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Introduction: Detrended Fluctuation Analysis (DFA) has been used to investigate
self-similarity in center of pressure (CoP) time series. For fractional gaussian noise
(fGn) signals, the analysis returns a scaling exponent, DFA-α, whose value
characterizes the temporal correlations as persistent, random, or anti-
persistent. In the study of postural control, DFA has revealed two time scaling
regions, one at the short-term and one at the long-term scaling regions in the
diffusion plots, suggesting different types of postural dynamics. Much attention
has been given to the selection of minimum and maximum scales, but the choice
of spacing (step size) between the window sizes at which the fluctuation function
is evaluated may also affect the estimates of scaling exponents. The aim of this
study is twofold. First, to determine whether DFA can reveal postural adjustments
supporting performance of an upper limb task under variable demands. Second, to
compare evenly-spaced DFAwith two different step sizes, 0.5 and 1.0 in log2 units,
applied to CoP time series.

Methods: We analyzed time series of anterior-posterior (AP) and medial-lateral
(ML) CoP displacement from healthy participants performing a sequential upper
limb task under variable demand.

Results: DFA diffusion plots revealed two scaling regions in the AP and ML CoP
time series. The short-term scaling region generally showed hyper-diffusive
dynamics and long-term scaling revealed mildly persistent dynamics in the ML
direction and random-like dynamics in the AP direction. There was a systematic
tendency for higher estimates of DFA-α and lower estimates for crossover points
for the 0.5-unit step size vs. 1.0-unit size.

Discussion: Results provide evidence that DFA-α captures task-related differences
between postural adjustments in the AP and ML directions. Results also showed
that DFA-α estimates and crossover points are sensitive to step size. A step size of
0.5 led to less variable DFA-α for the long-term scaling region, higher estimation
for the short-term scaling region, lower estimate for crossover points, and
revealed anomalous estimates at the very short range that had implications for
choice of minimum window size. We, therefore, recommend the use of 0.5 step
size in evenly spaced DFAs for CoP time series similar to ours.
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1 Introduction

Detrended Fluctuation Analysis (DFA) was introduced by Peng
et al. (1994) to characterize the spatial distribution of DNA
nucleotides—are they distributed randomly, or do they occur in
patches? The method has also proven useful in estimating self-
similarity and scaling properties in physiological and behavioral
time series (Kuznetsov and Rhea, 2017; Liddy and Haddad, 2018;
Ravi et al., 2020). DFA has gained popularity because it is relatively
straightforward to implement and interpret (Kuznetsov and Rhea,
2017). DFA characterizes the diffusion property of signals based on
the fGn/fBmmodel (Mandelbrot and van Ness, 1968). In this model,
fBm is defined as a random process, xt, with variance that grows over
time, t, as:

var xt( ) ~ t2H

Where H is the Hurst exponent (also see Delignières and
Marmelat, 2013). The Hurst exponent determines the correlation
structure of the signal and can take any real value within the interval
between 0 and 1. For H = 0.5, fBm captures normal diffusion (or
standard Brownian motion) in which variance grows proportionally
to the duration of observation. H < 0.5 and H > 0.5 capture under-
and hyper-diffusive Brownian processes, respectively. As the names
suggest, in under-diffusive processes, variance in the measure state
does not increase over time as fast as expected in normal diffusion,
and, in hyper-diffusion, it increases faster than expected. For discrete
signals, fGn is obtained by differencing successive fBm values.
Accordingly, for an fGn process, H = 0.5 implies that successive
increments of the fBm process are independent and identically
distributed, i.e., “random noise.” H < 0.5 implies anti-persistent
dynamics, in which consecutive increments tend to go in opposite
directions from the previous ones (tendency to “correct” about the
mean). H > 0.5 implies persistent dynamics, with successive
increments moving in the same direction (Almurad and
Delignières, 2016; Liddy and Haddad, 2018). Cumulative
summation of an fGn process results in an fBm.

DFA quantifies the extent to which a recorded signal exhibits
long-range correlations and captures how its variance (or
fluctuations) grows as a function of timescales (Peng et al., 1994;
1995). Typical steps in the analysis involve integrating the time series
and splitting the signal into multiple non-overlapping windows. A
fluctuation function is then calculated as an averaged variance of the
linearly detrended signal within each window. This process is
repeated for a range of window sizes, sometimes referred to as
“scales” (Almurad and Delignières, 2016; Kuznetsov and Rhea,
2017). The alpha scaling exponent, DFA-α, is then estimated as a
slope of the linear regression of the fluctuation function over a range
of scales on a log-log plot (or diffusion plot). Themagnitude of DFA-
α estimates the temporal correlations or variability structure in the
signal: DFA-α ≈ 0.5 indicates no temporal correlations or statistical
independence among consecutive fluctuations (i.e., white noise);
DFA-α < 0.5 means negative correlations or anti-persistence. A
DFA-α > 0.5 indicates long-range positive correlations or persistent
structure whose characteristics differ in important ways depending

on the degree of correlation. A DFA-α ≈ 1 indicates subtle positive
temporal correlations assumed to be a product of a delicate mix of
deterministic and stochastic processes characteristic of fractal
dynamics (or pink noise). DFA-α between 1 and 1.5 indicates an
under-diffusive fBm process, while DFA-α between 1.5 and
2 indicates particularly high temporal correlations characteristic
of hyper-diffusive fBm processes. To convert DFA-α to H, the
following rule is used: When the original time series is fGn-like,
α = H, and when the time series is fBm-like, H = α−1 (Liddy and
Haddad, 2018).

