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If depressive symptoms are not caused by the physiological effects of a substance
or othermedical or neurological conditions, they are generally classified asmental
disorders that target the central nervous system. However, recent evidence
suggests that peripheral neural dynamics on cardiovascular control play a
causal role in regulating and processing emotions. In this perspective, we
explore the dynamics of the Central-Autonomic Network (CAN) and related
brain-heart interplay (BHI), highlighting their psychophysiological correlates
and clinical symptoms of depression. Thus, we suggest that depression may
arise from dysregulated cardiac vagal and sympathovagal dynamics that lead to
CAN and BHI dysfunctions. Therefore, treatments for depression should target the
nervous system as a whole, with particular emphasis on regulating vagal and BHI
dynamics.
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1 Introduction

The World Health Organization (WHO) reports that “depression is a leading cause of
disability worldwide” and the condition affects at least 322 million people. Even more
surprising is that 10 million people with depression have thought about suicide and 3 million
have actual suicide plans. Those who actually seek help are diagnosed through the
administration of questionnaires and subjective interviews. To date no specific
physiological or biochemical markers are considered in current clinical practice, and no
physiological measurement objectively distinguishes among the different subtypes of
depression. Economically-speaking, the cost of lost productivity due to depression in the
EU has been estimated at over €70 billion per year (World Health Organization Regional
Office for Europe, 2018; Jaffe et al., 2019; Johnston et al., 2019; Greenberg et al., 2021).

According to the Diagnostic and Statistical Manual of Mental Disorders Fifth Edition
(DSM-5 American Psychiatric Association, DSM-5 Task Force, 2013), if depressive
symptoms are not attributable to the physiological effects of a substance or other
medical or neurological conditions, the depression and related subtypes are to be
considered mental disorders, i.e., disorders somehow targeting the central nervous
system (CNS) exclusively.

But why do we assume that these changes result from intrinsic functioning of the brain
only?Why is it that more than 60% of patients with major depression may show no response
to first-line antidepressant treatment mainly targeting brain neurotransmitters (Johnston
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et al., 2019)? Why do recent meta-analyses show inconsistency
between studies that only focus on brain dynamics and
depression (e.g., Müller et al., 2017)? These questions suggest
that previous literature on depression has mainly focused on
brain dynamics, while giving inadequate attention to body
dynamics.

The brain and heart have long been studied and treated
individually at the cortical/subcortical or neuro-peripheral level,
including cardiovascular, blood pressure and respiration dynamics
(as part of non-invasive monitoring) using specific techniques
focused on specific system dynamics. However, the physiological
system is complex. In other words, because of the numerous
interactions of many subcomponents, the system as a whole
exhibits characteristics that the individual components cannot act
on. The CNS and autonomic nervous system (ANS) control all body
organs simultaneously through anatomical and biochemical/
functional connections that have a lasting impact on health and
especially disease.

In piecing together segregated parts of research and in following
the development of a comprehensive vision on whole-nervous
system mental health and related science, here we pose the
following fundamental hypotheses:

- In the absence of medical or neurological illnesses, brain
changes in depression are not only the cause but also the
consequence of a mood disorder

- The nervous system as a whole mediates emotional processing
and regulation

- Abnormal vagal activity propels emotion dysregulation in
depression

Scientific evidence supporting these hypotheses leverage upon
the definition of the Central-Autonomic Network (CAN), which
comprises brain regions involved in autonomic control
(Benarroch, 1993; Beissner et al., 2013; Valenza et al., 2019;
Valenza et al., 2020), as well as Brain-Heart Interplay (BHI),
which comprises the functional links between CNS and ANS
through electrical, biochemical, and physical communications.
In this perspective, depression is envisioned as a manifestation
of a dysregulation of cardiac vagal and sympathovagal dynamics
sustaining CAN dysfunctions, which in turn reflects on functional
BHI. Consequently, a “functional-vagal theory” of depression is
stated, suggesting that depression treatment should also target
brain-heart dynamics and, especially, act at a nervous-system-wise
level.

