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The assessment of physiological complexity via the estimation of monofractal
exponents or multifractal spectra of biological signals is a recent field of research
that allows detection of relevant and original information for health, learning, or
autonomy preservation. This tutorial aims at introducing Whittle’s maximum
likelihood estimator (MLE) that estimates the monofractal exponent of time
series. After introducing Whittle’s maximum likelihood estimator and presenting
each of the steps leading to the construction of the algorithm, this tutorial
discusses the performance of this estimator by comparing it to the widely used
detrended fluctuation analysis (DFA). The objective of this tutorial is to propose to
the reader an alternative monofractal estimation method, which has the
advantage of being simple to implement, and whose high accuracy allows the
analysis of shorter time series than those classically used with other monofractal
analysis methods.
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1 Introduction

For nearly three decades, numerous studies have shown that invariant-scale structures
appear in biological signals. These studies have widely suggested that this type of structure,
also called fractal structures, hints at the complexity of the system that produced the signal
(Peng et al., 1994; Hausdorff et al., 1996; Ivanov et al., 1998; Goldberger et al., 2002; Kello
et al., 2007; Delignieres and Torre, 2009; Harrison and Stergiou, 2015; Vaz et al., 2020).
Formally, scale invariance can be described in several ways. In the time domain, a signal is
scale-invariant when its statistical properties are consistent across scales y(ct) ≜ cHy(t),
with ≜ denoting equality of statistical distribution, whereas in the spectral domain, stationary
fractal signals decay as S(f)∝ 1/f2H−1. In both cases, the signals are characterized by the
Hurst exponentH, which defines the quality of the fractal structure. Thus, signals whoseH is
between 0.5 and 1 are considered persistent or long-term memory processes. Signals whose
H is between 0 and 0.5 are anti-persistent or short-term processes. Finally, signals whoseH is
equal to 0.5 are random and can be assimilated to white Gaussian noise. The objective of
fractal analysis is to estimate the value of H.

The estimation of the H exponent has become very relevant in the fields of health and
aging because this fractal structure tends to diminish or even disappear with the first signs of
age or disease, making the exponentH a very promising predictor. We (Almurad et al., 2017;
Almurad et al., 2018; Ezzina et al., 2021) have also suggested, through several studies, that it
was possible to restore complexity in older adults. However, all the participants in our studies
were characterized by healthy aging and did not have any motor disability limiting their
movements. Fractal analyses require long signals of more than 500 data points to ensure that
the estimated H value is reliable, which, in the case of walking, represents an analysis time of
10–12 min (Phinyomark et al., 2020). It is obvious that for people whose age has a greater
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impact on their motor skills or who have diseases limiting their
motricity, it is impossible to walk for such a long time. One can
believe that it is necessary to develop a more precise method of
analysis that would allow reducing the duration of the experimental
process.

Among the mathematical models of long-memory processes,
two models have been widely used to construct methods for
estimating the H exponent. The first method, proposed by
Mandelbrot and Van Ness (1968), is the fractional Gaussian
noise (fGn) and fractional Brownian motion (fBm) model. It is
the first fractal process model that has been formulated, describing
both stationary (fGn) and non-stationary (fBm) processes. In this
case, stationarity corresponds to a process with constant mean and
variance, and non-stationarity corresponds to a process with a
variance dependent on time and H. The second model, formulated by
Granger and Joyeux (1980) and Hosking (1981), is the ARFIMA (p,d,q)

model. This model allows the description of short memory processes (via
MA and AR component) AND long memory processes (via FI
component). In the context of this paper, we focus only on the long-
memory FI component. The model used here is therefore an ARFIMA
(0,d,0). Unlike the fBm/fGn model, the ARFIMA (0,d,0) model holds
only for stationary processes. However, in the spectral domain, ARFIMA
(0,d,0) and fGnhave an equivalent spectral decay, whichmakes it possible
to compare exponents d and H via the d � H − 1/2 conversion.

One can note that the Hurst exponent H does not allow
distinction between stationary fGn and non-stationary fBm
processes. Concretely, white Gaussian noise and an ordinary
Brownian motion share the same exponent H equal to 0.5. On
the other hand, if a priori, the ARFIMA (0,d,0) model applies
only to stationary processes, it is still possible to estimate d from
the increments of non-stationary processes (Diebolt and
Guiraud, 2005), so d suffers from the same distinction issue.

FIGURE 1
Estimation of power spectral density via the periodogram method for choleskyfgn (A), arfima0d0 (B), whitenoise (C), and empirical (D)
signals.
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Yet, in the spectral domain, stationary and non-stationary
processes seem to follow a continuum, as illustrated by the
continuity of the spectral exponent (Halley and Inchausti,
2004). Detrended fluctuation analysis (DFA) (Peng et al.,

1995), for example, is built around this assumption, and the
exponent α introduced into this analysis ranges from 0 to 1 for
stationary processes and from 1 to 2 for non-stationary processes.
In concrete terms, α � H for fGn, α � H + 1 for fBm, and α � d +
1/2 for ARFIMA (0,d,0). Thus, considering the previous example,
in the α metric, white Gaussian noise is characterized by an
exponent α � 0.5, while an ordinary Brownian motion is
characterized by an exponent α � 1.5. Since we aim to build
an algorithm that operates without any a priori assumptions
about the stationarity of time series, the output estimate will be
expressed in the α metric.

In addition to the series size issues mentioned previously,
Beran et al. (2013) add that heuristic/graphical methods, such as
DFA (Peng et al., 1995), “are easy to implement and may serve as
descriptive tools and a first heuristic check, there are many reasons

FIGURE 2
Periodogram of choleskyfgn (A), arfima0d0 (B), whitenoise (C), and empirical (D) signals with the theoretical power spectral density of fGn
(orange curve) and ARFIMA (0,d,0) (yellow curve). The theoretical power spectral densities were computed with the estimated values ofH and d obtained
via whittle.m. Those values, entered in MATLAB code 2 and 3, are presented in Table 1.

TABLE 1 H and d values of choleskyfgn, arfima0d0, whitenoise, and empirical
signals estimated via whittle.m.

Signal

choleskyfgn arfima0d0 whitenoise empirical

H 0.8000 0.7804 0.5093 0.7457

d 0.3239 0.3089 0.0096 0.2805
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for using more sophisticated methods when it comes to actual
statistical inference.” Among these more sophisticated methods
are maximum likelihood estimators (MLEs) and, particularly,
Whittle’s method. Whittle’s MLE is a parametric estimator based
on an optimization problem. Beran suggests that this estimator,
like the classical MLE, is consistent. The choice of Whittle’s MLE
over the classical MLE has two explanations. The first is
computational: the complexity of the classical MLE is O(N2),
while that of Whittle approximation is O(Nlog2 N). The second
is practical: for values of H close to 1, the covariance matrix to be
inverted in MLE is close to the singularity, which can generate
computational errors.