DFA has been extensively used in the study of postural control in
humans (Duarte and Stenard, 2008; Blázquez et al., 2009; Moreno
et al., 2022). The signal for DFA analysis in this context represents
subtle changes or adjustments in overall body orientation (or
posture) that happen even when a person is seemingly standing
still. These postural adjustments can be tracked through sequential
measures of the location of the body’s center of pressure (CoP)—the
central (average) point of bodily forces acting on the ground in two
directions (Anterior-Posterior [AP] and Medial-Lateral [ML]). In
this context, DFA has been employed to capture the degree and type
of dependencies observed in CoP displacements (or fluctuations)
both in the AP and ML directions (Duarte and Zatsiorsky, 2001;
Blázquez et al., 2009). The scaling exponent (DFA-α) computed
under conditions of quiet standing has been used to express
differences in postural control strategies of younger and older
adults (Duarte and Sernad, 2008), healthy individuals and
individuals with health conditions (Moretto et al., 2021),
overweight and non-overweight children and adolescents
(Wiesinger et al., 2022), and between individuals with different
motor skill levels (Ko et al., 2018). Several studies that applied DFA
on CoP time series during quiet standing in healthy adults and in
individuals with a health condition revealed two (Blásquez et al.,
2009; Minamisawa et al., 2009) or three scaling regions (Kuznetsov
et al., 2013) in their participants’ respective diffusion plots. That is,
clearly distinct slopes for different ranges of window sizes (or time
scales) with determinable transition points between them. This
means that there can be different degrees and types of
diffusiveness in postural patterns depending on the time scale
under consideration, with results of previous work implicating
persistent dynamics in short-term scaling regions and anti-
persistent dynamics at long-term scaling regions (Collins and De
Luca, 1993; Blásquez et al., 2009).

The two (or more) scaling regions observed in diffusion plots of
CoP time series have been given different functional interpretations.
For instance, it has been suggested that the dynamics captured in
each scaling region reflect engagement of different types of control
loop: open-loop control at short-term scaling region—resulting in
drift—and closed-loop control over long-term scaling region to
reign in the body and keep the CoP close to an equilibrium
point (Collins and De Luca, 1993; Zatsiorsky and Duarte, 1999).
Also, Riccio (1993) and Riley et al. (1997) have proposed that the
persistent diffusion process at short-term scaling region serves an
exploratory (perceptual) function, guiding adjustments at long-term
scaling region whose signature is anti-persistence. Milton (2013)
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suggested that the transition from persistent to anti-persistent
dynamics during quiet standing is a signature of intermittency.
He specifically proposed a “drift and act” hypothesis that suggests
control processes kick in only when CoP displacements exceed a
threshold. Specifically, at short-term scaling region when deviation
of CoP from an equilibrium point is small, there is no correction,
resulting in drift, consistent with persistent dynamics. When CoP
gets close to the margin, sensorimotor processes kick in to reign it
back, resulting in anti-persistent dynamics at long-term scaling
region.

Intermittency has recently been conceptualized more generally
as the capacity of a system to switch between multiple modes of
behavior, implicating engagement of different processes (some more
proactive or open-loop like and others more reactive or closed-loop
like). The different processes are additionally related to different
functions, for example, responding to immediate task demands or
exploration of context beyond the confines of ongoing task
dynamics for events that unfold at slower or finer time scale (see
Kelty-Stephen et al., 2021; Mangalam and Kelty-Stephan, 2021).
Intermittency is thus an expression of flexibility of the postural
control system that serves ongoing task demands but at the same
time “respects a degree of looseness” from those demands to “check
in with the broader context” just beyond immediate demands
(Kelty-Stephen et al., 2021). One goal of the present study was to
examine whether DFA can reveal postural adjustments that reflect
both the tendency of the postural system to respond to task
demands—beyond balance—under a gradually changing context.

