nephrons whose afferent arterioles are paired directly with
no intervening arterial segments.

A.: Synchronization metric, |�ρ|, mean ± SD, for myogenic dynamics

Nephron 2 3 4 5 6 7 8 9 10

1 0.13 ± 0.08 0.13 ± 0.08 0.12 ± 0.12 0.10 ± 0.06 0.05 ± 0.03 0.05 ± 0.04 0.06 ± 0.04 0.05 ± 0.07 0.05 ± 0.06

2 0.95 ± 0.04 0.16 ± 0.11 0.19 ± 0.10 0.06 ± 0.04 0.06 ± 0.04 0.08 ± 0.08 0.08 ± 0.08 0.08 ± 0.07

3 0.16 ± 0.12 0.19 ± 0.10 0.06 ± 0.05 0.06 ± 0.05 0.08 ± 0.07 0.08 ± 0.07 0.08 ± 0.07

4 0.26 ± 0.17 0.06 ± 0.04 0.06 ± 0.04 0.05 ± 0.03 0.08 ± 0.06 0.08 ± 0.06

5 0.08 ± 0.06 0.07 ± 0.06 0.06 ± 0.04 0.04 ± 0.03 0.04 ± 0.03

6 0.97 ± 0.03 0.20 ± 0.14 0.12 ± 0.08 0.12 ± 0.08

7 0.20 ± 0.14 0.13 ± 0.08 0.13 ± 0.08

8 0.13 ± 0.10 0.13 ± 0.10

9 0.97 ± 0.03

B. Phase angle difference, Δϕ, mean ± SD, for myogenic dynamics

Nephron 2 3 4 5 6 7 8 9 10

1 1.35 ± 0.78 1.18 ± 0.70 1.69 ± 0.88 1.59 ± 0.97 1.72 ± 0.90 1.63 ± 0.84 1.67 ± 0.71 1.83 ± 0.84 1.72 ± 0.95

2 0.02 ± 0.03 1.77 ± 1.11 1.67 ± 1.07 1.61 ± 1.06 1.59 ± 1.03 1.51 ± 0.78 1.95 ± 0.65 1.99 ± 0.67

3 1.62 ± 1.09 1.59 ± 1.03 1.67 ± 1.14 1.65 ± 1.14 1.43 ± 0.90 2.02 ± 0.68 2.03 ± 0.70

4 1.58 ± 1.02 1.82 ± 1.09 1.81 ± 1.02 1.51 ± 0.83 1.49 ± 1.10 1.58 ± 1.03

5 1.56 ± 0.97 1.56 ± 1.00 1.61 ± 1.09 2.09 ± 0.65 1.73 ± 0.84

6 0.01 ± 0.01 1.57 ± 0.92 1.82 ± 0.86 1.73 ± 0.87

7 1.53 ± 0.87 1.87 ± 0.84 1.77 ± 0.90

8 1.28 ± 0.97 1.30 ± 0.99

9 0.01 ± 0.01
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TABLE 3 Synchronization measures for interactions in hydrostatic pressures among the arterial nodes of the network.

A.: Synchronization metric, |�ρ|, mean ± SD, for TGF interactions

Node 13 14 15 16 17 18 19 20

12 0.92 ± 0.17 0.73 ± 0.25 0.93 ± 0.11 0.84 ± 0.18 0.78 ± 0.22 0.70 ± 0.26 0.73 ± 0.19 0.73 ± 0.17

13 0.76 ± 0.23 0.82 ± 0.18 0.73 ± 0.22 0.68 ± 0.24 0.62 ± 0.28 0.69 ± 0.21 0.65 ± 0.20

14 0.65 ± 0.24 0.59 ± 0.24 0.54 ± 0.24 0.55 ± 0.19 0.53 ± 0.22 0.53 ± 0.21

15 0.93 ± 0.13 0.86 ± 0.19 0.77 ± 0.22 0.82 ± 0.17 0.80 ± 0.16

16 0.94 ± 0.15 0.78 ± 0.21 0.90 ± 0.14 0.87 ± 0.13

17 0.87 ± 0.14 0.90 ± 0.18 0.87 ± 0.16

18 0.75 ± 0.22 0.71 ± 0.22

19 0.95 ± 0.11

B. Phase angle differences, Δϕ, mean ± SD, for TGF interactions

Node 13 14 15 16 17 18 19 20

12 0.07 ± 0.07 0.45 ± 0.45 0.13 ± 0.11 0.24 ± 0.20 0.30 ± 0.24 0.44 ± 0.35 0.31 ± 0.24 0.33 ± 0.26

13 0.36 ± 0.32 0.21 ± 0.18 0.34 ± 0.27 0.39 ± 0.31 0.60 ± 0.47 0.40 ± 0.31 0.42 ± 0.33

