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Phenotypic plasticity of cancer cells can lead to complex cell state dynamics
during tumor progression and acquired resistance. Highly plastic stem-like states
may be inherently drug-resistant. Moreover, cell state dynamics in response to
therapy allow a tumor to evade treatment. In both scenarios, quantifying plasticity
is essential for identifying high-plasticity states or elucidating transition paths
between states. Currently, methods to quantify plasticity tend to focus on 1)
quantification of quasi-potential based on the underlying gene regulatory network
dynamics of the system; or 2) inference of cell potency based on trajectory
inference or lineage tracing in single-cell dynamics. Here, we explore both of
these approaches and associated computational tools. We then discuss
implications of each approach to plasticity metrics, and relevance to cancer
treatment strategies.
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1 Introduction

1.1 Overview

In the field of Network Physiology, cancer systems biology occupies an intriguing
position. On the one hand, widespread research efforts advance data production from genes
to patients and, in parallel, improving analytical methods for inferring molecular networks
from these large datasets are providing insights that both leverage and go beyond
reductionism-based knowledge. On the other hand, the built-in plasticity of
heterogeneous cell states in tumors and the consequent lack of ground truths typically
elucidated in physiological systems create profound uncertainty about structure and
dynamics of cancer networks, whether inferred from top-down or bottom-up approaches.

In this review, we place studies on cancer cell plasticity and its underlying network
dynamics in the context of broader studies on the regulation of cell plasticity in
physiological self-organizing systems, as it occurs in, for example, brain or embryo
development (Ivanov, 2021). In a nutshell, cancer has been understood as a disease in
which regulation of the cell cycle is lost and cell proliferation has become a runaway
process. This is an actionable perspective that has led to many advances in cancer
treatment. However, in a larger sense, cancer is a disease of lost cell identity: tumors
can be shrunk, slowed down, or almost eradicated, but in the vast majority of cases they
relapse in a treatment-resistant or -tolerant state. Our current understanding of relapse is
rooted on studies that unambiguously determined the heterogeneous nature of cancer cell
states in a tumor. More recently, transitions among these states have been convincingly
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demonstrated. In this Introductory section, the evidence for tumor
heterogeneity and cancer cell plasticity is first summarized, and the
case is made for the key role of quantitative metrics for
heterogeneity and plasticity.

In the rest of Introduction, theoretical frameworks for plasticity
are recalled. The current noisy landscape of information formed by
torrents of publications and a dataset tsunami can be overwhelming.
We find it essential to grasp for theory as an anchor in reality, and a

means for producing knowledge platforms that can be hardened and
continuously improved upon (or falsified).

In later sections, current attempts at unveiling the mechanistic
basis for plasticity are reviewed, with emphasis on the role of the
dynamics of Gene Regulatory Networks (GRNs), and the dynamics
of single-cell state transitions. This focus was motivated both by our
direct experience in these areas, and by a broadening group of
investigators that are collectively producing remarkable advances.

FIGURE 1
Strategies for treating plastic cancer systems. (A) If a specific subpopulation of the tumor is capable of plasticity (such as cancer stem cells), the tumor
can be treated by reprogramming the tumor away from this population. (B) If the tumor evades treatment through cell state dynamics, plasticity itself
must be targeted, such as by decreasing chromatin accessibility that allows cancer cells to change phenotype.
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1.2 Cell heterogeneity and plasticity in
cancer

Heterogeneity within tumors has been shown to be critical
for acquired resistance to therapy in many cancer types
(Altschuler and Wu, 2010; Calbo et al., 2011; Marusyk et al.,
2012; Huang, 2013; Frick et al., 2015; Pisco and Huang, 2015; Jia
et al., 2017; Lim et al., 2017; Su et al., 2019; Nath et al., 2021;
Yabo et al., 2021). Several layers of heterogeneity exist and play a
large role in cancer systems (Elowitz et al., 2002; Brock et al.,
2009; Feinberg and Irizarry, 2010; Gupta et al., 2011; Pisco and
Huang, 2015; Caiado et al., 2016; Kumar et al., 2019; Hayford
et al., 2021). Genetic heterogeneity results from selection of
mutants, each of which may respond differently to treatment.
Non-genetic (or epigenetic) heterogeneity is dependent on
epigenetic regulation of phenotype and can be attributed to
several sources, including variability in chromatin
accessibility, DNA methylation, and DNA-binding proteins
that regulate transcription levels of genes. Finally,
stochasticity arises from intrinsic sources, such as the
probabilistic nature of biochemical reactions within a cell, or
extrinsic sources, such as local fluctuations in chemical
concentrations in the microenvironment (Swain et al., 2002).
While transient, this variability can probabilistically drive
transitions between phenotypes (Feinberg and Irizarry, 2010;
Gupta et al., 2011; Liao et al., 2012; Hayford et al., 2021).