In a previous study (Roume et al., 2019), we had already
suggested that Whittle’s MLE allows a better estimation of the H
exponent than DFA and the spectral analysis. However, the

algorithm we used, the ARFIMA (p,d,q) estimator proposed by
G. Intzelt on the MathWorks File Exchange platform1, went far
beyond the analysis of long-memory processes, allowing, for
example, the addition of short-term components, forecasting, and
signal generation. We therefore propose the present tutorial, which
allows a simpler implementation of Whittle’s approximation of
MLE, focusing only on the long-term dependencies.

The purpose of this tutorial is to provide a step-by-step guide to
construct this analysis method similar to the method used by Ihlen in
his tutorial for MF-DFA (Ihlen, 2012). In addition, at each step, we

FIGURE 3
Periodogram of choleskyfgn (A), arfima0d0 (B), whitenoise (C), and empirical (D) signals (blue curve) with the adjusted theoretical power
spectral density of fGn (orange curve) and ARFIMA (0,d,0) (yellow curve). The H and d values are the same as those used in the previous figure.

1 György Inzelt (2022). ARFIMA(p,d,q) estimator (https://www.mathworks.
com/matlabcentral/fileexchange/30238-arfima-p-d-q-estimator),
MATLAB Central File Exchange. Retrieved July 12, 2022.
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describe the formal aspects underlying the construction of the
algorithm. We also propose to the reader a single-file and
standalone algorithm to facilitate its use and diffusion. Then, to
facilitate reading, we have used a different font for the variables,
parameters, and commands used in MATLAB. We suggest the
reader to download the code files and datasets deposited in a GitHub
repository at https://github.com/clementroume/Whittle_maximum_
likelihood_estimator_tutorial and add the downloaded folder to the
MATLAB path to follow this tutorial. The remainder of this article is
organized as follows: Section 2,Whittle’s maximum likelihood estimator
in MATLAB, gives the step-by-step construction method of the
whittle.m algorithm. Meanwhile, Section 3, Whittle’s maximum
likelihood performances, outlines a complete benchmark of this
algorithm against DFA.

2 Whittle’s maximum likelihood
estimator in MATLAB

This method of analysis is an optimization problem, and the
principle is to estimate the value of the Hurst exponent Ĥ which
maximizes Whittle’s log-likelihood function W(H):

W H( ) � − 2
N

∑m
j�1

ln cT′ ωj;H( ) + P ωj( )
cT′ ωj;H( )⎛⎝ ⎞⎠, (1)

where

• m is the integer part of (N − 1)/2.
• ωj are the Fourier frequencies defined as ω � 2πj/N.

FIGURE 4
Whittle’s log-likelihood functions of choleskyfgn (A), arfima0d0 (B), whitenoise (C), and empirical (D) signals. The blue curves correspond to
Whittle’s likelihood function calculated using the fGn theoretical spectrum, while the orange curves correspond to the same function calculated using the
ARFIMA (0,d,0) theoretical spectrum.
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FIGURE 5
Whole set of α̂ estimated. On the x-axis, α is the true value of the exponents, the values computed in the generator. On the y-axis, the estimated
values of α̂ computed by the corresponding analysis method are located. Red curves represent true alpha values α, and blue curves represent the
estimated alpha values α̂. The first column (A,C,E) corresponds to the signals generated via the Cholesky method, and the second column (B,D,F)
corresponds to the signals generated via ARFIMA filtering. The first row (A,B) presents the α̂ values computed using fGn-based Whittle’s maximum
likelihood estimator, the second row (C,D) presents those computed using ARFIMA-basedWhittle’smaximum likelihood estimator, and the third row (E,F)
presents the α̂ values computed using DFA.
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• P(ωj) is the periodogram of the observation vector x(j) of
length N.

• T’(ωj; H) is the theoretical power spectral density of the
model process, with parameter H.

• c is a constant of proportionality used to adjust the power
T’(ωj; H) to that of P(ωj).

• H is the Hurst exponent belonging to ]0, 1[.

Whittle’s log-likelihood function is an approximation of the
likelihood function for stationary Gaussian processes, in this case,
fGn or ARFIMA (0,d,0). As further illustrated in Figure 5, the
principle is to construct the W(H) function over the interval ]0,1[
from the periodogram P of the signal and the theoretical power
spectral density T′ of the chosen theoretical model. The main

characteristic of the W(H) function is that it reaches its
maximum for the Ĥ value characterizing the analyzed signal.

We will detail this method through seven sections: Section 2.1,
Periodogram power spectral density estimate, introduces the
computation to estimate the periodogram of the signal. Section
2.2, Theoretical power spectral density of the model process, is a sub-
step presenting the two possible alternatives in the choice of the
theoretical spectrum. Section 2.3, Fitting the power of the model
process to that of the signal, is a sub-step where the constant c is
computed. Section 2.4, Whittle’s log-likelihood function, describes
the computation of Equation 1. Section 2.5, Resolving the optimization
problem, introduces the method to find the maximum of Whittle’s
log-likelihood function. Section 2.6, The case of non-stationary
signals, proposes a method to detect non-stationary signals

FIGURE 6
Box plot of α̂ squared error values obtained via fGn-basedWhittle’s likelihood (A), ARFIMA-based Whittle’s likelihood (B), and DFA (C). The lower and
upper edges of the boxes represent the 25 and 75 percentiles, respectively. The horizontal black line represents the median. The whiskers extend to the
most extreme points not considered as outliers. The outliers are plotted as individual points. The orange diamond represents the MSE value.
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(i.e., with H > 1) and estimate their fractal exponent. Finally,
Section 2.7, The construction of whittle.m algorithm, presents the
order in which the various code sections must be arranged to obtain
the whittle.m all-in-one algorithm. Each step will be represented first
in the mathematical formalization and then as a MATLAB code.
Finally, we would like to clarify how the different exponentsH, d, and
α are used in the seven sections of this tutorial. The first four sections
consist of the construction of Whittle’s function, on the one hand,
with the fBm/fGn model, and, on the other hand, with the ARFIMA
(0,d,0) model, so these parts are presented around the two exponents
H and d. From Section 2.5 onwards, we introduce the use of the α

exponent, which allows the algorithm to analyze stationary and non-
stationary processes without prior distinction. However, to maintain

readability between the two models, we have named the two output
variables Afgn for the value of α estimated from the fGn/fBm model
and Aarf for the value of α estimated from the ARFIMA (0,d,0)
model.

