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This study aims to identify the most significant features in physiological signals
representing a biphasic pattern in the menstrual cycle using circular statistics
which is an appropriate analytic method for the interpretation of data with a
periodic nature. The results can be used empirically to determine menstrual
phases. A non-uniform pattern was observed in ovulating subjects, with a
significant periodicity (p<0.05) in mean temperature, heart rate (HR), Inter-
beat Interval (IBI), mean tonic component of Electrodermal Activity (EDA), and
signal magnitude area (SMA) of the EDA phasic component in the frequency
domain. In contrast, non-ovulating cycles displayed a more uniform distribution
(p>0.05). There was a significant difference between ovulating and non-ovulating
cycles (p<0.05) in temperature, IBI, and EDA but not in mean HR. Selected
features were used in training an Autoregressive Integrated Moving Average
(ARIMA) model, using data from at least one cycle of a subject, to predict the
behavior of the signal in the last cycle. By iteratively retraining the algorithm on a
per-day basis, the mean temperature, HR, IBI and EDA tonic values of the next day
were predicted with root mean square error (RMSE) of 0.13 ± 0.07 (C°), 1.31 ±
0.34 (bpm), 0.016 ± 0.005 (s) and 0.17 ± 0.17 (μS), respectively.
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1 Introduction

Among methods that have been used to study the menstrual cycle to detect ovulation,
such as transvaginal ultrasonography, and cervical mucus inspection, the most common, and
less invasive methods, are basal body temperature (BBT) tracking and/or LH-testing
(Luteinizing Hormone). In normal physiology, the follicle stimulating hormone (FSH)
and luteinizing hormone (LH) activate the ovary and produce follicles. The FSH motivates
the growth of ovarian follicles and, of the 30–40 developing follicles, typically only one is
released per month (Schmalenberger et al., 2021; Kiranmai and Lakshmi, 2021). The mature
follicle then produces increasing amounts of estrogen, resulting in the LH wave (Figure 1A).
Traditionally, LH-testing is used to determine if a menstrual cycle is ovulatory and when
ovulation occurs. The urinary LH kit has been found to be more accurate than BBT tracking;
however, a BBT chart (Figure 1B) can determine the onset of ovulation (San Roman et al.,
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1995). This method is often the most popular and cost-effective for
predicting ovulation, but not the most accurate and oftentimes
procedurally daunting—the BBT must be measured every
morning before the first urine with a thermometer (Bull et al.,
2019; Coyne et al., 2000). As depicted in Figure 1A, BBT is low across
the follicular phase, dips before ovulation, increases sharply at
ovulation, and then remains elevated across the luteal phase.
Essentially, a BBT provides information on the existence of either
a biphasic or monophasic pattern, where a biphasic BBT is indicative
of ovulation.

Another technique to determine the ovulation day, or fertile
window, is the forward/backward-count method (Schmalenberger
et al., 2021), which estimates the ovulation day as the middle of the
cycle. However, this technique depends on the cycle length. In recent
years, this technique has been implemented in smart-phone
applications to track menstrual cycles and predict the ovulation
day, or fertile window. The fertile range, however, varies broadly
even with the suggested “most fertile” days and most of the publicly-
available applications are inaccurate (Setton et al., 2016). Thus,
tracking ovulation requires additional methodologies to improve
reliability, which this study aims to do through a combinatorial

approach including analyzing physiological signals, self-reported
urine test, and self-reported menses.

Few adopted methods using a combination of physiological
signals have been utilized to predict ovulation (Schmalenberger
et al., 2021). Signal processing techniques can be used to predict
the fertile window more accurately and avoid burdensome
traditional methods like LH-testing. Studies have demonstrated
that signals recorded continuously with wearable sensors, such as
heart rate (HR), skin temperature, and heart rate variability (HRV),
respond to different phases of the menstrual cycle (Tenan et al.,
2014; Alzueta et al., 2022; Schmalenberger et al., 2021; Yu et al.,
2022). In particular, Schmalenberger et al. (2020) showed that HRV
decreases significantly from the follicular to the luteal phase in
naturally cycling subjects. Authors in (Vishrutha et al., 2012)
concluded that the high frequency, or HF (0.15–0.40 Hz)
component of HRV was higher in the follicular phase, while the
low frequency, or LF (0.04–0.15 Hz) component, was found to be
higher in the ovulatory and luteal phases.