Together, these layers of heterogeneity—genetic, epigenetic, and
stochastic—define the variability in phenotype. There is a critical
need to quantify these levels of heterogeneity in cancer systems, as
distinct phenotypes will presumably respond differentially to
treatment, and changes in heterogeneity can lead to acquired
resistance (Pisco and Huang, 2015; Brady et al., 2017; Jia et al.,
2017; Mu et al., 2017; Zou et al., 2017; Jolly et al., 2018; Risom et al.,
2018; Arozarena and Wellbrock, 2019; Su et al., 2019; Nath et al.,
2021). Such dynamics of phenotype, or phenotypic plasticity, can
lead to differential treatment response and/or resistance in several
ways, including: 1) the existence of highly plastic, drug-resistant
states; and/or, 2) cell state dynamics that evade treatment (Figure 1).

First, a particular phenotype may be intrinsically less susceptible
to treatment, so transitions to this “drug-tolerant persister”
phenotype can promote tumor survival (Sharma et al., 2010; Liau
et al., 2017; Paudel et al., 2018; Risom et al., 2018; Jia et al., 2020;
Cabanos and Hata, 2021; Oren et al., 2021). Often, such a phenotype
has stem cell-like properties, suggesting the plastic potential of stem
cell-like phenotypes is intrinsically tied to treatment response
(Gupta et al., 2011; Chisholm et al., 2015; Liau et al., 2017;
Wainwright and Scaffidi, 2017; Smith et al., 2018; Lytle et al.,
2019; Neftel et al., 2019; Chan et al., 2021; Yabo et al., 2021).
Lineage tracing analyses, as described in Section 3.3., that
investigate the underlying mechanisms of the persister state and
the transition paths towards it can point to strategies for
reprogramming such states to sensitivity.

Second, cell state dynamics between various phenotypes can
promote tumor survival by adaptation to treatment (Zhou and Li,
2016; Neftel et al., 2019; Wouters et al., 2020; Gay et al., 2021; Nath
et al., 2021; Groves et al., 2022; Sutherland et al., 2022). In these
cases, reprogramming cells towards a drug-sensitive state is
infeasible, because the high degree of cell state transitions can

allow for any cell state to become insensitive again. In this case,
it would appear that plasticity itself should be the target.

In both scenarios, it is necessary to quantify the phenotypic
plasticity of cancer cell states and the mechanisms underlying cell
state dynamics, towards the goal of identifying therapeutic strategies
that diminish the plastic capabilities of the tumor as a whole (Huang
and Kauffman, 2013). Waddington’s landscape is a useful metaphor
for understanding how cancer cells shift between phenotypes and
can be quantified through the underlying gene regulatory network
dynamics or via statistical mechanical modeling of cell state
dynamics, such as those seen in single cell transcriptomics datasets.

1.3 Waddington’s landscape in cancer

In 1957, C.H. Waddington proposed the concept of an epigenetic
landscape for understanding the regulation of phenotype in the context
of biological differentiation (Waddington, 1957). In this analogy, cells
roll downhill through canalized channels or “chreods” representing
differentiation pathways. Cells at the top of the landscape are
pluripotent stem cells, and as they travel down the landscape, they
gradually become more committed to a particular cell fate. Thus, the
epigenetic landscape could be thought of as a tool to uncover how
epigenetic regulation in a cell (e.g., through chromatin accessibility or
DNA-binding of transcripton factors) controls the cell’s phenotype.
Waddington initially characterized this regulation as a complex system
of interactions that he illustrated as strings pulling on and shaping the
landscape from below (Waddington, 1957).

In normal development, cells are generally isogenic. In cancer,
however, where the mutation rate is higher and multiple subclones
may exist within a single tumor, genetic heterogeneity can be
represented by a “fitness landscape” (Figure 2, bottom). In this
landscape, mutants with higher fitness will be selected for via
Darwinian evolution. For each location in the fitness landscape
(each genome), an entire Waddington landscape of phenotypes
exists (Figure 2, top). Similar to Waddington’s original
conception, cells in the epigenetic landscape “fall downhill”
towards the states with the lowest “potential.” These phenotypic
transitions depend on the instability of each cell state, and a cell’s
ability to transition can be defined by its plasticity.

1.4 System attractors, instability, and
plasticity

The notion of plasticity goes hand in hand with the dynamical
systems theoretical concept of instability. In dynamical systems,
stability of a state requires more than stationarity; a stable state is one
that is resilient to perturbations such that, after external influences
such as changing microenvironmental conditions, the system
returns to its original state (Huang, 2013). This idea is
represented in the potential landscape, in which cells roll
downhill toward local minima, as shown in Figure 3 (top). While
there may be steady states throughout the landscape, such as the top
of a flat hill or the bottom of a valley, a small push to a cell on top of a
hill will cause it to roll down to a local minimum, far from its original
starting state. On the contrary, a cell in a local minimum is resilient
to small perturbations: it is in a stable “attractor” state of the
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landscape (Huang, 2009). The high-dimensional region around the
attractor where a cell will roll towards the attractor is called the basin
of attraction (Figure 3, bottom). Cell states with larger basins of
attraction can withstand larger perturbations to their cell state,
thereby demonstrating resilience of the system.