14 0.72 ± 0.64 0.96 ± 0.71 1.04 ± 0.75 1.27 ± 0.92 1.05 ± 0.64 1.02 ± 0.63

15 0.12 ± 0.07 0.17 ± 0.10 0.31 ± 0.20 0.18 ± 0.14 0.21 ± 0.16

16 0.07 ± 0.06 0.20 ± 0.15 0.12 ± 0.09 0.17 ± 0.09

17 0.15 ± 0.14 0.08 ± 0.06 0.15 ± 0.08

18 0.28 ± 0.20 0.37 ± 0.19

19 0.07 ± 0.04

C.: Synchronization metric, |�ρ|, mean ± SD, for myogenic interactions

Node 13 14 15 16 17 18 19 20

12 0.89 ± 0.22 0.76 ± 0.14 0.93 ± 0.15 0.85 ± 0.19 0.77 ± 0.21 0.77 ± 0.17 0.73 ± 0.20 0.75 ± 0.17

13 0.74 ± 0.22 0.80 ± 0.23 0.72 ± 0.24 0.66 ± 0.23 0.65 ± 0.21 0.69 ± 0.19 0.63 ± 0.20

14 0.70 ± 0.06 0.61 ± 0.09 0.55 ± 0.12 0.54 ± 0.09 0.51 ± 0.11 0.51 ± 0.08

15 0.93 ± 0.16 0.87 ± 0.20 0.85 ± 0.13 0.82 ± 0.20 0.84 ± 0.14

16 0.94 ± 0.15 0.85 ± 0.20 0.90 ± 0.16 0.92 ± 0.03

17 0.91 ± 0.16 0.89 ± 0.22 0.91 ± 0.14

18 0.79 ± 0.23 0.81 ± 0.19

19 0.94 ± 0.18

D. Phase angle differences, Δϕ, mean ± SD, for myogenic interactions

Node 13 14 15 16 17 18 19 20

12 0.10 ± 0.23 0.08 ± 0.18 0.05 ± 0.15 0.11 ± 0.22 0.18 ± 0.32 0.14 ± 0.31 0.16 ± 0.24 0.12 ± 0.22

13 0.16 ± 0.28 0.15 ± 0.26 0.20 ± 0.29 0.28 ± 0.35 0.24 ± 0.35 0.18 ± 0.27 0.22 ± 0.30

14 0.06 ± 0.04 0.11 ± 0.14 0.17 ± 0.26 0.14 ± 0.23 0.15 ± 0.18 0.13 ± 0.15

15 0.06 ± 0.19 0.13 ± 0.31 0.09 ± 0.26 0.12 ± 0.23 0.08 ± 0.19

16 0.08 ± 0.27 0.15 ± 0.34 0.06 ± 0.16 0.02 ± 0.02

17 0.08 ± 0.23 0.13 ± 0.30 0.09 ± 0.27

18 0.21 ± 0.35 0.17 ± 0.33

19 0.05 ± 0.18
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diameters after each of a series of iterations, and continued the
process until the Euclidian norm of the vector of arterial node
pressures reached an asymptote. Murray’s Law was originally
derived to calculate the minimum energy required to deliver
steady laminar flow from a single vessel that bifurcates into
2 identical branches Murray (1926). The law predicts the
diameter of the two branches needed to achieve a minimum
energy loss for a time-invariant fluid flow through the
bifurcation. We make no claim that the law is applicable to a
network with active afferent arterioles serving as boundary
conditions. We used Murray’s law to perturb the diameters of all
the arterial branches to allow the individual nephron-afferent
arteriolar units to exchange information until further iterations
could no longer change the vascular nodal pressures.

Arteries are adaptive structures with a variety of mechanisms
available to adjust their radii. Some of these mechanisms will respond
to local changes in pressures, flows, shear stress, and vasoactive
agents released locally or elsewhere into the circulation, and still
others will operate under genetic or epigenetic control, and each will
act within its own dynamic limits. We simply assume that the arteries
will respond to changes in the vascular pressures and flow and the
entire system will relax to a more or less stable state for epochs of
2–3 h, the duration of a typical experiment whose results form the
basis for this modeling effort, and a period of time during which the
mean arterial blood pressure in conscious animals follows a 1/f
distribution (Marsh et al., 1990; Wagner and Persson, 1994;
Holstein-Rathlou et al., 1995).

The model reproduces a number of interactions: TGF and the
myogenic mechanism within vascular smooth muscles, leading to
modulation of amplitude and frequency of the myogenic
mechanism by TGF; bimodal electrical signals generated by the
same vascular smooth muscle cells and propagated into the
electrically conductive arterial segments; and periodic withdrawal
of blood flow from the upstream arterial flow, imposing periodicity
on the vascular pressures in the arterial nodes. This system of
interactions represents a high-order system generating its
dynamics in a specific network structure imposed by the
functional needs of nephrons.