To investigate whether physiological parameters are changing
across the menstrual cycle, regression models have been used widely
in literature (Shilaih et al., 2018). For example, changes in

FIGURE 1
An idealized 28-day cycle illustration of (A) a basal body temperature (BBT) chart of an ovulating subject depicting a biphasic pattern, and (B)
fluctuations of the ovarian hormones estrogen, progesterone, follicle stimulating hormone (FSH), and the luteinizing hormone (LH).
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physiological signals such as temperature, HR and HRV recorded
from the Oura ring (Ōura Health Oy, Oulu, Finland) across the four
menstrual cycle phases (Menses, Ovulation, Mid-luteal and Late-
luteal) were statistically tested using Hierarchical Linear Regression
models in (Alzueta et al., 2022). It was concluded that there were
phase-based shifts in nightly skin temperature and HR across the
four phases. Another study (Goodale et al., 2019) considering a
series of multilevel models with random slopes and random
intercepts, demonstrated that wearable technology (Ava bracelet,
Ava, Zurich, Switzerland) can detect concurrent phase-based shifts
in wrist temperature, HR and respiratory rate (p< 0.001). The
authors also developed an ensemble tree-based machine learning
method to separate three main classes: follicular phase, fertile
window and luteal phase. This resulted in an overall F-score of
0.78 and it detected a 6-day fertile window in cycles with a 90%
accuracy. The classifier was trained on 11 features extracted from the
physiological signals, including HR, breathing rate, wrist skin
temperature and HRV. The training and testing data split was
performed randomly with a 75:25 ratio.

Although many research studies focus solely on subjects with
“regular” cycles (with a length of 25–35 days), Yu et al. (2022) has
shown that BBT and HR were significantly higher during fertile
phase than the follicular phase and peaked in the luteal phase
(p < 0.001) in both regular and irregular cycles ( < 25, > 35 days).
In Yu et al. (2022) linear mixed models were used to assess
changes in physiological signals and a probability function
estimation model was developed to predict the fertile window
and menses.

In this study, to examine the changes in physiological features
during menstrual cycles, circular statistics were exploited. Circular
statistics, known as directional statistics, are generally utilized in
applications using data in the R2 plane, not a linear scale (R) (Pewsey
and García-Portugués, 2021; Landler et al., 2019), considering the
periodic nature of angular measurements, such as angles, directions,
or times. Circular statistics were developed first in the late 19th and
20th centuries. However, they gained more attention in the mid-
20th century (Fisher, 1922), and during the latter half of the 20th
century, circular statistics found applications in various fields,
including biology, once it was realized that circular data was
prevalent in many natural phenomena and human activities such
as biological rhythms, animal migration patterns, and wind
directions.

Recently, circular statistics have become more accessible and
widely used due to the advancement of computational power and
statistical software. Many sophisticated techniques now exist for
analyzing and interpreting circular data, including circular-linear
regression, circular mixed-effects models, circular clustering
methods, and circular data visualization tools (Cremers and
Klugkist, 2018). Circular statistics have been utilized in many
fields of research including neuronal activity and other biological
researches such as immunology (Cremers and Klugkist, 2018;
Karoly et al., 2021; Landler et al., 2019; Gregg et al., 2023). In
this paper, circular statistics is used to show periodicity in
physiological signals across a natural cycle by analyzing the
changes in signal/feature amplitude.

Furthermore, different methods were introduced to test for a
deviation from uniformity in circular data, such as the Rayleigh,
Rao’s spacing, V, Omnibus and Watson-Williams tests. Note that

this study focuses primarily on the Rayleigh test, which evaluates
periodicity and non-uniform patterns in data. Additionally, the
Watson-William’s test was used to compare ovulating and non-
ovulating cycles. The alternative options (Rao, Omnibus, and V
tests) were also examined for a comparative discussion.