In dynamical systems theory, plasticity is a weaker kind of stability,
in which a perturbed system neither returns to its original state nor
escapes from it, but instead tracks the environmental change (Huang,
2013). However, in biology, plasticity and instability are often thought of
as interchangeable: a more plastic cell state responds to an external
perturbation by changing its state to a larger degree. In this view, cells
with higher potential on the landscape are considered more plastic, as
they are more likely to move through the landscape towards a lower-
potential attractor. Quantifying both the quasi-potential of the
landscape and potential trajectories through a landscape can
elucidate the role of phenotype plasticity in cancer, such as plasticity
in response to treatment. For example, by quantifying quasi-potential,
one can identify highly plastic and/or stem-like cells that may be
responsible for tumor propagation (Sharma et al., 2010; Grosse-
Wilde et al., 2015; Chan et al., 2021; Gay et al., 2021). By identifying
trajectories through the landscape of a tumor cell population, one can
characterize the paths cells take epigenetically during tumor
development, tumor metastasis, persistence and acquired resistance
in response to treatment.

1.5 Quantifying plasticity as quasi-potential
of Waddington’s landscape

While Waddington intended this picture purely as a metaphor,
it has now been quantified in various ways, borrowing ideas from
physics and dynamical systems theory to describe the underlying
regulation of these processes (Wang et al., 2008; 2011; Zhou et al.,
2012). The height of the landscape describes instability of each
phenotype as a “quasi-potential,” a correlate of gravitational
potential in a physical landscape (Figure 2, top). Quantification
of this quasi-potential is informative for processes in which plasticity
and instability plays a central role, including cancer systems (Huang
et al., 2009; Huang and Kauffman, 2013; Hanahan, 2022). By
modeling potential in an epigenetic landscape of phenotypically
heterogeneous populations, one can better determine ways to
control the permissivity of phenotype and prevent
reprogramming of cell identity from a sensitive phenotype to an
insensitive one, as often seen in acquired resistance.

Borrowing from physics, movement of cells in the landscape
(i.e., changes in xi (x1,x2, . . . ,xN) over time, where x is the location of
a cell in phenotype space) may be due to some “force” F(x), similar
to the effect of gravity onmovement through a physical landscape. A
potential, U(x), can be defined such that the change in phenotype is
equal to the gradient of this potential:

FIGURE 2
Relationship between the fitness landscape and epigenetic landscapes [adapted from Huang (2013)]. Each epigenetic landscape is associated with a
single genome (G1). Selection of high-fitness mutants can be represented by cells “climbing” up a fitness landscape, where each point along the
horizontal axis is a different genome. For a specific genome, we can imagine an entire epigenetic landscape that characterizes the phenotypes associated
with that genome (since there is not a one-to-one, but one-to-many, relationship between genotype and phenotype). Phenotypic transitions
through epigenetic mechanisms allow for movement through the epigenetic landscape. G: genetic state; S: epigenetic state.
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Cells will therefore “roll down” the gradient towards states with
lower potential. It is worth noting that most high-dimensional, non-
equilibrium biological systems are not simple gradient systems, and
therefore the vector field is sometimes decomposed into two
components: the gradient of some quasi-potential, and a
remainder term (Wang et al., 2008). Still, the gradient term has
been successfully used to understand pathways of transition through
epigenetic landscapes, describing everything from differentiation to
cell fate reprogramming (Wang et al., 2006; 2010; Zhou and Huang,
2010; Zhou et al., 2012; Wu and Wang, 2013a; 2013b; Li and Wang,
2014a; 2014b; Wang, 2015; Zhou and Li, 2016; Luo et al., 2017; Yan
et al., 2019). Furthermore, the high dimensionality of complex
biological systems can pose a problem for characterizing the
structure of an interpretable, lower-dimensional epigenetic
landscape. Recent work addressed this problem using a
dimension reduction approach of the landscape (DRL), which
projects high-dimensional landscapes into a lower-dimensional
coordinate system based on variance in an associated probability
density function (Kang and Li, 2021). This method was applied to
cancer systems in the context of epithelial to mesenchymal
transitions and metabolism (Kang and Li, 2021).

Several systems biology approaches have been developed to
determine the driving force F(x) that shapes the epigenetic
landscape and defines phenotypic plasticity (Huang, 2012; Zhou

et al., 2012; Devaraj and Bose, 2020). Classical dynamical systems
modeling of underlying gene regulatory networks is a bottom-up
approach that can explain how phenotypic transitions are
dependent on regulation of gene expression by transcription
factors (TFs) (Bhattacharya et al., 2011; Wang et al., 2011; Joo
et al., 2018). Alternatively, phenomenological top-down approaches
based on analysis of large ‘omics’ datasets can approximate the
potential landscape. For example, single-cell sequencing of
transcriptomes samples the density of cells in the landscape and
trajectory inference methods uncover transition paths between
attractors, i.e., cell states (Saelens et al., 2019). These two
orthogonal approaches are detailed in the following two sections.