To this end, we asked participants to stand on a force platform
while performing a transportation task in virtual reality (VR) in
which they had to move virtual objects (“pucks”) sequentially to a
container positioned at the end of a narrow surface extending in
front of them–similarly to working on an assembly line (see Figure 1
for an overview of the task setup). This task demanded recurrent
upper limb movements primarily in the sagittal plane for
successfully transporting each of the 65 virtual objects. In this

paradigm, we also introduced a slow change (relative to the
change in arm position overtime) in the broader conditions
surrounding task performance. Specifically, virtual objects were
delivered sequentially, and the interval between them was
gradually decreased after every five pucks. Importantly,
participants were free to choose how to transport the virtual
object; that is, they could choose to push them all the way to the
container (implicating large amplitude of arm movements) or hit
them in the direction of the container at any point of the narrow
surface (using relatively smaller amplitudes of arm movement). Our
previous work shows that (most) healthy young adults transition
from a push to a hit strategy (either gradually or abruptly) as a
function of the rate at which objects appear on the scene (Nordbeck,
2020). We take this behavior as evidence that individuals, while
responding to the demand of moving the arm to transport the virtual
objects, remain “open” to explore and respond to changes in task
context.

Prior work showed that the dynamics of postural adjustments to
preserve balance (in particular the degree of diffusion at short-term
scaling region) trends toward the temporal structure of movements
imposed on the body through translations of the surface of support
on that same direction (Rand et al., 2015; Rand and Mukherjee,
2018). Thus, we assumed that responsiveness of the postural system
to task demands would be reflected in the degree of entrainment of
postural dynamics to the rhythmic structure of the arm movements
in the sagittal plane required for successful transportation of virtual
objects to the container. The upper limb task in our study could be
considered discrete (Hogan and Sternad, 2007) because participants
performed one arm movement per puck with a pause before
initiating the next movement. Similar discrete upper limb tasks,
when performed repetitively over a period of time, lead to the
development of rhythmicity in the movement (Zhang and
Sternad, 2019). If the postural system is “locked” into task
constraints, we should see strongly persistent dynamics in CoP
signal (DFA-α > 1.5) at the short-term scaling region and an anti-

FIGURE 1
Transportation task in virtual reality. (A) shows the virtual reality environment, 1. Goal container, 2. Bridge, 3. Puck, 4. Virtual pad, 5. Starting area, 6.
Dispenser. (B) shows the device attached to participant’s hand used to control the virtual pad.
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persistent dynamic (DFA-α < 0.5) at the long-term scaling region; a
pattern observed when postural patterns are structured by rhythmic
motions (Rand et al., 2015; Rand and Mukherjee, 2018). However, if
the postural system is responsive to task demands but “respects a
degree of looseness” from those demands to “check in with the
broader context” (Kelty-Stephen et al., 2021), a different pattern
would be expected at the long-term scaling region for the ML
direction as it is less directly structured by the arm movements
in the sagittal plane. For the ML direction, rather than anti-
persistence (supporting return to an equilibrium point), we
expect context-checking explorations characterized by a low
degree of persistent dynamics with DFA-α between 0.5 and 1.

The application of DFA to physiological time-series has not been
without its problems and caveats. For example, physiological time-
series such as CoP time series are usually bounded (because there is a
limited area within which posture can be maintained), whereas an
fBm is typically unbounded (Deligniéres et al., 2005). A proposed
solution to this issue—one we will apply here—is to integrate the
signal before analysis, such that signals are not bounded and the
fractal properties of the original time series can be inferred from the
integrated one (Deligniéres, et al., 2003).

Researchers have also highlighted the need to distinguish
between fGn and fBm signals prior to analysis since this affects
parameter estimation (Eke et al., 2002; Deligniéres et al., 2006).
However, it can be difficult to classify certain dynamics as one or the
other a priori. Most importantly, the same signal may contain one
region with one dynamic and another with a different one, as is the
case with CoP time-series. The application of DFA to these cases is
appropriate, however, since the analysis is insensitive to the fGn/
fBm dichotomy, as long as a sufficient number of series are
considered (Deligniéres et al. (2005). When signal classification is
not possible, one should avoid calculating the Hurst exponent from
DFA-α and directly use the latter to interpret the phenomenon
under consideration. In this study, to interpret the nature of postural
dynamics at relatively short- and long- term scaling regions as
persistent, anti-persistent, or random, we will employ the cut-offs
based on DFA-α highlighted above.

One other issue to consider comes from a recent study by
Carpena et al. (2021). They found that in simulated data with a
known slope there are computational biases at short term scaling
regions such that the slope is overestimated. In their study the
problematic region spans 3 to 16 samples, but for a physiological
measure using a rate of 100 Hz—such as CoP time series—the region
would correspond to a range between 30–160millisecond. A strategy
to circumvent this issue—one we employed here—is to set the
minimum scale in the DFA to 160 ms (i.e., 2̂4 samples). The
results in Carpena et al. (2021) may, therefore, not have a large
impact on high-rate (“continuous”) physiological time-series, but be
more relevant to “event-based” time-series such as heartbeats or
stride times. For these kinds of signals, it is more difficult to remove
short-term scaling regions since 4–16 events may be too substantial
to disregard.