In this study, the conventional LH-testing method for tracking
ovulation was combined with that of previously mentioned
physiological signals (HR, HRV and skin temperature) in
addition to the electrodermal activity (EDA), among ovulating
and non-ovulating women. Several features from temperature,
HR, inter-beat interval (IBI), and EDA were extracted. The
features to best represent a biphasic pattern (identifiable in
ovulating cycles) were selected for the subsequent circular
statistical analysis. Finally, we also report accuracies for
predicting physiological signals using an Autoregressive
Integrated Moving Average (ARIMA) model, which is, in
essence, a regression algorithm specifically tailored for time series
forecasting. Throughout the text, the cycles are labeled as either
ovulating or non-ovulating based on whether the subject’s LH test
during that cycle showed positive or negative, respectively.

The paper is organized as follows: Materials and methods
provides detail on data collection and processing techniques, as
well as, analytical methods, including circular statistics, and ARIMA
modeling. In the Results section, features with a noticeable non-
uniform pattern are determined, and a comparison between
ovulating and non-ovulating cycles has been performed. Finally,
the Discussion and Conclusion sections are presented.

2 Materials and methods

To examine the relationship between changes in physiological
signals, and menstrual cycles, fifteen healthy female individuals were
recruited to wear a research-grade wearable wristband (two to four
menstrual cycles) while tracking their ovulation. Collected data was
processed, and the best features that show deviation from uniformity
in ovulating subjects was determined using circular statistic test,
Rayleigh. Additionally, an ARIMA model was designed to predict
physiological data for the following day. The following sub-sections
describe in detail the subject recruitment process, physiological data,
and data analysis techniques.

2.1 Ambulatory data collection

The Empatica E4 wristband (Empatica Inc., Boston MA) was
used to continuously collect physiological data across the menstrual
cycles. An Institutional Review Board protocol (IRB 18-00628) has
been approved to collect data from female subjects (18–40 years old)
at the University of North Florida. Fifteen subjects were recruited to
wear the wristband for at least one menstrual cycle, during which
each subject marked their menstruation and ovulation days on a
calendar. To detect ovulation, each subject was asked to utilize urine
test strips, starting the day after menstruation for 2 weeks, or until
the test strip depicted a positive result. Subjects who had history of
pregnancy within 6 months prior, breastfeeding, working at night
shifts, frequently flying across time zones or experiencing sleep
disorders were excluded from the study.
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In total, data was collected from 46 cycles. Removed were cycles
missing more than 5 consecutive days (5 cycles) as well as cycles in
which the subject had major sickness (2 cycles) that could affect
temperature and heart rate, resulting in statistical analysis of
39 cycles in total; 31 of these cycles had confirmed ovulation,
while 8 cycles were absent of ovulation. Non-ovulating subjects
were on a birth control, however, they were asked to use the urine
test to confirm this. A demographic breakdown of the participating
subjects can be found in Table 1.

2.2 Physiological signals

The Empatica E4 Wristband collects several physiological
signals: electrodermal activity (EDA), temperature, inter-beat-
interval (IBI), accelerometer, and blood volume pulse (BVP). The
Blood Volume Pulse (BVP) is the primary output from the PPG data
(Torres et al., 2016), which is obtained by optical sensors (Fortino
and Giampà, 2010). HR and IBI are derived from BVP, where IBI is
the time interval between individual heartbeats and is computed
from detecting peaks of the BVP and its variability defines the HRV
(Shaffer and Ginsberg, 2017). Statistical features were extracted from
each individual signal. From IBI, autocorrelation, LF and HF powers
in frequency bands of 0.04–0.15 Hz, and 0.15–0.4 Hz respectively,
and normalized LF power were calculated (Tenan et al., 2014).

Electrodermal Activity (EDA), usually measured in μS (micro
Siemens), refers to the electrical changes measured on the epidermis,
which arises when it receives innervating signals, such as stress, from
the brain (Benedek and Kaernbach, 2010; Djawad et al., 2019; Shukla
et al., 2019; Zangróniz et al., 2017). By applying a low voltage, EDA
sensors can non-invasively measure skin conductance (Djawad

et al., 2019). The skin conductance is characterized into two
types: Tonic Skin Conductance Level (SCL), and rapid Phasic
Skin Conductance Response (SCR) (Braithwaite et al., 2013). The
Tonic SCL is generally considered to be the slowly varying
component of skin conductance. The other component, SCR, is
the faster changing element (Braithwaite et al., 2013; Benedek and
Kaernbach, 2010) and represented by bursts of peaks. Numerous
studies (e.g. (Zangróniz et al., 2017; Benedek and Kaernbach, 2010;
Egan et al., 2016)) have shown that there is a direct correlation
between physiological signals, such as heart rate, and EDA.