Before beginning this guide, the reader can type load

fractalsignals. mat in the MATLAB command window
to load the time series: choleskyfgn, arfima0d0,
whitenoise, and empirical. These signals will be used
all along this guide to illustrate each step of the construction
of the algorithm. choleskyfgn is a simulated exact fGn signal
with an H exponent equal to 0.8, and it was generated via the
Cholesky decomposition method. arfima0d0 is a simulated
ARFIMA (0,d,0) process with a d exponent equal to 0.3,

FIGURE 7
Box plot of α̂ squared error values obtained using ARFIMA-based Whittle’s likelihood for four sets of length: 32 (A), 64 (B), 128 (C), and 256 (D). The
lower and upper edges of the boxes represent the 25 and 75 percentiles, respectively. The horizontal black line represents the median. The whiskers
extend to themost extreme points not considered as outliers. The outliers are plotted as individual points. The orange diamond represents theMSE value.
The vertical scale of the top left graph is 20 times larger than the other three panels.
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which is equivalent to a fGn with H � 0.8. whitenoise is a
normally distributed random noise signal, which was generated
with the following MATLAB command: whitenoise =

normrnd (0.1, [1024.1]). empirical is a signal
retrieved from the study by Almurad et al. (2018), and it
corresponds to step-to-step timing in an arm-in-arm
synchronized walking task. Please consider that all the lines of
code presented in this tutorial have been written and tested under
MATLAB version 2021b. Although most of the codes work
regardless of the version of the software application, some
recent functions like nexttile, introduced with MATLAB
2019b, could cause compatibility problems and should be
replaced by the subplot function.

2.1 Periodogram power spectral density
estimate

The first step is to estimate the power spectral density of the
observation vector. This estimation can be carried out by calculating the
periodogram of the signal corresponding to the squared modulus of the
discrete Fourier transform of the signal. The periodogram is formally
written as

P ωj( ) � 2p
1

2πN
∑m
j�1
x j( )e−iωj j

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
2⎛⎝ ⎞⎠,

2π
N

<ωj <
2πm
N

, (2)

where the set of variables used in Equation 2 is the same as that
described in Equation 1. Tomeet the requirements of Equation 1, we
note that the frequency range ω is limited. The frequency ω � 0 is
excluded, and the maximum frequency is ω � 2πm/N, where m is
the integer part of (N − 1)/2. When the length of the signal is equal
to the power of 2, this procedure excludes the Nyquist frequency;
otherwise, it limits the length of the spectrum to half the length of the
signal minus 1. Finally, note that the value of the periodogram is
doubled. This is a method described at the end of the help paragraph

of the periodogram() function on theMathWorks website2, which
conserves the total power in one-sided periodograms. The following
MATLAB codes are used to estimate the periodogram of the signal:

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

MATLAB code 1: Periodogram estimation.
X=zscore(x);

N=length(X);

m=floor((N-1)/2);

[Pxx,wxx]= periodogram(X);

P=Pxx((2:m+1));

w=wxx((2:m+1));

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

The first line standardizes the observation vector x by setting its
mean to 0 and its standard deviation to 1. This operation is relatively
common in the field and is essential for the rest of this tutorial
because Equations 3, 4 in the following sections are derived from the
autocorrelation function (and not from the autocovariance
function) and therefore assume a variance equal to 1. This
operation also normalizes the total power of the spectrum P, but
it does not change the shape of the spectrum, so it does not alter the
information of the fractal exponents.

The second line returns the length N of the input signal x, and
the third computes the upper bound m. In the fourth line, we use
the Signal Processing Toolbox command periodogram() to
estimate the power spectral density of the input signal x, and an
alternative code using the fft() command is given if the
periodogram() command is not included in your
MATLAB version. Finally, the fifth and the sixth lines bound
P and w within the interval presented in Equation 2. Figure 1

TABLE 2 Comparison of α̂ estimated via ARFIMA-based Whittle’s likelihood and DFA on gait data made available by J. Hausdorff on the PhysioNet platform
(Goldberger et al., 2000; Hausdorff, 2001). The results highlighted in red correspond to anti-persistent series, i.e., with α lower than 0.5.

Mean SD s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

Slow Whittle 0.96 0.06 0.99 0.82 0.94 0.99 1.00 0.95 1.04 1.01 0.98 0.91

DFA 0.99 0.08 1.02 0.86 1.02 0.99 1.01 0.92 1.08 1.11 0.99 0.87

Normal Whittle 0.89 0.05 0.91 0.80 0.96 0.85 0.84 0.82 0.93 0.91 0.93 0.91

DFA 0.92 0.07 0.96 0.87 0.99 0.92 0.79 0.88 0.94 0.91 1.02 0.91

Fast Whittle 0.93 0.05 0.94 0.95 0.99 0.85 1.00 0.95 0.91 0.94 0.85 0.95

DFA 0.97 0.08 0.89 0.96 1.06 0.83 1.08 1.04 0.95 1.02 0.94 0.98

MetSlow Whittle 0.46 0.26 0.52 0.74 0.21 0.39 0.02 0.49 0.68 0.13 0.67 0.71

DFA 0.32 0.19 0.28 0.59 0.15 0.17 0.12 0.35 0.55 0.13 0.33 0.54

MetNorm Whittle 0.60 0.20 0.68 0.47 0.74 0.55 0.11 0.54 0.73 0.69 0.76 0.72

DFA 0.38 0.18 0.51 0.31 0.30 0.23 0.08 0.27 0.65 0.54 0.57 0.39

MetFast Whittle 0.58 0.18 0.58 0.42 0.70 0.80 0.21 0.44 0.66 0.71 0.69 0.60

DFA 0.37 0.16 0.31 0.29 0.38 0.64 0.11 0.22 0.59 0.33 0.38 0.47

2 MathWorks Help Center (2021). periodogram. https://www.mathworks.
com/help/signal/ref/periodogram.html
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represents the plot of the estimated periodograms of the series
choleskyfgn, arfima0d0, whitenoise, and empirical.

Type Fig1_PSD in the command window to access Figure 1.

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

MATLAB code 1bis: Periodogram estimation using fast Fourier
transform
X = zscore(x);

N = length(X);

m = floor ((N-1)/2);

Y = fft(X);

P=(1/(pi*N))*abs (Y (2:m+1)′). 2̂;

w=(2*pi*(1:m)′)/N
. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

2.2 Theoretical power spectral density of the
model process

In this sub-step, we present the equations and their computation
for the two theoretical spectral densities derived from the fGn/fBm
and ARFIMA (0,d,0) models, respectively.

The theoretical fGn spectral density was given by Li and Lim
(2006) as follows:

TfGn
′ ωj;H( ) � sin Hπ( )Γ 2H + 1( ) ωj

∣∣∣∣ ∣∣∣∣1−2H, (3)

where Γ is the gamma function, and the other variables used
in Equation 3 are the same as those described in Equation 1. The
following MATLAB code is the computation of Equation 3.