1.1 Central and autonomic correlates of
emotion regulation and emotional
processing at a glance

Emotion regulation refers to the process by which individuals
modify, maintain, or control their emotions, including their
experience, expression, and physiological responses (Gross,
2015). It involves a range of strategies, such as cognitive
reappraisal, expressive suppression, and attentional
deployment, that are used to regulate emotional experiences
and their impact on behavior and cognition. Emotion

regulation can be adaptive, promoting psychological wellbeing
and social functioning, or maladaptive, contributing to
psychopathology and interpersonal difficulties. On the other
hand, emotional processing refers to the cognitive and
affective operations involved in the appraisal, interpretation,
and response to emotional stimuli (Hamann and Canli, 2004).
It includes perceptual, attentional, and memory processes, as well
as higher-order cognitive processes, such as cognitive reappraisal
and problem-solving. Emotional processing can be influenced by
individual differences in emotion regulation and emotion
dysregulation, as well as by cultural and social factors.

The vagus nerve, a complex network of nerve fibers that
originates in the brainstem and extends throughout the body, is
known to be involved in a wide range of physiological processes,
including emotion regulation, processing, and communication
(Porges, 2007; Rottenberg, 2007). Different vagal control systems
seem to be phylogenetically ordered and behaviorally linked to social
communication, mobilization and immobilization (Porges, 2007).
Activation of the ANS during encoding or retrieval of emotional
information may modulate the neural processes mediating mood
congruent memory (Critchley et al., 2003; 2005). Neural control of
the heartbeat as measured through Heart Rate Variability (HRV) is
involved in processing of emotional information (for example,
Valenza and Scilingo, 2014; Damasio et al., 2000; Panksepe, 2000;
Lewis et al., 2010), and regulation of brain activity dynamics (Craig,
2003; Lane et al., 2009; Thayer et al., 2012; Beissner et al., 2013).

At a nervous-system-wise level, the brain and the ANS
concurrently regulate all peripheral systems and modulate
emotional regulation and processing, as well as mood states
(Craig, 2003; Lane et al., 2009; Lane and Wager, 2009; Thayer
et al., 2012; Beissner et al., 2013; Candia-Rivera et al., 2022).
Functionally, emotions have been linked to the brain’s
predictions about the state of the body. The predictions are
constantly compared to ascending bodily or interoceptive signals,
transmitted, for example, by the vagus nerve (Candia-Rivera et al.,
2022; Hsueh et al., 2023). If the resulting prediction error, that is, the
difference between the predicted and the actual state, is too big,
subjective (e.g., affective) consequences ensue in order to re-balance
disturbances of homeostasis, for example, by adaptive behaviour
(Seth, 2013). Such interoceptive predictions, which have also been
related to depression (Barrett and Simmons, 2015), are reflected in
the interaction between the CNS and the ANS (Candia-Rivera et al.,
2022; Hsueh et al., 2023).

1.2 Depression, subtypes, and somatic
symptoms

Depression is a common disorder characterized by persistent
feelings of sadness, loss of interest or pleasure in activities, and other
symptoms that impair daily functioning (e.g., feelings of guilt or low
self-worth, disturbed sleep or appetite, feelings of tiredness, poor
concentration). Depression is associated with a range of cognitive,
affective, and behavioral deficits, including difficulties in emotion
regulation and emotion processing. Individuals with depression
often experience emotion dysregulation, characterized by
heightened negative affect, rumination, and reduced positive
affect. Indeed, emotion dysregulation, refers to difficulties in
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regulating emotions effectively. Emotion dysregulation can manifest
as intense, unstable, or inappropriate emotional responses, or as
difficulties in modifying emotional responses to fit the situation
(Abravanel and Sinha, 2015).