2 Modeling plasticity in epigenetic
landscapes via gene regulatory
networks

2.1 Gene regulatory network structure and
dynamics

To understand the driving force F(x) that defines the landscape
quasi-potential, first it is important to understand gene regulatory
networks (GRNs). A GRN is established by the fact that certain
genes encode TFs which are capable of binding to DNA and
regulate transcription of other genes into RNA. Because TFs

FIGURE 3
Phenotype stability and attractors. The epigenetic landscape shown above has multiple stable and unstable steady states. While a cell at a local
maximum could technically be a steady state, small stochastic perturbations to the cell will quickly push it one direction or another towards a local
minimum. Attractor 2 has the lowest potential as the global minimum. The region around each attractor where cells will move towards the attractor is
known as the basin of that steady state. S: epigenetic state.
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can also control the transcription of other TFs (and sometimes
themselves), a network of TFs and the genes they regulate can be
constructed (Figure 4). The structure of the GRN for a particular
cell is hardcore in the genome of a cell, as shown in Figure 5 (left),

since each interaction in the network is a molecular interaction
between a DNA-binding protein and the cis-regulatory loci (such
as promoter and enhancer regions) for a particular gene (Huang,
2013). On the other hand, the dynamics of the network are
described by the collective changes in gene expression over
time. The dynamics of a GRN allow for various stable states
dependent on the expression of genes in the network (Figure 5,
right). Therefore, the state of the GRN, given by the expression
levels of the genes within it, maps to a single location on the
epigenetic landscape—the phenotypic state.

Quantifying the dynamics of TF binding can be calculated by
adapting Hill kinetics to describe the rate at which a target gene is
transcribed when regulated by TFs (Hill, 1913). The Hill equation is
a sigmoidal function that describes activation (or repression) of a
gene as dependent on the concentration of a regulator until it
reaches saturation. This is a relatively realistic description of
many gene control functions and can be derived directly from
the binding of the TF to the promoter site. The dynamics, or the
change over time, of each TF in the network can therefore be
represented as a function of all “upstream” parent nodes in the
network that influence its transcription. The system of such
differential equations, where each TF in the network has a
corresponding equation for its rate of change, defines the
complete dynamics of the system. Based on this system of
equations, GRN dynamics are equivalent to the driving force that
pushes cells down the gradient of the potential in the landscape.

Several researchers have directly solved such systems of ODEs to
quantify the plasticity of various systems (Wang et al., 2010; Wang
et al., 2011; Zhou et al., 2012; Li and Wang, 2014b; Zhou and Li,
2016; Devaraj and Bose, 2020). Transition paths between stable
states can then be calculated, such as by using a path-integral
approach (Li et al., 2016; Lang et al., 2021). However, for high-
dimensional systems, this system of equations often becomes
intractable. Instead, several computation methods have been
developed to approximate network interactions.

FIGURE 4
A gene regulatory network (GRN) constructed from interactions
between DNA-binding TFs and target genes. Each connection in the
GRN represents a physical interaction: the “parent node” is a
transcription factor (protein) that binds to the promoter or
enhancer region associated with a target gene, which may or may not
code for another transcription factor. When the target gene is also a
transcription factor, the connection is part of the GRN; otherwise, if
the gene does notmake a protein that feeds back into the network, it is
often pruned, since the transcription and translation of that gene will
not affect the network dynamics. Here, two transcription factors that
interact are considered, and each regulates itself (shown as feedback
loops in the network). Each transcription factor regulates multiple
genes. TF-binding for one of the interactions is shown in the box at the
bottom of the figure. Green arrows: positive regulation (activation);
Red bars: negative regulation (inhibition). Created with BioRender.

FIGURE 5
Relationship between landscapes and GRNs (adapted from Huang (2013). (Left) Each state in the fitness landscape (a single genome) is associated
with a different GRN structure; mutations can affect the physical interactions between TFs and their target genes, causing the addition or removal of
nodes or connections. (Right) Each state in the epigenetic landscape, alternatively, has the same genome, and thus the same structure of a GRN. The
states in the landscape here represent different states of the same network, where the same nodes in the network are expressed at different levels.
The stability of each pattern of expression partially determines the shape of the landscape. G: genetic state; S: epigenetic state.
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2.2 GRN simulations can model phenotypic
transitions

In 1969, Stuart Kauffman introduced the idea of Boolean
network models for biological systems (Kauffman S., 1969;
Kauffman, S. A. 1969). Kauffman posited that, “while finely-
graded intermediate levels of gene activity could occur,” genes
tended to be very active or very inactive (Kauffman, 1971),
consistent with switch-like Hill kinetics with a high Hill
coefficient. Therefore, it is often useful to idealize the control of
gene expression as a binary switch. Boolean logic determines the
activity level of each gene given the binary states of its upstream
regulating TFs by approximating the Hill equation, turning the
smooth, monotonic function into a step function with activation (or
repression) threshold of S (Kauffman, 1971; Glass and Kauffman,
1973; Thieffry and Thomas, 1998). Since Kauffman’s original idea,
several studies have shown the utility of conceptualizing gene
regulation as a set of binary genes coupled together through
Boolean functions (Albert et al., 2008; Pomerance et al., 2009;
Saadatpour and Albert, 2013; Masoudi-Nejad et al., 2015;
Steinway et al., 2015; Zhou et al., 2016; Correia et al., 2018; Joo
et al., 2018; Yachie-Kinoshita et al., 2018; Wooten et al., 2019).