When using DFA on signals expected to have two scaling
regions, which is the case here, there are a few issues that the
reader should be aware of. Bryce and Sprague (2012) showed
anomalies at the very short time scale of < 8 samples, where the
slope was double the value of the actual (theoretical) H (for an fBm
signal, H = 0.3 signal). They also showed that the estimated H was

smaller than the true (theoretical)H up to approximately 50 samples
(for an fGn signal, H = 0.5 signal).

Lastly, Bryce and Sprague (2012) showed that there may be
artifacts due to non-linear trends in the data since DFA has been
shown to not in fact detrend data. However, Kantelhardt et al. (2001)
demonstrated that DFA is more sensitive to non-linear, slowly
oscillating trends compared to faster ones, which disturb the
scaling behavior much less.

As the prior discussion suggests, seemingly subtle
methodological choices can affect accuracy and precision of
DFA-α estimates (Deligniéres and Marmelat, 2013). For example,
the choice of spacing (step size) between the window sizes at which
the fluctuation function is evaluated has been shown to affect the
estimates of the alpha scaling exponent and the variability of the
estimate (Almurad and Delignières, 2016; Liddy and Haddad, 2018).
Originally, all possible window sizes up to half the length of the
signal were used in DFA analysis. However, log-transformation
performed to get the diffusion plot leads to a greater density of
points at larger window sizes (see Figure 1 in Almurad and
Delignieres, 2016). The fluctuation function values at longer
scales are also less robust because of the smaller number of
windows used for their calculation. As a result, there is greater
uncertainty in determining the slope of the long-term region of the
diffusion plot. Yet it receives more emphasis for DFA-α estimation
because the linear regression fit assumes similar weight for each
point on the diffusion plot. Almurad and Delignières (2016) showed
that even-spacing of the scales in the log-space (see their Figure 1,
right panel) produces less variable estimates of the DFA-α. However,
this still leaves the question of what step size is optimal for
physiological and behavioral data. Therefore, a second goal of
this study is to compare evenly-spaced DFA with two step sizes,
0.5 and 1.0 in log2 units, applied to a CoP time series while a person
performs a functional upper limb task. We chose these step sizes
because step size of 1.0 is commonly used in the DFA analysis (Gao
et al., 2006); however smaller step sizes, such as 0.5, increase the
number of points in the diffusion plot and could provide better
resolution for identifying linear scaling relations in the log-log plot
(Riley et al., 2012).

We examined if DFA step size (0.5 vs. 1.0 in log2 units) matters
for estimating DFA-α and crossover points between scaling regions.
Moreover, we examined if step size changes the pattern of results
obtained from analyses directed at testing the hypotheses. With
respect to the effect of step size, we hypothesized that estimating
DFA-α using two evenly-spaced step sizes (0.5 and 1.0 in log2 units)
would produce similar estimates of the short- and long-term scaling
regions but different estimates for the crossover point between
scaling regions.

2 Materials and methods

2.1 Experimental setup and measurements

2.1.1 Participants
Forty-four undergraduate students from the University of

Cincinnati participated in the study in exchange for course credit
(MAGE = 18.84 ± 1.38 years). Forty participants self-reported being
right-handed and four left-handed. All participants had normal or
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corrected-to-normal vision, and none had recent injuries,
neurological, motor, or balance disorders affecting their
movements. The University of Cincinnati Institutional Review
Board approved all study procedures and methods.

2.1.2 Materials and apparatus
Participants wore a VIVE virtual reality (VR) headset (HTC

Corporation, Bellevue WA) that displayed a virtual environment
(described below) created in Unity (v.2019; Unity Technologies, San
Francisco, CA). The virtual environment was rendered at a rate of
90 Hz. CoP in two directions, ML and AP, were measured
continuously using a force platform (AMTI AccuSway+,
Advanced Mechanical Technology, Watertown, MA) and Balance
Clinic software at a sample rate of 100 Hz.

2.1.3 Procedure
Participants stood on the force platform in a comfortable stance

with feet positioned approximately shoulder-width apart. Within the
VR environment, participants viewed a narrow table at a height of
1.01 m directly in front of them, a goal container positioned 0.91 m
ahead of them, and a narrow bridge connecting the two (see Figure 1A).
At the right end of the narrow table, a puck dispenser was placed so that
65 pucks could be presented to participants one by one. Participants
were instructed to use a virtual pad—experienced as an attachment to
the hand—to move as many pucks as possible from the narrow table
across the bridge and into the goal container (see Figure 1B).

Importantly, participants completed the task under gradually
increasing contextual demands. In particular, the presentation rate
of the pucks was altered throughout performance, beginning with an
interval of 7 seconds. Then, after every five pucks, the presentation
rate changed from seven (slowest) to one second intervals (fastest),
at 0.5 s increments (resulting in 13 intervals total). To be successful
in the task and minimize performance losses when the time interval
between pucks got shorter and shorter, participants had to remain
“open” to explore movement strategies that corresponded to the
increasing contextual demands. The time pressure that was part of
the task “pushed” participants into a rhythmic arm movement
pattern (Sternad et al., 2013). The task lasted 260 s, and CoP was
recorded in two directions (ML and AP), resulting in two time series
of lengths N = 26,000 per participant.