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

MATLAB code 2: Theoretical power spectral density of the fGn
process
Tp = sin (pi*H)*gamma ((2*H)+1)*(abs(w). (̂1-

(2*H)));

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

The theoretical ARFIMA (0,d,0) spectral density was given by
Taqqu et al. (1995) as follows:

TARFIMA
′ ωj; d( ) � 1

2π
2 sin

ωj

2
( )−2d

, (4)

where d is the integration parameter belonging to ] − 0.5, 0.5[. One
can easily convert the exponentH to the exponent d via the equation
d � H − 0.5. The following MATLAB code converts H to d and
computes Equation 4.

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

MATLAB code 3: Theoretical power spectral density of the
ARFIMA (0,d,0) process
d = H-0.5;

Tp=(1/(2*pi))*(2*sin (w/2)). -̂(2*d);

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

Figure 2 repeats Figure 1 by adding the theoretical spectral densities
calculated usingMATLAB codes 2 and 3. To better illustrate the global
functioning of the algorithm, in Figure 2, we present the theoretical

power spectral densities computed with the estimated values ofH and d
obtained via whittle.m. These values are reported in Table 1.

Type Fig2_TPSD in the command window to access Figure 2.

2.3 Fitting the power of themodel process to
that of the signal

As advised by Jennane et al. (2001), in this sub-step, we calculate
the constant of proportionality c to adjust the power of the model
process to that of the signal as follows:

c � ∑ω P ωj( )
∑ω T′ ωj, H( ). (5)

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

MATLAB code 4: Fitting theoretical spectrum
c = sum(P)/sum (Tp);

T = c*Tp;

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

In the first line, the constant c is calculated, and in the second
line, the theoretical spectrum Tp is adjusted to the empirical
periodogram P. Figure 3 shows the plot of Figure 2 with adjusted
theoretical spectrum. The total power of the theoretical spectrum Tp

is determined by the value ofH in Equation 3 or d in Equation 4, but
the function of fractal exponents is to shape the spectrum, not to
modulate its power, hence the need for adjustment between
theoretical power and signal power.

Type Fig3_TPSD_adjusted in the command window to
access Figure 3.

2.4 Whittle’s log-likelihood function

In this second step, we construct Whittle’s log-likelihood
function by injecting the two previous sub-steps into Equation 1,
which is the function that we want to maximize. However, the
optimization toolbox of MATLAB only allows minimizing
functions, so we will have to minimize the inverse of Equation 1.
This inverse function is written in the MATLAB code as follows:

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

MATLAB code 5: Whittle’s log-likelihood function
lwH=(2/N)*sum (log(T)+(P./T));

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

where lwH is the inverse of Whittle’s likelihood function, N is
the length of the observation vector, T is the scaled theoretical
periodogram computed via MATLAB codes 2 or 3 and then
MATLAB code 4, and P is the estimated periodogram of the
observation vector computed via MATLAB code 1. MATLAB
codes 6 and 7 are given in the following sections, which are the
functions declared inMATLAB and which we will have to minimize.
These codes correspond to the combination of MATLAB codes 2–5.
MATLAB code 6 gives the function based on the theoretical
spectrum of fGn, while MATLAB code 7 gives the function
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based on the theoretical spectrum of ARFIMA (0,d,0). These
functions will have to be placed either at the end of the mother
code whittle.m (as is the case with the provided code) or in
two separate files that can be named WLLFfgn.m and
WLLFarf.m.

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

MATLAB code 6: Whittle’s log-likelihood function with fGn
theoretical PSD
function lwHfgn = WLLFfgn (H,w,P,N)

Tp=sin(pi*H)*gamma((2*H)+1)*(abs(w). (̂1-(2*H)));

c = sum(P)/sum (Tp);

T = c*Tp;

lwHfgn=(2/N)*sum (log(T)+(P./T));

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

MATLAB code 7: Whittle’s log-likelihood function with
ARFIMA (0,d,0) theoretical PSD
function lwHarf = WLLFarf (H,w,P,N)

d = H-0.5;

Tp=(1/(2*pi))*(2*sin (w/2)). -̂(2*d);

c = sum(P)/sum (Tp);

T = c*Tp;

lwHarf=(2/N)*sum (log(T)+(P./T));

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

In the first line, the function is used to declare the functions
WLLFfgn and WLLFarf. The outputs are lwHfgn for code 6 and
lwHarf for code 7 and correspond to W(H) in Equation 1. The
inputs are as follows: H is the Hurst exponent, w is the Fourier
frequencies, P is the estimated periodogram of the observation
vector, and N is the length of the observation vector.

In Figure 4, we present the plots corresponding to these two
functions for our four test signals: choleskyfgn, arfima0d0,
whitenoise, and empirical, with H values ranging from
0.05 to 0.95 by steps of 0.05.

Type Fig4_lwH in the command window to access Figure 4.

2.5 Resolving the optimization problem

In this third step, we describe the method to solve the optimization
problem. In other words, we must find the value of H for which we
reach the minimum of the inverse of Whittle’s likelihood:

α̂ � argmin
0<H< 1

2
N

∑m
j�1

ln cT′ ωj;H( ) + P ωj( )
cT′ ωj;H( )⎛⎝ ⎞⎠⎧⎨⎩ ⎫⎬⎭, (6)

where α̂ is the estimate of the fractal exponent of the observation vector
x(j). As stated in the introduction of this first part, the present section
2.5 marks the transition from the exponentsH and d characterizing the
stationary processes fGn and ARFIMA (0,d,0) to the exponent α that
can characterize the full set of stationary and non-stationary processes
on a continuum from α � 0 to α � 2. The αmetric allows the whittle.m
algorithm to work without making the a priori distinction between
stationary and non-stationary signals, as DFA does.

In order to implement the operation of Equation 6, we use the
MATLAB function fminbnd(), which is a minimizer based on
golden section search and parabolic interpolation. The MATLAB

codes to find the minimum of the WLfgn and Wlarf functions
are as follows:

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

MATLAB code 8: Optimization for fGn-based Whittle’s log-
likelihood function
Afgn = fminbnd (@(H) WLLFfgn (H,w,P,N),0,1);

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

MATLAB code 9: Optimization for ARFIMA (0,d,0)-based
Whittle’s log-likelihood function
Aarf = fminbnd (@(H) WLLFarf (H,w,P,N),0,1);

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

Afgn and Aarf are the two values of α̂; the first one is estimated
by fGn-based Whittle’s likelihood, and the second is estimated by
ARFIMA-basedWhittle’s likelihood. The syntax @(H) intimates the
function fminbnd() that H is the variable to be optimized, while
WLfgn (H,w,P,N) and WLarf(H,w,P,N) are the functions
that are optimized (corresponding to MATLAB codes 6 and 7).
Finally, 0 is the lower bound and 1 is the upper bound in the
optimization problem. This algorithm never optimizes on the
bounds, so using 0 as a lower bound and 1 as an upper bound
satisfies both theoretical conditions 0<H< 1 and −0.5< d< 0.5.