From EDA, statistical features, area under both phasic and tonic
components, signal magnitude area (SMA) in both frequency and
time domains, SCR peak count, SCR peak width as well as
normalized power in frequency ranges between 0.1 and 0.5 in
steps of 0.1, were calculated. The SMA in frequency domain, was
calculated by taking the sum of the absolute value of the Fourier
Transform of the phasic component.

2.3 Minimizing artifacts

The challenging aspect with wearable devices is the quality of the
data recorded, which becomes more important in ambulatory
settings and long-term data collection. Several algorithms were
introduced to remove data epochs corrupted by artifacts using
signal quality metrics (Böttcher et al., 2022; Nasseri et al., 2020).
It was shown that the quality of the signals were higher at night than
during the day (Böttcher et al., 2022), because motion artifacts are
the main source of data corruption.

Therefore, some studies focus only on analyzing data recorded
during the night, or sleep times. In Shilaih et al. (2018) subjects were
asked to wear an Ava bracelet during sleep to continuously record
wrist skin temperature (WST). The Ava bracelet provided one
measurement every 10-s. To avoid variation in temperature
induced by the sleep onset and waking up, the first 90 and the
last 30-min of each night’s data were excluded. To remove artificial
fluctuations, the temperature signal was smoothed before statistical
analysis. In another study, nocturnal data was collected using the
Oura ring from 10-pm to 8-am. To remove the data fluctuations, a
moving average filter with a length of 17-min was applied to data
(Maijala et al., 2019).

Although data in this study was collected from subjects wearing
the device the whole time, to minimize the effects of artifacts, sleep
data was extracted during no-movement (or minimum movement)
hours by implementing a simple algorithm to detect changes in hand
angle using accelerometry data (van Hees et al., 2018). A threshold
was determined to detect the no-movement hours, within which
actual sleep hours were identified via HR thresholding. The next
section describes the sleep data extraction in more detail.

2.4 Data preprocessing

The heuristic algorithm applied to each subject’s cycle is
illustrated in Figure 2 after removing cycles missing more than
5 days or cycles in which the subject had a major sickness. There is
variability among what a regular menstrual cycle length range
should be; however, many studies fall in the range from

TABLE 1 Demographic information and characteristics of participants included
in the analysis.

Ovulating Non-ovulating

(N = 12,
31 cycles)

(N = 3,
8 cycles)

Age, mean 24.25 ± 2.93 24.33 ± 2.31

Age groups, years

18–24 8 2

25–30 3 1

31–35 1

BMI, mean (lb/in2) 27.07 ± 4.47 25.744 ± 1.48

BMI groups

<18.5

18.5–24.9 6 1

25.0–29.9 3 2

≥30.0 3

Duration of menstruation, mean
(days)

5.48 ± 0.78 5.13 ± 1.25

Duration of cycle, mean (days) 28.87 ± 4.19 28.36 ± 1.77
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25–35 days for healthy pre-menopausal women (Campbell et al.,
2021; Schmalenberger et al., 2021; Fehring et al., 2006). The cycles
outside of this range with a positive luteinizing hormone test
(indicating ovulation) were not removed from the study.
Collected cycles in our study are in the range of 22–38 days with
mean cycle duration of 28.87 ± 4.19 days (Table 1).