In 2008, WHO globally ranked major depression as the third
cause of burden of disease and projected that the disease will rank
first by 2030 (Malhi and Mann, 2018), unmasking social and
economic costs of depressed state (Olesen et al., 2012). Moreover,
despite the progress in both pharmacological and psychological
therapies, clinicians involved in the management of depression are
often faced with treatment resistance, highlighting the necessity to
develop alternative therapeutic options. Recent research also
suggests that depression symptoms cycle with daily rhythms and
hormonal changes (Mendoza, 2019), but there is currently no
technology to measure objective biomarkers in daily life. Current
diagnosis relies on “structured” interviews based on a patient’s
subjective description of symptoms and subsequent interpretation
of these by a physician. Diagnosis of major depression results from a
positive response to 5 out of 9 listed symptoms, many of which are
total opposites of each other (DSM-5). Having a wide variation of
symptoms and behaviour, severity, onset and course, depression is a
very heterogeneous disorder (Lux and Kendler, 2010; Goldberg,
2011; Lieblich et al., 2015; Drysdale et al., 2017; Feczko et al.,
2019). While behavioural correlates of depression are reported in
DSM-5 2013, clinically-reliable physiological and biochemical
markers for an objective diagnosis are unknown despite
encouraging research findings (Rottenberg, 2007; Corrigan et al.,
2010; Gaebler et al., 2013; Valenza and Scilingo, 2014; Garcia et al.,
2016; Drysdale et al., 2017; Gentili et al., 2017; Brown et al., 2018;
Caldwell and Steffen, 2018; Hartmann et al., 2019; Catrambone et al.,
2021).

Although several studies have described different subtypes of
depression (van Loo et al., 2012; Kessing and Bukh, 2017; Rantala
et al., 2018; Beijers et al., 2019), the etiology and etiological factors
involved have rarely been studied (Kessing and Bukh, 2017).
Clinically, subtypes of depression are important for predicting
prognosis and treatment outcome and can be identified by
polarity, symptoms, onset (due to a particular event, season or
age), recurrence and severity (Thase, 2013). In terms of bipolarity, a
distinction is made between unipolar depression and bipolar
depression, where bipolar depression is characterized by mood
changes, including (hypo) mania and/or mixed episodes. The
DSM-5 American Psychiatric Association, DSM-5 Task Force,
2013 distinguishes four symptom profiles: depression, atypical,
anxiety, and psychotic depression. Major depression is
characterized by three or more symptoms, including anhedonia
or lack of a mood response to positive events, psychomotor
inhibition or agitation, weight loss, excessive guilt, and trouble
sleeping early in the morning. Major depression affects about
25%–30% of people with depression. People with depression
usually do not respond to placebo treatment and may not benefit
from psychotherapy and social interventions. Atypical depression
features symptoms such as overeating, weight gain, and excessive
sleeping, as well as sensitivity to phobias, anxiety, chronic pain, and
rejection. Atypical patients generally have a higher proportion of
younger women and higher rates of suicide attempts. Anxious
depression is associated with abnormal anxiety, fear of tension or
loss of control, while psychotic depression presents with delusions or

hallucinations with a high relapse rate and frequent hospitalizations
in 15%–20% of patients. In terms of onset, early-onset depression
(ages 18–30) is more likely to present with personality disorders and
neuroticism than late-onset depression (ages 31–70). DSM-5
differentiates mild, moderate, and severe depression based on
severity, which predicts long-term risk of relapse and suicide and
guides treatment options to some extent (e.g., mild depression
cannot be treated with antidepressants). There is no chronic
evolution of depressive episodes). Major depression involves an
inadequate response to multiple treatments, is complicated by
psychotic symptoms, and/or is associated with severe psychotic
comorbidities or psychosocial factors (Clarkin et al., 2019). It
affects approximately 30% of patients with major depression and
there is no consensus on the biological basis (Rush et al., 2006;
Fekadu et al., 2009; Trevino et al., 2014). Based on the latent class
analysis model, three subtypes of treatment-resistant depression
were identified. Major depression (frequency: 66%), moderate
depression with anxiety (9%) and mild depression with anxiety/
somatization (25%) (Liao et al., 2019).