While a Boolean approximation for transcriptional regulation is
realistic for many biological systems, some genes are regulated by
multiple TFs in a manner that does not use Boolean logic. For
example, Kalir and Alon (2004) showed that gene regulation in an
E. coli network of flagella biosynthesis follows a summation function
(SUM), rather than Boolean logic gates (AND, OR, and NOT).
Several studies have shown other functions, including complex
functions with many inputs, are also possible (Yuh et al., 1998;
Beer and Tavazoie, 2004; Istrail and Davidson, 2005). Tomodel such
complex systems, other types of networks must be used. One such
approach is to adapt Boolean networks using probabilistic rules
(Dorigo, 1994; Shmulevich et al., 2002; Li et al., 2007; Trairatphisan
et al., 2013; Tercan et al., 2022). Probabilistic Boolean Networks
(PBNs) find a set of functions for each node in the network, each
with an associated probability of predicting the target node.

In order to understand systems with non-Boolean gene
regulatory functions, other probabilistic methods of network
inference, known as probabilistic graphical models (PGMs), may
be used (Wang et al., 2005; Zou and Conzen, 2005; Li et al., 2011;
Baba et al., 2014; Sanchez-Castillo et al., 2017). These models have
multiple advantages over Boolean approaches. For example, they
can infer non-linear relationships between TFs, so that the rule of
interaction is not required a priori to have a particular form such as a
Boolean function. One such PGM, known as a Bayesian network,
considers a GRN to be a network (or graph) where each directed
edge represents the probabilistic dependence among genes. PGMs
are more phenomenological than Hill kinetics or Boolean network
modeling, but they can mine information from transcriptomic
data—for example, RNA-seq profiles for the TFs in the
network—without assumptions, such as binariness, about the
relationships between TFs (Li et al., 2007; Chai et al., 2014).

Several methods focus on predicting network structure alone
(Margolin et al., 2004; Langfelder and Horvath, 2008; Huynh-Thu
et al., 2010; Aibar et al., 2017; Chan et al., 2017; Moerman et al.,
2018). Some of these approaches utilize similarity metrics on
transcriptomic data, e.g., to identify co-expressed gene modules

or find relationships between genes with high mutual information,
such as WGCNA, GENIE3, ARACNE, or PIDC (Margolin et al.,
2004; Langfelder and Horvath, 2008; Huynh-Thu et al., 2010; Chan
et al., 2017). While these approaches have been successfully applied
to several systems, including cancer, they can often find spurious
relationships that do not correspond to physical interactions (cis-
regulatory motifs, such as transcription factors binding to the
promoter of a target gene). More recent methods can also
incorporate this binding information to predict regulatory
relationships. For example, SCENIC builds a network structure
based on gene co-expression modules and transcription factor
binding motif information from the RcisTarget database (Aibar
et al., 2017). These tools identify network interactions that
coordinate changes in cell identity, but do not predict single cell
dynamics.

Many computational algorithms have also been developed to
infer both network structure and single-cell dynamics based on
Boolean, Bayesian, or other regulatory rules (Chan et al., 2017; Khan
et al., 2017; Sanchez-Castillo et al., 2017; Chen and March 2018;
Castro et al., 2019; Dunn et al., 2019;Wooten et al., 2019; Aalto et al.,
2020; de Sande et al., 2020; Pratapa et al., 2020; Ramirez et al., 2020;
Su et al., 2022; Hérault et al., 2023; Kamimoto et al., 2023). For
example, BooleaBayes uses probabilistic Boolean rules to predict
master regulators of heterogeneous phenotypes that, when
perturbed, could destabilize particular phenotypes and therefore
change the phenotypic composition of a tumor (Wooten et al., 2019;
Olsen et al., 2021; Groves et al., 2022). SCODE models a GRN via
ODEs using the gene expression matrix and associated pseudotime
from a single-cell dataset and uses this GRN to reconstruct the
expression dynamics (Matsumoto et al., 2017). CellOracle uses
scRNA-seq and scATAC-seq to generate GRNs and simulate
changes in gene expression following experimental perturbations
(Kamimoto et al., 2023).

Regardless of the limitations or assumptions of network
inference algorithms, these methods require biological data to
fully characterize a system. Transcriptomics data are often used,
sometimes in combination with other types of epigenomic or
proteomic information (Margolin et al., 2004; Langfelder and
Horvath, 2008; Liu et al., 2016; Duren et al., 2017; Ramirez et al.,
2017; Wooten et al., 2019). Today, single-cell RNA-sequencing
(scRNA-seq) is commonly used to obtain a more granular
picture of transcriptional regulation and stable phenotypes in a
system than bulk sequencing data can provide. Top-down,
phenomenological approaches for modeling the epigenetic
landscape can also utilize scRNA-seq data directly to find
empirical patterns of expression. Because intratumoral
heterogeneity and plasticity are relevant to acquire resistance in
cancer, it is important to determine how cells change in phenotype
in various contexts. These top-down approaches work towards the
long-term goal of personalizing treatment by providing a framework
for understanding plasticity in an individual patient’s tumor.