Although data was collected continuously, only the data during
the subjects’ sleep was extracted to calculate daily values for each
feature (Steps 1-3 in Figure 2) due to the inactivity of the subject and
less motion artifacts (van Hees et al., 2018). Sleep hours were
determined based on changes in the angle of the hand derived
from accelerometry data: first calculated was the 5-min rolling
median of the absolute differences between consecutive 5-s mean
of the z-angle of data recorded during 8-pm to next day 10-am; then
calculated was the 10th percentile of this data multiplied by 15 to
define a threshold (van Hees et al., 2018); and finally the time of data
less than this threshold specified sleep hours. Other criteria were also
considered, including heart rate thresholds (< 90 bpm) and sleep
duration (> 1-h). Lastly, daily average values were calculated from
features extracted from data recorded within sleep hours.

In the next 2 steps (Step 4–5) cycles were interpolated (i.e., up/
down sampled) to occupy a 28-day period to account for
inconsistency in the cycle ranges. Data was normalized to the
range of 1–10 after smoothing it by applying a causal moving
average filter with length of 4. Finally, subjects’ cycles were
averaged and converted from a linear scale to an angular scale
(Steps 6–7).

2.5 Statistical analysis

To conduct statistical analysis, the phases of each cycle should be
determined first. The menstrual cycle occurs in three main phases:
follicular, ovulation, and luteal. Each interpolated 28-day cycle can
be further classified into the five following phases: 1) menses (days

1–5), 2) mid-follicular phase (days 7–11), 3) ovulation phase (days
13–15), 4) mid-luteal phase (days 19–23) and 5) late-luteal phase
(days 24–28). Menses was determined using the average
menstruation duration listed in Table 1. The follicular phase is
defined as the start of menstruation up until the day of ovulation
(Fehring et al., 2006; Schmalenberger et al., 2021). Thus, the mid-
follicular phase was determined to be 2 days post menstruation up to
2 days prior to ovulation. For an average 28-day cycle, the transition
from the follicular phase to the luteal phase is known as ovulation
and generally occurs on day 14 of the cycle (Prior et al., 2015).
Therefore, the ovulation phase was defined to be days 13–15 to
ensure inclusivity of the day of ovulation. The mid-luteal phase is
characterized by constant low LH and FSH levels with elevated levels
of progesterone (Figure 1B). Therefore, the mid-luteal phase was
defined as days 19–23. Finally, the late-luteal phase starts when
progesterone decreases and ends the day before menses (days
24–28). To show the significant difference between the different
combinations of phases, a paired t-test was used.

Lastly, data was mapped on an angular scale (0°–359°) using
Matlab’s CircStat toolbox (Berens, 2009). In reference to the plots in
Figure 3, 0° indicates the start of menses, or the first day of the
subjects’ cycles, 180° marks ovulation, and 359° marks the end of the
LH phase, and consequently the end of the 28-day cycle. Analyzed
were both subject data on a per cycle basis as well as the combined
average of all cycles. Figure 3 refers to the overall average of
ovulating and non-ovulating cycles, respectively. The Rayleigh
test was utilized for both ovulating and non-ovulating groups to
detect the existence of a unimodal deviation from uniformity. A
small p (p< 0.05) indicates a significant egress from uniformity and
thus rejects the null hypothesis of uniform distribution (Berens,
2009). Rejections of the null hypothesis is an indication of a non-
uniform pattern and thus represents ovulation. The Watson-
Williams test, or the circular analogue of the two-sample t-test
(Berens, 2009), was used to compare the two groups, namely,
ovulating and non-ovulating cycles. This test assumes underlying

FIGURE 2
Steps of the heuristic algorithm for processing and plotting each physiological signal.
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von Mises distributions with equal concentration parameter and
evaluates whether the mean directions of two or more groups are
identical (Berens, 2009). Finally, to show the significant difference
between the different combinations of phases, including menses,
mid-follicular, ovulation, mid-luteal and late-luteal, a paired t-test
was used.

2.6 Autoregressive integrated moving
average (ARIMA) model

To predict physiological data for the following day, an
autoregressive integrated moving average (ARIMA) algorithm
was employed, which is well-suited for time series analysis.
ARIMA models consist of three components: autoregressive
(AR), integrated (I), and moving average (MA) terms. The AR
term captures the relationship between a variable and its past values.
The MA term captures the relationship between a variable and its
past error terms, and the I part introduces differencing to make the
time series stationary.