2.2 Analytical setup and output variables

2.2.1 Detrended fluctuation analysis
The first step in the DFA is to integrate the CoP time series,

which makes the assumption that the original CoP position time
series is an instance of a stochastic fGn process—a stationary process
with correlation properties characterized by H = DFA slope
(Deligniéres et al., 2011). While CoP is likely non-stationary (e.g.,
the mean or variance is time-dependent) when recorded for short
durations (Riley et al., 1999), longer trials of standing must show
bounded, stationary dynamics because CoP fluctuations must
remain within the base of support by definition to avoid a fall. In
this sense, approximating long-term CoP as stationary fGn-like time
series appears reasonable, however, it is clearly a simplification of the
physiologic processes underlying CoP dynamics (Kuznetsov et al.,
2013).

MATLAB (MathWorks, Natick, MA) functions implementing
evenly-spaced DFA were adapted from the Nonlinear Methods for
Psychological Science APA ATI training and functions provided by
Jianbo Gao (http://www.gao.ece.ufl.edu/). The even-spacing method
is outlined in Almurad and Delignières (2016; Section 2.3). Each data
series was analyzed with DFA twice, once with step size set to 1.0 and
then 0.5. The minimum window size was set to 23 and maximum to
212, and the number of calculated window sizes was 9 for step size 1.
0 and 19 for step size 0.5. The log-log scale values (alpha and window
size) were retained for the Two-Region Fit (TRF) analysis (see below),
and the slope of the log-log values was calculated, resulting in four
calculated slopes per participant (one calculated slope per movement
direction [ML and AP] and step size [0.5 and 1.0]).

According to Carpena et al. (2021), there is a short time-scale
region where spurious scaling occurs when analyzing a data-series
with a continuous DFA. Therefore, we simulated data for the most
affected signal in their study (fGn, H = 0.2) and replicated their
result, namely, that there is a clear, small region at short time-
scales that overestimates the true H. We then ran the continuous
DFA on our observed data-series but could not replicate the
spurious scaling at 4–16 samples. However, the evenly-spaced
DFA with 0.5 and 1.0 step size shows a small region with the
overestimation for the observed data from 4 to 8 samples. Along
with Bryce and Sprague’s (2012) findings of inaccurate estimates at
very short time scales, we set the minimum DFA scale to 8 samples
(23 window size).

2.2.2 Two-region fit
The procedure for the TRF was adapted from Kuznetsov et al.

(2013). Working from the diffusion plot, one must determine
whether linear scaling is present and whether it is present in one
or more regions of the plot. We first visually inspected every
individual DFA plot of the CoP data to evaluate the presence of
fractal scaling and the number of possible linear scaling regions in
these data. Visual inspection suggested that in all cases there were
two scaling regions: one at relatively shorter and another at relatively
longer time scales. We fitted the following piecewise linear model
with two regions and one crossover point at log2(Fn) = k between
them to the DFA curves,

y � b1x + a1 for x < k,

y � b2x + a2 for x > k,

In order to choose the best two-region models, we evaluated the
global goodness of fit for all two-region fits and all possible
breakpoint locations between log2 w values from 5% to 80% of
all log2 w. The reason for these particular cut-off points was that the
visible boundaries of the regions were typically within this range of
window sizes. We allowed the fit to start at either the short or the
long scaling region and allowed up to one log2 w separations
between the regions. This was done so that the fits were not
constrained to continuous linear regions only. Goodness of fit
was quantified as the residual sum of squares (RSS),

RSS � Σ yi − y( )
2

After iteratively fitting the defined 2-region models, we found
the 10 best-fitting models and chose the one with the longest first
region. We prioritized the identification of the first scaling region
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because it seemed to be the most reliable, clearly defined, and longest
scaling region based on the preliminary visual inspection of all time
series.

2.3 Statistical analysis

Statistical analysis was performed using custom RStudio
(RStudio, PBC, Boston, MA) scripts. Prior to statistical analysis,
data were subjected to outlier analysis (lower bound: Q1 - IQR*2.5;
upper bound: Q3 + IQR*2.5). Five outliers were excluded from the
short-term scaling region analysis, and three from crossover point
analysis. The DFA-α for the short- and long-term scaling regions
and the crossover point stratified by movement direction (AP and
ML) and step size (0.5 and 1.0) are reported as mean and confidence
intervals in Table 1.