Tree structures, a category that includes the nephron-vascular
network we foundMarsh et al. (2017), are described in graph theory as
havingN vertices andN-1 edges, where the edges are arterial segments
connecting one vertex with another, and the vertices are afferent
arterioles and the nephrons they supply. The nephron-vascular
network is a rooted tree, in which one vertex is designated as the
tree root. In our study of renal vascular structure we examined
more than 1,100 glomeruli and did not find any supplied by more
than a single afferent arteriole, an observation consistent with the
definition of a tree network structure. Random networks, another
and well studied different network structure, have no limits on
the number of connections nodes may have, and this freedom
allows large hubs to emerge. The renal vascular network has no
hubs. Effective renal function requires a matching of axial
nephron flow to epithelial transport capacity, a condition that
would be difficult to satisfy in the mammalian kidney with a
random vascular network.

Mammalian kidneys serve to regulate the volume and
composition of the extracellular fluid of the body. Filtration in
the glomerulus of each nephron creates tubular fluid that flows along
the tubule under a gradient of hydrostatic pressure. The Reynolds’
number is low and the Peclet number is high, tubular fluid flow is
laminar, and epithelial transport processes reabsorb water and a
variety of solutes, returning them to the peritubular capillaries and
thence to the systemic circulation. The tubular fluid flow rate
remaining at the macula densa is about 5%–10% of the
glomerular filtration rate. The epithelial transport processes
responsible for maintaining the volume and composition of the
extracellular fluids of the body operate downstream of the macula
densa, they have limited dynamic ranges, and regulating the delivery
rate of the fluid flow and the mass flow of ionic components, chiefly
Na+, K+, and Cl−, requires effective feedback regulation, a function
provided by TGF.

In its current form, the model simulates the behavior of the
various components. Afferent arterioles originating from the
same site on terminal arterial segments - nephrons 2 and 3,
6 and 7, and 9 and 10 - formed fully synchronized pairs that are
present in each of the 15 simulations and that remain

TABLE 4 Synchronization measures for interactions in hydrostatic pressures between individual tubules and the arterial nodes fromwhich their afferent arterioles
arise. A: Synchronizationmetric, |�ρ|, mean ± SD, for TGF interactions; B: Phase angle differences, Δϕ, mean ± SD, for TGF interactions; C: Synchronization metric, |�ρ|,
mean ± SD, for myogenic interactions; and D: Phase angle differences, Δϕ, mean ± SD, for myogenic interactions.

Nephron Node A B C D

1 13 0.56±0.27 1.47±0.94 0.21±0.08 1.85±0.79

2 14 0.97±0.03 2.81±0.20 0.70±0.06 2.12±0.06

3 14 0.97±0.02 2.76±0.23 0.70±0.05 2.13±0.09

4 15 0.60±0.25 1.64±0.88 0.22±0.09 2.09±0.41

5 16 0.60±0.23 2.12±0.80 0.23±0.10 2.15±0.42

6 18 0.74±0.23 2.47±0.41 0.56±0.10 1.92±0.41

7 18 0.74±0.23 2.56±0.37 0.56±0.10 1.92±0.42

8 19 0.57±0.23 1.49±0.93 0.30±0.10 2.0±10.66

9 20 0.75±0.19 2.47±0.57 0.57±0.11 1.94±0.32

10 20 0.75±0.20 2.47±0.63 0.56±0.11 1.93±0.32
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synchronized for the duration of the simulation. Each of these
afferent arterioles is in direct contact with their pair mate,
forming a strong coupling. Each pair constitutes a cluster, but
each cluster is not necessarily synchronized with the others. The
other 4 afferent arterioles in the model are separated from each
other and from the strongly coupled pairs through lengths of
electrically conductive artery, the connection representing a form
of weak coupling. The interactions involving these weakly
coupled nephrons produce synchronization metrics less than
1.0, and variable phase angle differences. Thus, one major
result of the study is the finding that not all nephrons behave
identically, despite the fact that they all interact, a condition
referred to as partial synchronization or cluster synchronization.
Analysis of systems whose dynamics conform to this description
have attributed its origin to coupling with delays (Dahms et al.,
2012; Steur et al., 2016; Su et al., 2019); to variable coupling
strength Pikovsky et al. (2001); and to symmetries and symmetry
breaking in the network structure Pecora et al. (2014). The weak
couplings lead to variable phase angle differences, as shown in
Tables 1 B and 2 B, and the variable phase differences form
variable delays that are the most likely causes of partial
synchronization in the nephron-arterial network. Connection
strengths are also variable. Clusters form and persist when
afferent arterioles are directly coupled at the end of terminal
arteries. The interposition of electrically conductive arterial
segments produce conductances that vary with both the length
and radius of the segment, and that form a set of weak couplings.
We did not assess the symmetries of the arterial network, but
there is no reason to doubt that the approach taken by Pecora
et al. (2014) could be useful.