To determine the appropriate ARIMA model, first a moving
average filter was applied to smooth out fluctuations, and then
Augmented Dickey Fuller (ADF) test was used to confirm that data
is stationarity (p< 0.05), thus the differencing parameter (known as
d) was set to zero. To define the rest of the parameters the
Autocorrelation Function (ACF), and Partial Autocorrelation
Function (PACF) were used. Where the ACF measures the
correlation between a time series and its lags at different
intervals, and the PACF measures the correlation between a time
series and its lags while controlling for shorter lags. Observing ACF
and PACF plots (using training data for each subject individually),
and after identifying significant spikes at certain lags (Kotu and
Deshpande, 2018), the AR andMA terms for the ARIMAmodel was
determined to be 2 and 3 (known as p and q). These values were

selected since they were identifying significant spikes for majority of
the subjects.

Here only the cycles with missing data (5 cycles) were removed
which resulted in a total of 41 ovulating and non-ovulating cycles:
more specifically, data included one subject with one cycle, 3 subjects
with only 2 cycles each, 10 subjects with 3 cycles each and one
subject with 4 cycles. Data from the subject with only one cycle was
removed as well, resulting in 40 cycles. From mean values of
temperature, HR, IBI and tonic EDA, the last cycle was kept for
test while the rest (2 first cycles for 10 subjects, one first cycle for
3 subjects, and 3 first cycles for one subject) were used for initial
training. It should be noted that each subject was fitted separately.
The algorithm was re-trained every day by adding the new daily
measure to training dataset, to predict the next day value. By
analyzing patterns and trends in the data, the algorithm can
identify potential changes and predict what is likely to happen in
the next day.

3 Results

Using the Rayleigh test, in ovulating subjects, a non-uniform
pattern was observed with a significant periodicity (p< 0.05) in
mean temperature, HR, IBI, EDA tonic component, and SMA of the
EDA phasic component in frequency domain among the extracted
features reported in Section 2.2. Similar to the BBT chart in
Figure 1A, there is a noticeable dip in amplitude of the polar
histogram around 180° in the ovulating mean temperature chart
in Figure 3 (top), indicating ovulation and representing a non-
uniform distribution with a biphasic pattern (p< 0.05). The biphasic
pattern was observed in mean EDA tonic and SMA of EDA phasic as
well, although not as distinct as the mean temperature pattern. In
contrast, non-ovulating cycles displayed a more uniform
distribution in all selected features (p> 0.05).

FIGURE 3
Polar Histogram plots (0°–359°) of the average values across the menstrual cycles for (top) ovulating, and (bottom) non-ovulating subjects;
31 ovulating cycles, 8 non-ovulating cycles. 0° indicates the start of menses and 180° indicates ovulation. Notice that the window of ovulation (days
13 through 15) is highlighted in red on polar histograms for ovulating cycles. The listed p-values were calculated using the Rayleigh test.
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Using the Watson-Williams test, a comparison was made
between ovulating and non-ovulating groups. Unlike mean
temperature, IBI and EDA, there was no significant difference
(p> 0.05) between ovulating and non-ovulating cycle groups in
mean HR (Table 2). The results of the tonic component were
particularly interesting. Notice that in ovulating cycles (Figure 3),
ovulation had a lower amplitude. In contrast, the associated window

of ovulation for non-ovulating cycles had an elevated amplitude,
albeit not significant compared to the rest of phases.

Comparison between combinations of phases including menses,
mid-follicular, ovulation, mid-luteal and late-luteal, was performed
using paired t-test after extracting the mean values of each phase
from the smoothed and normalized data. In Figure 4, and outlined in
Supplementary Table S1, ovulating cycles show significant

TABLE 2 Comparison of ovulating and non-ovulating cycles using the Watson-Williams test (Berens, 2009). This displays the differences between ovulating and
non-ovulating averages from the following features: average HR, IBI, temperature, EDA skin conductance level, and SMA of the EDA phasic component in the
frequency domain.