According to National Institutes of Health and Caregiving
guidelines, treatment of depression should include psychological
education, low- or high-intensity psychosocial interventions,
electroconvulsive therapy, and antidepressant treatment for
severe depression. Although first-line pharmacological treatment
for major depression usually consists of a selective serotonin
reuptake inhibitor or a serotonin-norepinephrine reuptake
inhibitor as monotherapy, up to 50%–60% of patients with major
depression may not respond to the initial treatment and may require
alternative therapies or combination treatments (Johnston et al.,
2019). Furthermore, there is no evidence that serotonin transporter
genotype alone or its interaction with stressful life events is
associated with an increased risk of depression (Risch et al.,
2009). Lifestyle habits, including diet, exercise and sleep, have
been shown to play an important role (Lopresti et al., 2013;
Kaseva et al., 2016). Although mainly targeting the brain, clinical
procedures in the diagnosis and treatment of depression are already
rooted in somatic interventions. The classification of depression
subtypes is based on corporeal changes, such as weight loss/gain, and
types of movements (retardation/agitation). Specific antidepressant
therapies are also chosen based on their effects on somatic symptoms
including constipation, nausea, and fatigue, e.g., a patient with
nausea will be treated with mirtazapine rather than another
serotoninergic drug (NICE National Institute for Health and
Care Excellence, 2018). In the treatment of depressive symptoms,
the so-called “implicit memory,” present in terms of somatic and
affective states without awareness of connections with past
experiences, is fundamental for trauma-focus psychotherapeutic
treatment (Hase et al., 2017).

1.3 Vagal activity correlates of depression
and depressive symptoms

Dysfunctional cardiac vagal activity has been increasingly linked
to depression, substantiating the notion that a compromised ANS
dynamics can contribute to mood disorders. Reduced cardiac vagal
control, as measured through HRV series (Rajendra Acharya et al.,
2006) is associated with depressive symptoms (Rottenberg, 2007;
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Kemp et al., 2010; Paniccia et al., 2017; Brown et al., 2018; Caldwell
and Steffen, 2018; Hartmann et al., 2019). Reduced vagal activity in
major depression was not only associated with depression severity
but also predicted the persistence of depressive symptoms
(Rottenberg, 2007). In contrast, patients with depression may
exhibit increased vagal activity compared to healthy controls
when experiencing heightened emotional reactivity in response to
emotionally arousing stimuli (Garcia et al., 2016); the observed
inconsistency may be attributed to the significant variability in the
psychopathology of depressive symptoms among individuals, as well
as the influence of different medication types and dosages on vagal
activity (Rottenberg, 2007).

Depression may also lead to somatic diseases such as stroke,
diabetes, and obesity, which are related to dysfunctions in
metabolism, immunity, inflammation, and autonomic regulation
(Penninnx et al., 2013). Moreover, dysfunctional vagal activity in
depression may often result in heart disease (e.g., Rovai et al., 2015).
A meta-analysis showed that depression increased the risk of all
strokes by 34%–63% (Dong et al., 2012) and increased the risk by
30%–90% of the population with coronary artery disease (CAD)
(Nicholson et al., 2006). Furthermore, the presence of depressive
symptoms predicts a worse prognosis for CHD (Van Melle et al.,
2004). Conversely, patients with CHD are more likely to develop
depressive symptoms or overall major depressive disorder (Konrad
et al., 2016). Thus, targeting depressive symptoms not only improves
mood but also has a positive effect on CVD outcome (e.g.,
Angermann et al., 2016).

In line with the aforementioned evidence, vagus nerve
stimulation has recently been approved by the EU regulatory
body for treatment-resistant depression, supported by
promising evidence (e.g., Kumar et al., 2019). In fact, non-
invasive stimulation of the vagus nerve improves emotional
regulation, confirming that the vagus nerve is causally involved
in emotional processing (Colzato et al., 2017; Candia-Rivera et al.,
2022; Hsueh et al., 2023).