3 Modeling plasticity in epigenetic
landscapes via single-cell dynamics

Single-cell sequencing methods have paved the way for data-
driven approaches to quantifying plasticity. While classical
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dynamical systems modeling—i.e., modeling a GRN that determines
a quasi-potential landscape—has the advantage of being predictive,
it can be difficult or impossible to model the complete dynamics of a
high-dimensional system. Alternatively, it is possible to use a data-
driven, bottom-up approach by modeling single-cell dynamics as a
Markovian process, which can identify transition paths heuristically
from scRNA-seq data.

Borrowing once again from physics, a drift-diffusion equation
can model the change in cell density for a given region of gene
expression space (or, analogically, the phenotypic landscape):

∂c
∂t

� −∇ cv( ) + Rc

where c is cell density of a given region of gene expression space,
R describes the rate of accumulation and loss due to cell
proliferation, death, and movement through the region, and v is
the net average velocity (Weinreb et al., 2018). With additional
assumptions, we can model the velocity as related to the
deterministic average velocity field (due to the epigenetic
landscape, for example,) and a stochastic component related to
diffusion. This velocity field may be calculated heuristically from
pseudo-temporal information using trajectory inference methods
and can predict cell-state transitions in the epigenetic landscape
(Qiu et al., 2022). Furthermore, drift-diffusion modeling of cell
dynamics along a high-dimensional manifold in gene expression
space can be used to infer dynamics through a Markov chain, with
defined transition probabilities between cell states (Weinreb et al.,
2018).

3.1 Trajectory inference and pseudotime as a
measure of plasticity

Trajectory inference algorithms also aim to understand changes
in cell density by ordering cells along a trajectory based on
transcriptomic similarity, empirically determining transition
paths in the system (Trapnell et al., 2014; Guo et al., 2016;
Haghverdi et al., 2016; Welch et al., 2016; Qiu et al., 2017;
Herring et al., 2018; Saelens et al., 2018; Setty et al., 2019; Wolf
et al., 2019; Stassen et al., 2021). These trajectory inference
algorithms tend to search for an underlying manifold of the data
to delineate graph-based trajectories. By interrogating the structure
of the single cell data in gene expression space, multifurcations, trees,
and other graph structures can be identified. While these methods
are unbiased and often unsupervised, they tend to require
identification of a “root cell” to determine the directionality of
transitions, as multiple trajectories could be explained by the
same graph structure. Such a root cell, or source, can be thought
of as having a high degree of plasticity, as defined by the quasi-
potential of the underlying landscape. Therefore, these methods
require a priori knowledge of the high-plasticity states of a system
but are useful for identifying transition paths from these states.

Some methods utilize time-series data to determine
directionality by optimal transport-based algorithms (Kimmel
et al., 2019; Schiebinger et al., 2019; Marjanovic et al., 2020).
Because scRNA-seq is a destructive method, the same single cell
cannot be monitored and sequenced over time. Optimal transport-
based methods overcome this experimental constraint by inferring

“temporal couplings” across timepoints to determine the most likely
phenotypic “descendants” of each cell at later timepoints.
Ultimately, lineage tracing provides a benchmark for
interrogating trajectories, as cell lineages across timepoints are
identified via “barcodes,” thereby linking cell state in early
timepoints to cell fate in later timepoints (Griffiths et al., 2018;
Wagner and Klein, 2020; Wang et al., 2021).

3.2 RNA velocity-based measures of
plasticity

In 2018, a novel approach to trajectory inference was developed
based on RNA splicing dynamics (La Manno et al., 2018). By fitting
an ordinary differential equation (ODE) model of RNA
transcription, splicing, and degradation, La Manno et al.
discovered that it was possible to infer short-term dynamics on a
cell-by-cell basis (Figure 6). RNA velocity infers a steady-state ratio
of unspliced to spliced counts of RNA on a gene-by-gene basis to fit
the ODE model parameters, such as the degradation rate of the
mRNA. As shown in Figure 6, an increase in RNA transcription
from a particular gene results in a slow increase of unspliced RNA,
followed by a delayed increase in spliced RNA. Therefore, by
comparing the unspliced and spliced counts of a gene in each
cell in this model, it is possible to determine the future state of
each cell.

The timeframe for dynamic predictions is on the order of a few
hours, similar to the average splicing rate. However, RNA velocity
can be extrapolated to longer timeframes by considering the
relationship between a cell’s velocity vector—i.e., the
directionality and magnitude of its inferred change in gene
expression—and the location of neighboring cells (Figure 6,
right). These extrapolated dynamics can be used to make
predictions about the future state of cells near the beginning of
the trajectory. Because this method does not rely on multiple
sampled timepoints or prior knowledge about the “root” cell of a
trajectory, it is optimal for understanding the dynamics of systems
for which a temporal series of samples is not possible, such as tumor
dynamics from single biopsies. Together, these analysis methods can
uncover an empirical epigenetic landscape by defining stable
phenotypes and transition paths in scRNA-seq data sampled
from various cancer systems, including human biopsies, to
complement or replace quantification of GRN dynamics.