Mixed effects models were used to determine whether there were
effects of movement direction (to address our first goal), and step size
(to address our second goal), and their interaction on the DFA-α of the
two scaling regions (short- and long-term scaling regions) and crossover
points. We did not run a model on the overall DFA because the
diffusion plots and TRF analysis indicated the presence of two distinct
scaling regions. Step size and movement direction were entered as fixed
effects, and participant as a random effect. A backward stepwise
approach was used for model building as described in West et al.
(2015). Models were trimmed by removing nonsignificant effects
individually, progressing from higher-to lower-order interactions. At
each step, we compared the deviance (−2 Log Likelihood; −2LL)
between a larger model and a simpler nested model that excluded
the predictor under analysis. The change in −2LL follows a chi-square
distribution with degrees of freedom equal to the difference in the
number of parameters between nested models, allowing for a test of
statistical significance. The final model included only higher-order
interactions that significantly improved model fit (and all
component lower-order interactions and main effects). Level of
significance for all tests was set at p < 0.05. Only significant effects
will be reported.

3 Results

3.1 Overall description of DFA-alpha and
crossover point

Figure 2 depicts an example AP and ML CoP time series and
diffusion plots from a single participant using DFA step size 0.5 and
1.0. As expected (and important for further analysis), DFA diffusion

plots revealed two scaling regions in the AP and ML CoP time series
(Figures 2B, C, E, F). In the AP direction using the DFA step size 0.5,
the first scaling region was present for the shorter time scale ranging
from window size 3 to 6.5, which corresponds to 80 ms to 0.90 s. To
convert log2 window size into seconds, raise 2 to the window size
value and divide by 100 Hz; e.g., window size 6.5 corresponds to 26.5/
100 = 0.90. The second scaling region was present for the longer
term scale (3.62–40.96 s). The crossover point was identified at a
window size of 7.5 (or 1.81 s). The DFA plot using step size of
1.0 produced a higher estimate of the crossover point (8), slightly
lower alpha estimate for the short-term region and similar alpha
estimate for long-term region.

Overall description of average DFA-α in each region and average
location of the crossover points for both movement directions and
step sizes are reported in Table 1. As expected, the short-term scaling
region showed DFA-αs in the hyper-diffusive range, regardless of
step size. With 0.5 step size, hyper-diffusiveness was slightly stronger
(AP α = 1.85; ML α = 1.81) compared to 1.0 step size (AP α = 1.79;
ML α = 1.76). For the longer time scale, DFA-α estimates suggest
persistent dynamics. DFA-α values for the AP were closer to random
dynamics for both 0.5 and 1.0 step sizes (0.5 step size, α = 0.52;
1.0 step size, α = 0.53) compared to the ML (0.5 step size, α = 0.66;
and 1.0 step size, α = 0.68). The mean crossover points for step size
0.5 was 7.92 for ML and 7.93 for AP. For step size 1.0, these values
increased to 8.37 for ML and 8.48 for AP. The crossover point is thus
estimated at a shorter time scale when using the 0.5 log-unit step
size. Figure 3 shows representative time series and DFA plots for the
AP direction using two DFA step sizes.

3.2 Effect of step size on parameter
estimation of the short-term scaling region

For the short-term scaling region, there were significant main
effects of step size, t (123.48) = −9.96, p < 0.001, and movement
direction, t (122.45) = −6.52, p < 0.001 (see Figure 4). The DFA-α
was significantly higher when step size was 0.5 (M = 1.83, SD = 0.05)
than when step size was 1.0 (M = 1.78, SD = 0.05), and in the AP
direction (M = 1.83, SD = 0.04) in comparison to the ML direction
(M = 1.79, SD = 0.06).

3.3 Effect of step size on parameter
estimation of the long-term scaling region

For the long-term scaling region, there was a significant main
effect of CoP direction, t (132) = 7.35, p < 0.001 (see Figure 5). The

TABLE 1 Mean crossover points and DFA estimates (confidence interval in brackets) by step size and movement direction.

Step size and movement direction Crossover point DFA-α for short-term scaling region DFA-α for long-term scaling region

0.5 and AP 7.93 [7.82, 8.04] 1.85 [1.84, 1.87] 0.52 [0.48, 0.56]

0.5 and ML 7.92 [7.82, 8.02] 1.81 [1.80, 1.83] 0.66 [0.62, 0.71]

1.0 and AP 8.48 [8.35, 8.61] 1.79 [1.78, 1.81] 0.53 [0.49, 0.58]

1.0 and ML 8.37 [8.24, 8.49] 1.76 [1.75, 1.78] 0.68 [0.62, 0.73]

Note. DFA, detrended fluctuation analysis; ML, medial-lateral; AP, anterior-posterior.
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DFA-α was significantly higher for the ML (M = 0.67, SD = 0.20)
than AP (M = 0.53, SD = 0.17) direction.

3.4 Crossover point

For the crossover point, there was a main effect of step size, t
(129.47) = 8.61, p < 0.001, such that the crossover points were
generally higher with the log2 unit step size of 1.0 (M = 8.42, SD =
0.50) compared to 0.5 (M = 7.93, SD = 0.41) (see Figure 6).