Feature Test-statistic (F) p-value

Mean Heart Rate 0.08495 0.770911343

Mean of IBI 5.10189 0.024588662

Mean Temperature 4.42631 0.036160184

EDA Signal Magnitude Area of Phasic Component 13.5693 0.000284669

Mean EDA Skin Conductance Level (Tonic Component) 20.6076 8.79E-06

FIGURE 4
Mean value of phases across 31 cycles for (A) heart rate, (B) inter-beat-interval (IBI), (C) distal skin temperature, (D) tonic component of the EDA, and
(E) and the EDA signal magnitude area of the phasic component in the frequency domain measured with the Empatica E4 wristband for ovulating
subjects’ during sleep showing significant differences between five phases of the menstrual cycle using a paired t-test with a Bonferroni correction (α ≤
0.005) (Phases: Menses, Mid-follicular, Ovulation, Mid-luteal, and Late-luteal) n = 31. Note: **α ≤ 0.005, *0.005 < α ≤ 0.05.
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differences between late-luteal phase and follicular phases (menses,
mid-follicular) for mean temperature, HR and IBI as well as between
late-luteal and menses for EDA mean tonic and SMA using a paired
t-test with Bonferroni correction (α of 0.005). There is a significant
difference between ovulation and mid-luteal phases in mean HR, IBI
and temperature. No significant difference is observed between the
mid-follicular phase and ovulation, except for EDA mean tonic
and SMA.

Further, the ARIMA model was used to accurately predict the
mean temperature, HR, IBI and EDA tonic of the following day
(ovulating and non-ovulating), which resulted in the average root
mean square error (RMSE) of 0.13 ± 0.07 (C°), 1.31 ± 0.34 (bpm),
0.016 ± 0.005 (s), and 0.17 ± 0.17 (μS) respectively. Average RMSE
across ovulating cycles for mean temperature, HR, IBI, and EDA
tonic are 0.12 ± 0.03 (C°), 1.36 ± 0.35 (bpm), 0.017 ± 0.005 (s) and
0.15 ± 0.17 0.06 (μS), respectively. The actual and predicated average
daily values are shown in Supplementary Figure S1 for the third
cycle of an ovulating subject with length of 26 days. The predicted
curve is shown to follow the same pattern of the actual curve. These
relatively low RMSE values show that ARIMA can be used to predict
physiological signals based on previous data. This suggests wearable
devices are a promising technology for predicting menstrual cycle
phases using an appropriate ARIMA model.

4 Discussion

4.1 Principal findings

The purpose of the study was to implement circular statistics to
investigate changes in physiological features during the natural
menstrual cycle in women of reproductive age. Due to the
periodic nature of the data used in this study, signals were
converted to an angular scale and presented in degrees on a
circular plot, which is different from commonly used linear
techniques. On a circle 0° and 360° demonstrate the same
direction, however, on a linear scale those points represent
opposite ends of a scale, and much further apart (Cremers and
Klugkist, 2018). Circular statistics gave us a tool to visualize the data
in a different way.

Data from a wearable device (Empatica E4 wristband),
combined with self-reported ovulation detection (LH-test strip)
and a calendar with the mark of the start and end of menses
were used to determine features representing significant phase
shifts for ovulating cycles. Ovulating and non-ovulating cycles
were also compared using an angular approach. Further, to
determine the significance in deviation from uniformity in each
feature, the Rayleigh test was used. The Rayleigh test was selected by
observing the pattern in data; the distribution with one clear peak
was observed in features after the occurrence of the nadir (lowest
point) as in Figure 1A. However, the Rayleigh test generally assumes
that the data is distributed normally (Karoly et al., 2018). To check
uniformity, other statistical tests might also be considered such as
the Rao’s spacing test, V test and Omnibus. Rao’s test was not a
suitable option for this study because it is more applicable to data,
that is, neither unimodal nor axially bimodal (Berens, 2009) and it
did not confirm any significant phase shift in ovulating or non-
ovulating subjects. The V test showed similar results as the Rayleigh