Since RNA velocity was first introduced, several methods have
utilized the approach to quantify plasticity (Bergen et al., 2020;
Gorin et al., 2020; Chen et al., 2022; Groves et al., 2022; Lange et al.,
2022; Qiu et al., 2022). As described in the original paper, trajectory
inference from RNA velocity translates the velocity vectors into a
transition probability matrix, which can be used in a Markov Chain
model of cell state dynamics (La Manno et al., 2018; Bergen et al.,
2020). This approach assumes that movement of cells through a
phenotypic landscape is a Markovian process in which cell fate
depends only on the current state of the cell. With this assumption,
we (Groves et al., 2022) and others (Weinreb et al., 2018; Bergen
et al., 2020) proposed to quantify plasticity as a cell’s potential to
move towards one or more attractors of the system, i.e., a cell’s
ability to traverse a phenotypic landscape. Our metric, termed Cell
Transport Potential (CTrP), quantifies the average distance traveled
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for each cell through a Markovian state transition graph, accounting
for multiple possible cell fates (or absorbing states) (Groves et al.,
2022). The gain with CTrP is an intuitive connection between cell
landscape dynamics and transcriptomics: the higher the CTrP of a
cell in a landscape, the larger the mobility in gene expression space
expected for that cell. With CTrP, we identified highly plastic cell
states across several small cell lung cancer (SCLC) human and
mouse experimental models (Gay et al., 2021; Groves et al.,
2022). For instance, in a circulating tumor cell-derived xenograft
(CDX) model, we were able to determine that resistant tumors post-
treatment originated from a small, high-CTrP cell state that arose
after chemotherapy (Gay et al., 2021).

Other approaches have quantified plasticity as multipotency by
defining possible cell fates for each cell state using RNA velocity-
based transition probabilities. For example, CellRank builds on RNA
velocity and trajectory inference models (such as pseudotime) to
predict fate potentials given the stochastic nature of fate decisions
(Lange et al., 2022). CellRank has been used to predict fate
probabilities and reprogramming outcomes in several
developmental systems (Hersbach et al., 2022; Lange et al., 2022;
Van Bruggen et al., 2022; Bono et al., 2023; Matsushita et al., 2023),
whereas applications to cancer systems have mainly focused on
trajectory inference for the immune compartment rather than
cancer cells (Xue et al., 2022; Friedrich et al., 2023; Jainarayanan
et al., 2023). DeepVelo uses neural networks to learn transcriptomic
dynamics, building a model that predicts trajectories, driver genes,
and the effect of in silico perturbation on fate decisions (Chen et al.,
2022); however, this approach has not yet been applied to cancer
systems.

These approaches have been used to predict perturbations that
can affect fate decisions. In cancer, these methods could identify
treatment options for perturbing cells away from drug-resistant cell

types (Wooten and Quaranta, 2017) or cancer attractors as a whole
(Huang and Kauffman, 2013; Li et al., 2016).

3.3 Lineage tracing to understand cell state
transitions

While trajectory inference of single cell sequencing data can
provide high granularity for understanding phenotypic
heterogeneity in cancer, such approaches to understand plasticity
of cancer cells over time must account for the destructive nature of
sequencing. Alternatively, lineage tracing methods have long been
used to understand the temporal dynamics of cell state in cancer
populations, particularly during tumor initiation and in response to
treatment (Chakrabarti et al., 2018; Wagner et al., 2018; Weinreb
et al., 2020;Wang et al., 2021; Singh and Saint-Antoine, 2023). Single
cell time-lapse microscopy has been used to correlate cell state and
fate, suggesting the existence of phenotype switching (Bhola and
Simon, 2009; Spencer et al., 2009; Bertaux et al., 2014; Chakrabarti
et al., 2018). For example, researchers used time-lapse microscopy to
understand variability in the onset of apoptosis, finding that protein
state gives rise to transient heritability between mother and daughter
cells (Bhola and Simon, 2009; Spencer et al., 2009). This can be
modeled mechanistically by considering stochastic fluctuations in
protein levels (Bertaux et al., 2014). Together, these results connect
cell state (assumed to be identical in sister cells) with cell fate
(divergence in apoptotic response), and pave the way for
understanding how subpopulations of a single tumor can have
such different fates (drug sensitivity versus tolerance) in response
to a single treatment.

More recently, several groups have used a modified Luria
Delbrück fluctuation analysis to determine whether resistance to

FIGURE 6
RNA velocity model [adapted from (La Manno et al., 2018)]. (A) By modeling transcription, splicing, and degradation of RNA as ODEs, we can
determine the steady state proportion of unspliced and spliced RNA and infer dynamics of single cells. An increase in transcription leads to an increase in
unspliced and then spliced RNA, with lag time. This difference helps to determine whether a snapshot proportion of unspliced and spliced counts of a
particular gene is increasing (induction) or decreasing (repression). (B) Velocity vectors in gene expression space are calculated for each individual
cell. By comparing each velocity vector to the distance to neighboring sampled cells, we can predict the probability of the cell transitioning to other states
(defined by sampled cells). This allows us to generate a Markov chain model and infer dynamics through the single cell data.
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therapy is heritable or a result of transient reprogramming of
phenotype (Shaffer et al., 2017; 2020; Russo et al., 2022; Singh
and Saint-Antoine, 2023). For example, Shaffer et al. (2017) tested
whether resistance to vemurafenib in BRAF-mutated melanoma was
genetically heritable or transient. If the drug resistance was transient
and due to epigenetic reprogramming, a Luria Delbrück fluctuation
analysis would show a tighter distribution of resistant cell colony
sizes, because all cells would be equally likely to form a resistant
colony. The hypothesis of a transient pre-resistant state that could
epigenetically reprogram to a stably resistant state (i.e., persister
state) under drug was indeed supported by the results. This state was
further characterized by a distinct transcriptional profile (including
high expression of EGFR) and activation of transcription factors
(JUN, AP-1, and TEAD). Shaffer et al. (2020) then expanded this
work into a broadly applicable method, MemorySeq, that combines
Luria-Delbrück fluctuation analysis and population-based RNA
sequencing. Similarly, Russo et al. (2022) used fluctuation
analysis to investigate drug-induced plasticity of colorectal cancer
cells. In this cancer system, cell population dynamics were quantified
with a mathematical model of transitions to a persister state, which
was consistent with a drug-induced, rather than preexisting,
persister state.