Interactions among the nephrons in the network lead to
oscillations with variable period lengths longer than those of the
TGF oscillation in any of the nephrons. This result is consistent with
experimental results (Pavlov et al., 2008; Siu et al., 2009; Brazhe et al.,
2014). These longer oscillations occur in each of the 15 simulations.
They are not strictly periodic, they occur in different regions of the
model structure in different simulations, they are not commensurate
with the TGF oscillations, and they are compatible with the
definition of quasiperiodicity. We interpret this result to signify
that the slower oscillations are the result of interactions among
elements in the network, and reflect the fact that these combinations
of nephrons, arterioles, and arteries do not become fully
synchronized. We speculate that this is likely a persistent
behavior that does not depend on additional factors such as
external pacemakers, or extensions of the network to include
additional nephrons.

The structural details of a network are often important in
determining its dynamics. The kidney provides examples of this
principle. Table 1–3 show average values and standard deviations of
the synchronization measures from 15 simulations, each different
from the others because a unique seed applied to a random number
generator varied both nephron and arterial lengths. The variation in
the output from one simulation to the next is due to the induced
structural variation in the basic model. Additional variation in the
placement of each afferent arteriole, a strategy we did not
implement, will induce further variation in the dynamics. The
model simulates the dynamics of 10 nephrons, while the rat
kidney has around 40,000. The proximal and distal tubules of all

nephrons are contained within the renal cortex, are convoluted, and
have no preferred orientation with respect to the major axes of the
organ. The segments intermediate between the proximal and distal
tubules, the descending and ascending limbs of the loops of Henle,
operate under different geometric arrangements. They run parallel
to an axis extending from the midline of the cortical surface to the
furthest extreme of the inner medulla. This anatomical arrangement
represents a form of symmetry breaking, and additional symmetry
breaking arises from the segregation of tubular structures and blood
vessels into separate compartments in the medulla Wexler et al.
(1991). This countercurrent flow structure is a critically important
feature of the mechanism that produces hypertonic urine.

Blood flow in many organs is adjusted to maintain local blood
gas concentrations. The kidney is an exception. Venous pO2

in the
kidney is one of the highest of any organ in the body because of
the high blood flow needed to provide a glomerular filtrate from
the plasma of the blood perfusing the organ. The result is that
tubules in the renal cortex receive an ample supply of O2 to meet
their energy needs. Thick ascending limbs of Henle’s loop
reabsorb Na and Cl, an active process requiring O2 supplied
by blood flowing into the medulla from the cortex. The operation
of an O2 consuming process distributed along the axis of the
medulla creates an axial gradient of pO2

with a maximum in the
renal cortex and a minimum at the tip of the renal papilla, the
furthest extreme of the inner medulla. Schurek and Johns
measured the pO2

over the surface of a rat kidney in vivo and
found an oscillation at the same frequency as that of the TGF
oscillation Schurek and Johns (1997). The oscillating flow of
tubular fluid in the thick ascending limb will provide an
oscillating load of NaCl for epithelial transport, and the
oscillation of pO2

indicates that the energetics of epithelial
transport could become rate-limiting on the production of the
signal that is thought to regulate afferent arteriolar diameter.

A feature of the network worth noting is the signal pathways
it provides between afferent arterioles of surface nephrons and
those that lie below the surface. The arteries supplying surface
nephrons, represented in the model as numbers 6 through 10,
are at the downstream end of each network tree, and will
therefore have the lowest arterial pressures in the tree.
Figures 5, 6 show this distribution of pressures in the arterial
nodes. The decline of pressure with distance is the effect of
frictional energy loss. Interactions mediated through the
network admit signals from the surface nephrons to the
upstream components to make adjustments that increase
pressure downstream, and they also send signals from the
upstream nephrons to support downstream nephron
dynamics. Nephrogenesis, the formation process of nephrons
and their vascular network, is complete in the post-natal period,
and while nephron size may vary in the lifetime of the organism,
nephron number thereafter can only decrease. Low blood
pressures can lead to hypoxia and tubule death. Effective
renal function over the life of the organism therefore requires
a network structure that retains its topological and interactive
characteristics over major fractions of its lifetime.

Finally, the experimental result that motivated this study was
the observation that paired nephrons synchronized if their
afferent arterioles arose from a common artery. We asked
whether larger synchronized nephron clusters might exist
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when more nephrons were included in a network whose structure
contained measured details. The answer we found to this
question is neither yes nor no, but partial synchronization, an
intermediate state. We suggest that the strongly coupled nephron
pairs together with the weakly coupled and partially
synchronized nephron group provide a more flexible and
adaptive aggregate capable of an appropriate response to a
greater variety of challenges than would be possible with a
more rigid completely synchronized structure.
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