2.6 The case of non-stationary signals

By definition, Whittle’s log-likelihood function only holds
for stationary signals such as fGn or ARFIMA (0,d,0). As a
result, when analyzing non-stationary signals, the minimum
of this function occurs when α̂ is almost equal to 1. More
precisely, when we refer to the help provided with the
fminbnd() function3, this translates into values of α̂ greater
than (1 − 2.10−4 − 6

�������������
2, 2204 × 10−16)√

~ 0.9998. Thus, if the
algorithm returns a value greater than 0.9998, we can classify
the signal as non-stationary. To calculate the fractal exponent for
the non-stationary signals, we apply the method proposed by
Diebolt and Guiraud (2005), which consists in analyzing a
differentiated version of the signal, and then add 1 to α̂. This
translates in MATLAB code as

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

MATLAB code 10: If the observation vector is non-stationary,
fGn-based Whittle’s likelihood
if Afgn >= 0.9998

[Pyy,wyy]= periodogram (diff(X));

mdiff = floor ((N-2)/2);

Pdiff = Pyy ((2:mdiff+1));

wdiff = wyy ((2:mdiff+1));

Afgn = fminbnd (@(H) WLLFfgn (H,wdiff, Pdiff,

(N-1)),0,1)+1;

end

3 MathWorks Help Center (2021). fminbnd. https://www.mathworks.com/
help/matlab/ref/fminbnd.html
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. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

MATLAB code 11: If the observation vector is non-stationary,
ARFIMA-based Whittle’s likelihood
if Aarf >= 0.9998

[Pyy,wyy]= periodogram (diff(X));

mdiff = floor ((N-2)/2);

Pdiff = Pyy ((2:mdiff+1));

wdiff = wyy ((2:mdiff+1));

Aarf = fminbnd (@(H) WLLFarf (H,wdiff, Pdiff,

(N-1)),0,1)+1;

end

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

The first line of both codes is the logical test. If the answer is true,
then the four consecutive lines are computed. In the second line, the
periodogram is estimated on the differentiated observation vector

FIGURE 8
log-power spectral density of Hausdorff data rearranged into three groups: persistent behavior (A), anti-persistent behavior (B), and mixed behavior
(C). log-power spectral density of an artificial ARFIMA(p,d,q) signal with parameters (2, −0.35.1) generated using ARFIMApdq.m (D).
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diff(x). In the third line, mdiff is calculated because diff(x)
is one point shorter than x. In the fourth and fifth lines, the zero
frequency and those greater than mdiff are excluded. Finally, in
the sixth line, Afgn and Aarf are estimated by adding 1 to the
value returned by fminbnd().

2.7 The construction of whittle.m algorithm

We would like to warn the reader that in order to make
this tutorial progressive, the steps are not ordered in the
same way as in the whittle.m algorithm. Moreover, some
algorithmic intricacies were unfolded in sub-steps, giving more
lines of code than necessary to build the all-in-one whittle.m
algorithm. To construct whittle.m, the reader should proceed
as follows:

1. Begin with the header: function [Afgn, Aarf] =

whittle(x), where x is the observation vector, Aarf is the
exponent estimated using ARFIMA (0,d,0) theoretical power
spectral density, and Afgn is the exponent estimated using
fGn theoretical power spectral density.

2. Then paste the MATLAB codes in the following order:
• MATLAB code 1: Periodogram estimation
• MATLAB code 8: Optimization for fGn-based Whittle’s log-
likelihood function

• MATLAB code 10: If the observation vector is non-stationary,
fGn-based Whittle’s likelihood

• MATLAB code 9: Optimization for ARFIMA (0,d,0)-based
Whittle’s log-likelihood function

• MATLAB code 11: If the observation vector is non-stationary,
ARFIMA-based Whittle’s likelihood

• MATLAB code 6: Whittle’s log-likelihood MATLAB function
with fGn theoretical PSD

• MATLAB code 7: Whittle’s log-likelihood MATLAB function
with ARFIMA (0,d,0) theoretical PSD

3 Whittle’s maximum likelihood
performances

Now that all the steps have been described, we will test the
performance of the whittle.m algorithm and, in particular,
compare it to DFA, which is a widely used algorithm in fractal
signal analysis. Regarding the first part of this tutorial, we
propose to divide it into several sections. Section 3.1, Test
signals and generator biases, describes the methodology
applied to generate the signals used to test Whittle’s
maximum likelihood estimator and describes the biases related
to the two generators used. Section 3.2, Which is the best
estimator?, evaluates and compares the three analysis methods
using squared error values and thus determines which is of better
quality. Then, the performance of ARFIMA-based Whittle’s
likelihood depending on the signal length is discussed in
Section 3.3, Signal length. Finally, Section 3.4, Limitations and
future studies, outlines the misuse of fractal analysis on non-
monofractal signals and the evolutions that can be made on this
algorithm.

3.1 Test signals and generator biases

To test Whittle’s maximum likelihood estimator, we generated
two sets of signals, one for each theoretical model (fGn/fBm and
ARFIMA (0,d,0)). The first one, based on the fGn properties, is the
Cholesky decomposition, whose algorithm is named cholfgn.m.
The second one consists of ARFIMA (0,d,0) filtering, whose
algorithm is named ARFIMA0d0.m. We thus generated, for each
of these generators, 42 subsets of 120 signals of lengthN = 1,024 for a
total of 5,040 signals for each generator. These 42 subsets correspond
to 42 different α-values; the first value is 0.01 because the value 0 is
excluded from the theoretical models, the following 19 values range
from 0.05 to 0.95 by steps of 0.05, and the 21st value is 0.99 because
the value 1 is also excluded from the models. The last 21 values are
ranged in the same way from 1.01 to 1.99.

We then estimated α̂ using three analysis methods: fGn-based
Whittle’s likelihood and ARFIMA-based Whittle’s likelihood,
presented in this tutorial and implemented in the whittle.m
function, and DFA, which is implemented in the DFA.m

function. Note that the DFA algorithm we used is the improved
version presented by Almurad and Delignières (2016). The
algorithm of generation and analysis is presented in signal_

generation_and_analysis.m, and the results are saved in
generatedsignals.mat. The first striking result is the analysis
time. It took 57.24 s to compute α̂ on the set of signals using the two
Whittle’s functions, while it took 2052.30 s to compute α̂ on the set
of signals using DFA. In sum, the analysis for Whittle’s function is
approximately 70 times faster than DFA. We conducted the analysis
on a Windows laptop equipped with an Intel i77700HQ processor,
16 GB of RAM, an Nvidia GTX 1050 graphics card, and a 512 GB
SSD hard drive using MATLAB version 2019a.