Together, these experiments and analyses have shown that drug
resistance in cancer can arise from epigenetic reprogramming of
transient, pre-resistant states, and that high degrees of
transcriptional heterogeneity allow for rare cell populations to
become stably resistant through plasticity. Importantly, these
transitions to a stably resistant state are drug-induced rather than
preexisting, solidifying the connection between treatment and
plasticity of cancer cells.

4 Conclusion

The success of cancer therapies is often limited by mechanisms
of cellular persistence and acquired resistance. Non-genetic
plasticity has emerged as a major cause of treatment insensitivity
or acquired resistance in several cancer types (Marjanovic et al.,
2013; 2020; Pisco et al., 2013; Mu et al., 2017; Su et al., 2017; Zou
et al., 2017; Qin et al., 2020; Quintanal-Villalonga et al., 2020; Chan
et al., 2021; Hanahan, 2022). Targeting plasticity directly has been
suggested as a possible treatment option for several cancers,
including melanoma, breast cancer, and prostate cancer (Sáez-
Ayala et al., 2013; Kemper et al., 2014; Ahmed and Haass, 2018;
Risom et al., 2018; Arozarena and Wellbrock, 2019; Chapman et al.,
2019; Boumahdi and de Sauvage, 2020; Yabo et al., 2021).

A few different methods for targeting plasticity can be
envisioned. First, cell plasticity could be used advantageously to
reprogram cells towards more drug-sensitive states (Yuan et al.,
2019). For example, master TFs, identified through GRN analyses,
could be controlled to direct phenotype switching to attractors that
better respond to treatment, as shown in melanoma (Sáez-Ayala
et al., 2013).

Second, preventing phenotype switching may be more desirable
(Boumahdi and de Sauvage, 2020). Phenotypic plasticity is intrinsic
to the epigenetic landscape: By shaping the landscape, GRN
dynamics form transition paths and unused attractors, and cells
may enter transition paths between stable attractors due to extrinsic

perturbations or intrinsic stochasticity (Huang, 2013). The barrier to
exit attractors may be lower in cancer than normal cells, with “de-
canalized,” shallow valleys and attractor basins enabling cancer cells
to stochastically sample the landscape and find new attractors that
evade treatment (Jia et al., 2017). Targeting the mechanisms that
allow for this stochastic search of drug-tolerant states in the
landscape may lower plasticity and acquired resistance to
therapy. For example, chromatin remodeling may be a key
mechanism by which cells reprogram to other fates, as open
chromatin has been shown to correlate with plasticity (Meshorer
and Misteli, 2006; Giadrossi et al., 2007; Gaspar-Maia et al., 2011;
Burdziak et al., 2023). In fact, a recent study on pancreatic ductal
adenocarcinoma used this connection between plastic cells and
accessible chromatin landscape to quantify plasticity as the
entropy in prediction of transcriptomic fate based on chromatin
accessibility (epigenomic state) (Burdziak et al., 2023). In cancers
where plastic states with open chromatin landscapes exist,
promoting repressive chromatin organization may be able to
keep cells from transitioning between phenotypes during tumor
progression or treatment evasion.

Modeling this plasticity through GRNs or single-cell dynamics
can lead to new approaches to therapy. Development of strategies
that target plasticity and systematically reprogram cell identity may
ultimately enable to overcome persistence and acquired resistance in
cancer. These goals should not be elusive, if they are rooted in our
current understanding of mechanisms of GRN regulation. In a
sense, it could be useful to start viewing cancer cells as driven by
dysregulated GRNs, rather than by some mysterious “malignant”
property (i.e., by a misguided absolute priority for self-preservation,
as an invading virus or bacteria would do). Such perspective may
engender a longer but perhaps more rewarding path to achieving a
solution to this devastating disease.

Single-cell state transitions in response to perturbations are also
broadly observed in other physiological systems. In fact, perfect
adaptation is well-known in unicellular organisms, and adaptability
is essential for tissue homeostasis. Thus, reproducible dynamics in
physiological platforms, either spontaneous or under perturbation,
can be used to place boundaries on cancer adaptive networks. Vice
versa, cancer network studies can provide insights into the potential
of physiological networks, e.g., in the context of evolution. We
submit that bridging these areas of research will eventually broaden
perspectives on network physiology.
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