4 Discussion

Our study evaluated CoP displacement in the AP and ML
directions presented by healthy individuals when performing a
functional upper limb task in virtual reality. Our findings
partially supported our hypotheses. As expected, we identified
two scaling regions in the DFA plots of these CoP signals: a
short-term scaling region (spanning from 80 ms to about 2.89 s)
and a long-term scaling region (spanning from 2.90 to 40.96 s). In
the short-term scaling region, CoP signals for both AP and ML
showed strongly persistent dynamics (DFA-α > 1.5). However, at the
long-term scaling region, rather than anti-persistent dynamics, CoP
for AP continued indicating persistent dynamics on average (0.5 <
DFA-α < 1). For the ML direction, CoP displacement also indicated
persistent dynamics in the long-term scaling region and this result
was in line with our hypothesis. In this study, we also evaluated if a
subtle methodological choice—the use of two different, evenly-

spaced step sizes in the DFA analysis (0.5 and 1.0 in log2
units)—could affect the estimates of DFA-α and crossover point.
Again, our findings partially supported our hypotheses. As expected,
the two step sizes produced different estimates for the crossover
points (with smaller estimates for the 0.5 step size). However,
although the two step sizes produced similar estimates of DFA-α
for the long-term scaling region, it did not for the short-term scaling
region. Below, we discuss the functional interpretation of our
findings and potential implications.

4.1 Postural dynamics supporting task
performance

Consistent with prior work investigating the dynamics of
postural adjustments to preserve balance (Riccio, 1993; Riley
et al., 1997; Milton, 2013), we also found a persistent diffusion
process at short-time scales. This persistent behavior suggests that,
during the performance of the upper limb task in VR, participants’
CoP deviated from an average equilibrium point toward the edge of
the base of support and did not tend to “correct” itself in the short
term. Riccio (1993) argued that this persistent dynamic serves an
exploratory (functional) purpose, and as long as it does not threaten
balance, there is no need to switch to an anti-persistent dynamic
(Milton, 2013). In our dataset, short-term scaling region slopes were
between 1.68 and 1.93, which is consistent with a hyperdiffusive fBm
process. Such dynamics would be consistent with the relatively
rhythmic CoP fluctuations observed during the object
transportation task (see Figure 1). These rhythmic fluctuations

FIGURE 2
Panels (A,D) show sample data from AP and ML CoP time series from a single participant (P17) as they performed the puck transportation task. The
DFA plots using log2 step size 0.5 and 1 are presented for the same CoP data in panels (B,C) and (E,F), respectively. Two scaling regions (α1 and α2) were
evident in all DFA plots regardless of the step size and CoP direction. The window sizes at which the DFA fluctuation functionwas estimated are presented
in log2 units below the axis and in seconds above the axis.
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were related to the forward-backward movement of the body as
participants reached forward to deliver the puck.

At the long-term scaling region, we expected to see an anti-
persistent dynamics in the AP direction, that is, a tendency to return
the position of the CoP to an equilibrium point to ensure balance.
However, DFA-αs indicate remaining in the persistent range (DFA-α
~ 0.53). Despite this finding, it is worth noting that the values of DFA-
α for the long-term scaling region dropped considerably in
comparison to the short-term scaling region (from ~ 1.83 to 0.53).
That is, the CoP dynamics at the AP direction became less persistent
at long-term scaling regions. The value at this scale likely reflects the
overall drifting of the instant equilibrium point around which
participants centered their balance (Zatsiorsky and Duarte, 1999).
A simple heuristic simulation showed that adding a weakly diffusive
dynamic (fBmH ~ 0.3) to a sinusoid reproduced the pattern of scaling
exponents of the long-term scaling region observed in our study.
When the drift is weak, the long-term scaling region slope is close to 0,
but becomes closer to 0.5 when the diffusion is made stronger.

Our task has an interesting characteristic that may help us
understand why we did not see a transition between persistent to

anti-persistent dynamics at different time scales. The presentation
rate of the virtual objects varied constantly (every five pucks, the
delivery interval between one puck and another decreased by 0.5 s),
requiring that participants maintained a certain “degree of looseness”
and flexibility in their postural control throughout the task. Together
with the finding that AP DFA-αs were less persistent compared to ML,
these results may indicate that participants needed to maintain some
exploratory movement also in the AP direction. The expectation that
movement in the ML direction would result in low degree of statistical
persistence at long-term scales (DFA-α ~ .67) is consistent with Kelty-
Stephen et al. (2021), in that, this movement direction should be less
structured by arm movement, which occurred mostly in the sagittal
plane. Finding low values of CoP persistence at long-term scaling
regions for both AP and ML may simply indicate that participants
needed to remain “open” to explore movement strategies in both
movement directions (albeit to a lesser degree for AP) as a demand
from the continuously changing context. Such dynamics are also
consistent with the generally bounded nature of the CoP time series
during this task, inwhich people need to enact some postural corrections
to remain in generally the same location over a longer period of time.