Figure 5 shows the whole set of computed α̂. This figure is
arranged in two columns corresponding to the cholfgn and
ARFIMA0d0 generators and in three rows corresponding to the
three analysis methods: fGn-based Whittle’s maximum likelihood
estimator, ARFIMA-based Whittle’s maximum likelihood
estimator, and DFA. The figure shows that the cholfgn

generator is strongly biased around the frontier between noise
and motion (for α � 1). We had already encountered this
phenomenon in the study by Roume et al. (2019) using the
Davies and Harte algorithm and can easily conclude that for
generators based on the autocorrelation function of fGn, the
integration of fractional Gaussian noises with an α close to 0 to
obtain fractional Brownian motions with an α close to 1 is a
technique that does not work properly. However, we can observe
that this technique holds relatively well when the signals have been
generated via ARFIMA filtering, as shown by the continuity between
noise and motion observed in the bottom row. In addition, we will
rely on the ARFIMA0d0 generator to estimate the efficiency of the
analysis methods in the following section.

Type Fig5_Genbiases in the command window to access
Figure 5.

3.2 Which is the best estimator?

In this section, we compare the efficiency of fGn-basedWhittle’s
likelihood, ARFIMA-basedWhittle’s likelihood, and DFA. To assess
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the efficiency of these analysis methods, one must account for both
their bias and variance. We therefore calculated Mean Squared Error
(MSE), which is defined as the average of the squared error values.
These analysis methods, being estimators in the sense of statistics,
MSE can also be written as the sum of the variance and the squared
bias of the values of α̂, allowing us to directly compare their quality.
Thus, when comparing two estimators, the estimator characterized
by the smallest MSE value can be considered better.

First, for each estimator, we calculated the 5,040 (42 α-values ×
120 signals) squared error values, which were then averaged. We
obtained an MSE of 0.0014±0.0019 for fGn-based Whittle’s
likelihood4, 0.0007±0.0011 for ARFIMA-based Whittle’s likelihood,
and 0.0078±0.0127 for DFA. We performed a one-way ANOVA that
confirmed the significant differences between these groups (F
(2,15,117) = 1,385.8; p < 0.001; η2 = .15). Thus, ARFIMA-based
Whittle’s likelihood is better than fGn-based Whittle’s likelihood,
which itself is a better estimator than DFA. To go beyond the
reductionist nature of this elementary comparison, a box plot of all
the squared error values is constructed, as shown in Figure 6.

Type Fig6_SquarredError in the command window to
access Figure 6.

In line with the results of the comparison of the MSE values, the
first observation that can be made is that regardless of the value of α,
the ARFIMA method is characterized by a lower median error than
the other two analysis methods, as well as by a lower dispersion of
these errors. We can also observe biases that could already be
predicted from Figure 5; for example, for the fGn-based Whittle’s
likelihood, the overestimation bias for α is less than 0.3, and the high
variance around α is equal to 1. For DFA, the overestimation bias for
α is less than 0.3, the underestimation bias for α is greater than 1.8,
and there is a simultaneous increase between the variance of α̂ and
the true α value.

3.3 Signal length

In this section, we discuss the performance of ARFIMA-based
Whittle’s likelihood depending on signal lengths. Fractal analysis,
like DFA, often requires a large series (N > 500) to provide reliable
alpha estimates (Damouras et al., 2010; Phinyomark et al., 2020).
This can lead to experimental issues when working with
physiological signals, such as the difficulty of older adults to walk
for more than 5 min, which is between 100 and 250 strides (Moon
et al., 2016; Phinyomark et al., 2020).

To assess the performance, we first made four sets of signals by
reducing the length of tsarf from 1 toN, with the following fourN
values: 32, 64, 128, and 256. We then estimated α̂ for these four sets
and computed MSE. We obtained an MSE value of
0.7709±0.7954 for N = 32, 0.0884±0.1540 for N = 64,
0.0124±0.0207 for N = 128, and 0.0036±0.0053 for N = 256.
Similar to Figure 6, the box plot of α̂ squared error values for the
four reduced sets is constructed, as shown in Figure 7.

Type Fig7_SignalLength in the command window to
access Figure 7.

The first observation that can be made from this figure is that the
analysis method provides unreliable estimates for lengthsN = 32 and
64. The second is that for N = 256, the ARFIMA-based Whittle’s
likelihood gives more reliable estimates than DFA with N = 1,024.
Finally, for N = 128, this method gives slightly less reliable estimates
than DFA for 1,024 points.

In addition, it can be observed that, particularly for N = 128 and
N = 256, the errors are maximized to approximately α = 1. These
errors are linked to misclassification of signals as stationary or non-
stationary. This is even more predominant for signals with an α

exponent just above 1 for N = 128, although it should be noted that
these signals are truncated and the variation in mean and standard
deviation was distributed over the entire original signal. It would be
interesting to add a size variable to the generated signals in future
studies.

For further comparison, we calculated the value of MSE for α̂
obtained with DFA for N = 512 points, which gives 0.0203 ± 0.355,
i.e., approximately twice the value of MSE for ARFIMA-based
Whittle’s likelihood with N = 128 (0.0124 ± 0.0207). Considering
that the variability of the version of DFA we use is optimized, forN =
512, the variability is smaller than that of the original DFA with
N =1,024 (Almurad and Delignières, 2016), and given that several
studies using the original DFA with N lengths of approximately
1,000 data points have given elegant results, it is reasonable to
predict that an α̂ value estimated via ARFIMA-based Whittle’s
likelihood on a series of 128 points could be acceptable even if
not optimal.

3.4 Limitations and future studies

During the development of this tutorial, we tested Whittle’s
maximum likelihood estimator on several physiological signals,
including those made available by J. Hausdorff on the PhysioNet
platform (Goldberger et al., 2000; Hausdorff, 2001). The results
obtained are summarized in Table 2.

Under the conditions without metronome (slow, normal, and
fast), ARFIMA-based Whittle’s likelihood and DFA provide similar
results for the mean α̂, but a slightly higher standard deviation was
observed for DFA. This result becomes very interesting under
metronome conditions, especially when the ARFIMA-based
Whittle’s likelihood and DFA provide diametrically opposed
results, the first detecting persistence (α̂ > 0.5) and the second
detecting anti-persistence (α̂ < 0.5).