test except for mean IBI. The V test for circular uniformity is similar
to the Rayleigh test except that the mean direction of data has to be
known before analyzing the data (Berens, 2009). The Omnibus test
(Hodges-Ajne test) confirmed circular uniformity in ovulating
subjects in mean temperature only. This test detects general
deviations from uniformity but with less statistical power and
without assumptions about the underlying distribution (Berens,
2009). In other words, the Omnibus test is used to check
whether there is any circular pattern or non-random structure in
the data. Although different tests were introduced to evaluate
distribution uniformity, for unimodal distributions, the Rayleigh
and V tests are more powerful than the Omnibus test, and among
these two, the Rayleigh test is best recommended for unimodal
departures from uniformity. However, in the multimodal case, the
alternative tests should be considered (Landler et al., 2019). The
Rayleigh test is suitable for unimodal distribution, but it might not
be the best test to confirm biphasic pattern. Additionally, while both
the Omnibus test and the Rayleigh test are used to assess the
uniformity of circular data, the Omnibus test is more general and
examines overall circular pattern, but the Rayleigh test is more
focused on detecting unimodal distributions and the presence of
specific orientations, or clustering, in circular data. It should be also
noted that, although a biphasic pattern was observed in a few
features such as mean temperature, it does not present a second
significant peak to be considered as a bimodal distribution.

The findings demonstrated that wearable technology, with the
ability to monitor multiple physiological features concurrently,
including HR, IBI, temperature, and the EDA, can capture
differences between ovulating and non-ovulating cycles. Of the
many features extracted from the varying signals, only those with
great significance in showing a non-uniform pattern regarding
overall averages of cycles were reported. Many features had
significance on a per subject, per cycle basis. One such feature,
for example, was the power in 0.3–0.4 Hz band of the EDA phasic
component. This feature, in particular, displayed significant phase
shift in 10 out of the 12 ovulating subject averages. However, cycle
averages indicated amore uniform distribution (p> 0.05). It was also
interesting that a significant change was not observed across the
menstrual cycle in LF and HF components of IBI despite findings in
Vishrutha et al. (2012).

Additionally, the selected features were used in a regression model,
specifically anAutoregressive IntegratedMoving Average, to predict the
physiological signals. It was shown that the ARIMA model accurately
predicted the physiological values for the testing set, as evidenced by the
relatively low value of the RMSE. Not a significant difference has been
observed between ovulating and non-ovulating cycles in terms of
RMSE. It is worth mentioning that data from non-ovulating cycles
could be periodic but not biphasic. However, more non-ovulating cycles
are needed to draw a clear conclusion.

The result from this study has many implications in reference to
monitoring and predicting menstrual phases. For example, a
reproductive-aged woman taking medication while trying to
conceive would have the ability (along with medical advice from
a licensed physician) to monitor medication dosages depending on
the menstrual phase. Also, people with health issues that are linked
to specific menstrual phase, such as catamenial epilepsy, can benefit
from knowing if their cycle is ovulatory and accordingly adjust the
anti-seizure medication dosage.
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4.2 Limitations

There are several study limitations thatmay affect the accuracy of the
wearable device. This includes, but is not limited to, device position,
demographic factors and sleep assessment. Thus, the possibility that the
Empatica E4 wristband may exhibit different levels of accuracy across
different subjects, cycles and menstrual phases must be considered. A
further limitation was that blood hormonal levels were not taken. This
would have provided a more accurate method for detecting not only
phases but ovulation itself. Although LH-tests (urine) were used, which
are 99% accurate, there is potential for false negatives if the test was used
incorrectly. A further limitation concerns the relatively small sample
population size of non-ovulating cycles, especially compared to ovulating
case (8 non-ovulating to 31 ovulating cycles). While we concluded the
non-ovulating cycles exhibit a more uniform distribution, additional
data has the potential to reveal that non-ovulating cycles also present a
non-uniform distribution, but no less distinct from the non-uniform
distribution of ovulating cycles. A larger sample size would, not only give
better results, but accurately represent the two groups better.

5 Conclusion

In conclusion, angular methods can accurately represent the
biphasic and non-uniform pattern in the data collected using a
wearable device for naturally occurring menstrual cycles of
reproductive-aged women. There is significant difference in ovulating
and non-ovulating cycles. These results can fuel algorithms, such as
ARIMA, to accurately predict human physiological signals and
potentially classify menstrual phases via machine learning algorithms.
Thus, wearable technology is a promising tool for tracking physiological
changes across the menstrual cycle.
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