FIGURE 3
Three representative subjects illustrating APCoP and correspondingDFA plots for step size 0.5 and 1.0. The first region generally had α values around
1.8, while the second region has trials with α less than 0.5, around 0.5, and greater than 0.5. The α for the first scaling region was generally slightly higher
when using 0.5 step size compared to 1.0. The same pattern held for the ML direction.
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4.2 The step size choice

Although the DFA estimates and interpretation can be affected
by methodological choices, the effects of step choice on DFA-α and
crossover between scaling regions have never been assessed. While
several studies used DFA to study postural control in humans
(Blázquez et al., 2010; Duarte and Stenard, 2008; Saraiva et al.,
2023 as a few examples), to our knowledge none have explicitly
reported the choice of spacing (step size) between window sizes. For
our dataset, decreasing step size from 1.0 to 0.5 resulted in a higher
DFA-α estimate. Since all DFA-αs were in the stronger region of the

hyper-diffusive range, this difference was only quantitative and did
not alter the class of observed dynamic (e.g., from hyper-diffusive to
underdiffusive). Although the difference in step size did not result in
qualitative differences in our study, it is still important to consider
since other tasks or kinds of signals might generate DFA-α estimates
closer to the borders of qualitative change. For such datasets, our
analysis shows that step size may influence the estimation of DFA-α
to the point of finding qualitative differences.

With respect to crossover point, we found that using a smaller
step size of 0.5 log2 units led to a lower estimate of the crossover
point time (2.43 s) as compared to step size of 1.0 (3.43). Given that

FIGURE 4
DFA-α estimate for short-term scaling region bymovement direction. AP had a higher DFA-α than ML, and step size 0.5 had a higher DFA-α than 1.0.
Asterisks denote statistical significance. Error bars represent 95% confidence intervals.

FIGURE 5
DFA-α estimate for long-term scaling region by movement direction. AP had a lower DFA-α than ML. Asterisks denote statistical significance. Error
bars represent 95% confidence intervals.
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previous studies indicated that the crossover point is around 1s
(Collins and De Luca, 1993), we recommend that smaller step size is
used as it appears to provide a more accurate estimate. Another
downside with using the large step size of 1.0 log2 units is that
some of the long-term region DFA-α were based on only three
fluctuation function estimates, which may lead to more variable
DFA-α estimates compared to step size of 0.5 log2 units.
Furthermore, one of the more subtle (but equally problematic)
aspects of only using a larger step size is that one might miss the
spurious or otherwise anomalous estimates at short range. One
might therefore (even unbeknownst) introduce inaccurate results
in the literature instead of, for example, excluding the
problematic region by adjusting the minimum window size
from which to estimate the parameters. We, therefore,
recommend in the general case to use a step size of 0.5 to
improve accuracy and guide other methodological decisions in
one’s analysis.

4.3 Limitations and future directions

Our DFA analysis focused on comparing only two step size
values. We performed the DFA analysis using a step size of
1.0 because this value is commonly used (Gao et al., 2006) and
our rationale for using a step size of 0.5 was to increase the number
of points in the diffusion plot, and consequently, increase the
resolution for identifying linear scaling relations in the log-log
plot. However, it is possible that step sizes smaller than
0.5 would provide even better resolution and new useful
information. Future studies should investigate the effect of not
only two but a continuous range of step sizes on DFA estimates.
Also, while it is important to assess parameters on real (human
movement generated) data, it would also be advantageous to
combine this with analyzing synthetic data with a known DFA-α
(similarly to Almurad and Delignières, 2016). That way, deviations

from the known DFA-α could be assessed in a manner that is easier
to interpret compared to when the known DFA-α is unavailable.
Furthermore, we have applied DFA analysis to relatively rhythmic
CoP time series—due to the influence of the rhythmic movement of
the upper limb during the puck transportation task. Therefore, our
results may not be generalized to the many other types of
physiological and behavioral time series that DFA has been
applied to. Future studies should explore the impact of
methodological choices on other signals such as heart rate
variability, electroencephalogram signals, gait patterns, and non-
rhythmic patterns alike.

To conclude, our analysis showed that DFA was able to reveal
the postural adjustments supporting performance of the proposed
upper limb task under variable demands in both AP and ML
directions. Our analyses also showed that methodological choices
in the DFA analysis can have effects on the estimation of both DFA-
α and crossover points. In our task, those differences were
quantitative (i.e., remained within one category of dynamics such
as the hyper-diffusive range for shorter time scales) but for other
tasks, movements, or signals, the estimated range may cross a
qualitative boundary (i.e., hyper-diffusive, diffusive, or
underdiffusive), and have even larger interpretational
consequences. We, therefore, recommend transparency when
reporting the methodological choices of the analysis so that
inadvertent false comparisons can be avoided, and different
studies can be appropriately compared. The results of the CoP
dataset used here suggest that using step size of 0.5 log2 units is
preferable to 1.0 when performing evenly-spaced DFA in data with
similar characteristics as ours.
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FIGURE 6
Crossover point estimates for AP and ML for 0.5 and 1.0 step size. A step size of 0.5 generated lower CoP estimations than 1.0. Asterisks denote
statistical significance. Error bars represent 95% confidence intervals.
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