To understand why we obtained these results, we grouped the
different series into three groups: the first group, “persistent
behavior,” assembles the series for which DFA and Whittle’s
likelihood analysis provide an α̂ greater than 0.5. In the second
group, “anti-persistent behavior,” we group the time series for which
both DFA and Whittle likelihood provide an α̂ below 0.5. Finally, in the
third group, “mixed behavior,” we group the series with α̂ lower than
0.5 fromDFA and α̂ higher than 0.5 fromWhittle’s likelihood. Then, we
estimated the power spectra using the periodogram method, and finally,
we averaged these spectra for each group. These averaged spectra are
presented in the first three columns in Figure 8, and the data are saved in
spectralbehavior. mat.

4 The value displayed after the ± symbol is the standard deviation of the
squared error of α.
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Type Fig8_SpectralBehavior in the command window
to access Figure 8.

In the first two columns, when the Whittle’s and DFA methods
provided similar α̂ (i.e., both greater than 0.5 for the first column and
both lower than 0.5 for the second column), we observe that the
power spectrum is dominated by a trend that is persistent in the first
column and anti-persistent in the second column. In the third
column, when Whittle’s and DFA provided opposite results, we
can observe a mixed behavior where the low frequency part of the
spectrum is dominated by anti-persistence, while the high
frequencies are dominated by persistence.

This non-monotonicity of the spectrum in the logarithmic
space, which was already observed by Torre and Delignières
(2008), is not predicted in the two models, fGn/fBm and
ARFIMA (0,d,0); therefore, we cannot apply these models, from
a theoretical point of view, on a signal being characterized by such a
spectrum. However, the ARFIMA (p,d,q) model allows the creation
of non-monotonic spectra, as shown in the fourth column in
Figure 8. It will therefore be interesting to improve the method
that we have presented so far by incorporating in Equation 4 the AR
and MA components known as short-memory components, all of
which will give a theoretical spectrum with three parameters:

TARFIMA
′ ωj;φ, d, θ( ) � 1

2π
2 sin

ωj

2
( )−2d θ e−iωj( )∣∣∣∣ ∣∣∣∣2

φ e−iωj( )∣∣∣∣ ∣∣∣∣2, (7)

where

• φ(e−iωj ) � 1 − ∑p
j�1φ(j)e−iωjj is the autoregressive (AR)

component.
• θ(e−iωj ) � ∑q

j�0θ(j)e−iωjj is the moving average (MA)
component.

Finally, it will be interesting to compare the proposed method in
this tutorial with Higuchi’s fractal dimension method that
Phinyomark et al. (2020) has shown to be better than DFA,
which is on our agenda for future work.

4 Conclusion

The long-term dependency structures, or fractal structures,
present in biological signals inform about the complexity of the
system that produced these signals. With age or disease, this
structure tends to be altered, making the fractal exponent H an
interesting predictor in the domain of healthcare. However, the
length of the signal required by current analysis methods to properly
estimate the H exponent requires long series that are difficult to
perform for people with motor impairments caused by advanced age

or pathologies. In this tutorial, we described the steps to implement
an analysis method based on Whittle’s approximation; then, we
showed that this estimator was of better quality than the popular
DFA, allowing for a reliable estimation of the H exponent for small
series adapted to people who cannot perform physical activities over
long periods.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found at: The MATLAB codes and
datasets generated and analyzed for this study are deposited in a
GitHub repository at https://github.com/clementroume/Whittle_
maximum_likelihood_estimator_tutorial.

Author contributions

CR: study conception and design, data collection, analysis and
interpretation of results, and manuscript preparation.

Acknowledgments

The author thanks Pr. Olivier Haeberlé and Dr. Ali Moukadem
(University of Haute-Alsace) for their comments and suggestions that
greatly improved the manuscript. The author would also like to show
his gratitude to Pr. Didier Delignières, for the whole of their discussions
on this subject, but also for his benevolence and expertise which allowed
the author to propose this paper. Merci pour tout Didier.

Conflict of interest

The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors, and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Almurad, Z. M. H., and Delignières, D. (2016). Evenly spacing in detrended fluctuation
analysis. Phys. Stat. Mech. Its Appl. 451, 63–69. doi:10.1016/j.physa.2015.12.155

Almurad, Z. M. H., Roume, C., Blain, H., and Delignières, D. (2018). Complexity
matching: restoring the complexity of locomotion in older people through arm-in-arm
walking. Front. Physiol. 9, 1766. doi:10.3389/fphys.2018.01766

Almurad, Z. M. H., Roume, C., and Delignières, D. (2017). Complexity matching
in side-by-side walking. Hum. Mov. Sci. 54, 125–136. doi:10.1016/j.humov.2017.
04.008

Beran, J., Feng, Y., Ghosh, S., and Kulik, R. (2013). Long-memory processes.
Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-35512-7

Frontiers in Network Physiology frontiersin.org15

Roume 10.3389/fnetp.2023.1204757

https://github.com/clementroume/Whittle_maximum_likelihood_estimator_tutorial
https://github.com/clementroume/Whittle_maximum_likelihood_estimator_tutorial
https://doi.org/10.1016/j.physa.2015.12.155
https://doi.org/10.3389/fphys.2018.01766
https://doi.org/10.1016/j.humov.2017.04.008
https://doi.org/10.1016/j.humov.2017.04.008
https://doi.org/10.1007/978-3-642-35512-7
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2023.1204757


Damouras, S., Chang, M. D., Sejdić, E., and Chau, T. (2010). An empirical
examination of detrended fluctuation analysis for gait data. Gait Posture 31,
336–340. doi:10.1016/j.gaitpost.2009.12.002

Delignieres, D., and Torre, K. (2009). Fractal dynamics of human gait: a reassessment
of the 1996 data of Hausdorff et al. J. Appl. Physiol. 106, 1272–1279. doi:10.1152/
japplphysiol.90757.2008

Diebolt, C., and Guiraud, V. (2005). A note on long memory time series.Qual. Quant.
39, 827–836. doi:10.1007/s11135-004-0436-z

Ezzina, S., Roume, C., Pla, S., Blain, H., and Delignières, D. (2021). RestoringWalking
Complexity in Older Adults Through Arm-in-Arm Walking: were Almurad et al.’s
(2018) Results an Artifact? Mot. Control 25, 475–490. doi:10.1123/mc.2020-0052

Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P.Ch., Mark, R.
G., et al. (2000). PhysioBank, PhysioToolkit, and PhysioNet: components of a new
research resource for complex physiologic signals. Circulation 101, E215–E220. doi:10.
1161/01.CIR.101.23.e215

Goldberger, A. L., Amaral, L. A. N., Hausdorff, J. M., Ivanov, P. C., Peng, C.-K., and
Stanley, H. E. (2002). Fractal dynamics in physiology: alterations with disease and aging.
Proc. Natl. Acad. Sci. 99, 2466–2472. doi:10.1073/pnas.012579499

Granger, C. W. J., and Joyeux, R. (1980). An introduction to long-memory time series
models and fractional differencing. J. Time Ser. Anal. 1, 15–29. doi:10.1111/j.1467-9892.
1980.tb00297.x

Halley, J.M., and Inchausti, P. (2004). The increasing importance of 1/f-noises asmodels of
ecological variability. Fluct. Noise Lett. 04, R1–R26. doi:10.1142/S0219477504001884

Harrison, S. J., and Stergiou, N. (2015). Complex adaptive behavior and dexterous
action. Nonlinear Dyn. Psychol. Life Sci. 19, 345–394.

Hausdorff, J. M. (2001). Long-term recordings of gait dynamics. physionet.org.
doi:10.13026/C28679

Hausdorff, J. M., Purdon, P. L., Peng, C. K., Ladin, Z., Wei, J. Y., and Goldberger, A. L.
(1996). Fractal dynamics of human gait: stability of long-range correlations in stride
interval fluctuations. J. Appl. Physiol. 80, 1448–1457. doi:10.1152/jappl.1996.80.5.1448

Hosking, J. R. M. (1981). Fractional differencing. Biometrika 68, 165–176. doi:10.
1093/biomet/68.1.165

Ihlen, E. A. F. (2012). Introduction to multifractal detrended fluctuation analysis in
Matlab. Front. Physiol. 3, 141. doi:10.3389/fphys.2012.00141

Ivanov, P. C., Rosenblum, M. G., Peng, C.-K., Mietus, J. E., Havlin, S., Stanley, H. E.,
et al. (1998). Scaling and universality in heart rate variability distributions. Phys. Stat.
Mech. Its Appl. 249, 587–593. doi:10.1016/S0378-4371(97)00522-0

Jennane, R., Harba, R., and Jacquet, G. (2001). Méthodes d’analyse du mouvement
brownien fractionnaire: théorie et résultats comparatifs. Trait. Signal 18, 419–436.

Kello, C. T., Beltz, B. C., Holden, J. G., and Van Orden, G. C. (2007). The emergent
coordination of cognitive function. J. Exp. Psychol. Gen. 136, 551–568. doi:10.1037/
0096-3445.136.4.551

Li, M., and Lim, S. C. (2006). A rigorous derivation of power spectrum of
fractional Gaussian noise. Fluct. Noise Lett. 06, C33–C36. –C36. doi:10.1142/
S0219477506003604

Mandelbrot, B. B., and Van Ness, J. W. (1968). Fractional brownian motions,
fractional noises and applications. SIAM Rev. 10, 422–437. doi:10.1137/1010093

Moon, Y., Sung, J., An, R., Hernandez, M. E., and Sosnoff, J. J. (2016). Gait variability
in people with neurological disorders: a systematic review and meta-analysis. Hum.
Mov. Sci. 47, 197–208. doi:10.1016/j.humov.2016.03.010

Peng, C.-K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E., and Goldberger, A.
L. (1994). Mosaic organization of DNA nucleotides. Phys. Rev. E 49, 1685–1689. doi:10.
1103/PhysRevE.49.1685

Peng, C. K., Havlin, S., Stanley, H. E., and Goldberger, A. L. (1995). Quantification of
scaling exponents and crossover phenomena in nonstationary heartbeat time series.
Chaos Woodbury N. 5, 82–87. doi:10.1063/1.166141

Phinyomark, A., Larracy, R., and Scheme, E. (2020). Fractal analysis of human gait
variability via stride interval time series. Front. Physiol. 11, 333. doi:10.3389/fphys.2020.00333

Roume, C., Ezzina, S., Blain, H., and Delignières, D. (2019). Biases in the simulation
and analysis of fractal processes. Comput. Math. MethodsMed. 2019, 4025305–4025312.
doi:10.1155/2019/4025305

Torre, K., and Delignières, D. (2008). Distinct ways of timing movements in
bimanual coordination tasks: contribution of serial correlation analysis and
implications for modeling. Acta Psychol. (Amst.) 129, 284–296. doi:10.1016/j.
actpsy.2008.08.003

Vaz, J. R., Knarr, B. A., and Stergiou, N. (2020). Gait complexity is acutely restored in
older adults when walking to a fractal-like visual stimulus. Hum. Mov. Sci. 74, 102677.
doi:10.1016/j.humov.2020.102677

Frontiers in Network Physiology frontiersin.org16

Roume 10.3389/fnetp.2023.1204757

https://doi.org/10.1016/j.gaitpost.2009.12.002
https://doi.org/10.1152/japplphysiol.90757.2008
https://doi.org/10.1152/japplphysiol.90757.2008
https://doi.org/10.1007/s11135-004-0436-z
https://doi.org/10.1123/mc.2020-0052
https://doi.org/10.1161/01.CIR.101.23.e215
https://doi.org/10.1161/01.CIR.101.23.e215
https://doi.org/10.1073/pnas.012579499
https://doi.org/10.1111/j.1467-9892.1980.tb00297.x
https://doi.org/10.1111/j.1467-9892.1980.tb00297.x
https://doi.org/10.1142/S0219477504001884
https://doi.org/10.13026/C28679
https://doi.org/10.1152/jappl.1996.80.5.1448
https://doi.org/10.1093/biomet/68.1.165
https://doi.org/10.1093/biomet/68.1.165
https://doi.org/10.3389/fphys.2012.00141
https://doi.org/10.1016/S0378-4371(97)00522-0
https://doi.org/10.1037/0096-3445.136.4.551
https://doi.org/10.1037/0096-3445.136.4.551
https://doi.org/10.1142/S0219477506003604
https://doi.org/10.1142/S0219477506003604
https://doi.org/10.1137/1010093
https://doi.org/10.1016/j.humov.2016.03.010
https://doi.org/10.1103/PhysRevE.49.1685
https://doi.org/10.1103/PhysRevE.49.1685
https://doi.org/10.1063/1.166141
https://doi.org/10.3389/fphys.2020.00333
https://doi.org/10.1155/2019/4025305
https://doi.org/10.1016/j.actpsy.2008.08.003
https://doi.org/10.1016/j.actpsy.2008.08.003
https://doi.org/10.1016/j.humov.2020.102677
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2023.1204757

	A guide to Whittle maximum likelihood estimator in MATLAB
	1 Introduction
	2 Whittle’s maximum likelihood estimator in MATLAB
	2.1 Periodogram power spectral density estimate
	2.2 Theoretical power spectral density of the model process
	2.3 Fitting the power of the model process to that of the signal
	2.4 Whittle’s log-likelihood function
	2.5 Resolving the optimization problem
	2.6 The case of non-stationary signals
	2.7 The construction of whittle.m algorithm

	3 Whittle’s maximum likelihood performances
	3.1 Test signals and generator biases
	3.2 Which is the best estimator?
	3.3 Signal length
	3.4 Limitations and future studies

	4 Conclusion
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