Evidence on dysfunctional CAN and related BHI dynamics has
been reported for depression and emotion dysregulation (Taggart
et al., 2011; Terhaar et al., 2012; Gaebler et al., 2013; Gaebler et al.,
2016; Catrambone et al., 2019).

In summary, depression is linked to dysfunctional vagal activity,
which could potentially contribute to the development of somatic
diseases. On one hand, depression might be related to
parasympathetic-dominant hypoarousal, leading to diminished
emotional expression, sensations of emptiness, helplessness, and
hopelessness, excessive drowsiness, cognitive impairments, and
weakened defensive responses. On the other hand, depression
may be connected to decreased vagal activity levels (Chambers
and Allen, 2002), although the findings are not entirely
consistent (Rottenberg, 2007).

2 A functional-vagal theory and
central-autonomic network
perspectives

The aforementioned literature proves that there is a close
association between emotional regulation and processing, ANS
and CNS control over the body’s internal state. Nonetheless, it

seems that contemporary psychiatry and clinical psychology
largely assume that the functional and dynamic interactions
within the human nervous system during emotional processing,
regulation, and dysregulation are primarily driven by brain-based
processes rather than by bottom-up processes, such as depression
and its various subtypes. To this extent, it is worth mentioning the
scientific debate on the nature of emotions that has lasted over a
century (James, 1880). Recent research shows that neural control
over heartbeat dynamics creates and initiates emotional responses
(Candia-Rivera et al., 2022; Hsueh et al., 2023). This scientific
finding undermines the “classical” emotion theories that suggest
emotions are solely functional states of the brain. Consequently,
the current grand challenge is to demonstrate the significant causal
involvement of dynamical vagal and sympathovagal activities in
depression and its subtypes, which may be reflected in changes in
the brain.

So why are vagal activity levels lower when a patient has
parasympathetic-dominant hypoarousal symptoms?

To explain the autonomic correlates observed in depression, it is
here assumed that depression is a disease involving the
parasympathetic nervous system, therefore involving
dysregulation of the dynamical CAN through vagal control and
sympathovagal interplay. Accordingly, let us assume that time-
varying vagal activity results from the complex interaction
between body- and brain-related dynamics, and pathological
ANS dysfunctions are associated with significant CAN changes
and emotional dysregulation. According to the Fourier theory,
every time series can be represented as a linear combination
(i.e., sums and differences) of sinusoidal functions that have
specific amplitude and frequency. Figure 1.

Depression is often characterized by a similar or reduced vagal
tone and increased emotional reactivity compared to healthy
individuals, coupled with parasympathetic-dominant hypoarousal
symptomatology. In any case, depression may be associated with
pathological vagal dynamics. In order to transition from
pathological vagal dynamics to healthy ones, the amplitude of the
sinusoid, i.e., the emotional reactivity (Garcia et al., 2016), must be
reduced, and the mean of the sinusoid, i.e., the vagal tone, must be
increased. This approach is hereby referred to as the “functional
vagal theory of depression” While this theory may be useful in
understanding the underlying pathophysiology of depression and
its relationship to neurocardiovascular dysfunctions, the non-
specificity of brain and neurocardiovascular dynamics (Saul and
Valenza, 2021), along with the nonlinear and complex nature of the
cardiovascular system, makes its direct translational clinical
application challenging.

Indeed, although numerous physiological conditions and
pathologies are associated with HRV-derived and brain-signal-
derived biomarkers that correlate with either the severity of the
pathology or the physiological state, these correlations may not be
particularly specific, especially when experimental conditions and
methodological approaches vary. Consequently, it is possible that a
healthy individual in a particular neuro-autonomic state may
exhibit similar dynamics to a subject with pathology in a
different psycho-physiological state. The nonlinearity of the
cardiovascular system poses challenges since an increase in
vagal activity could potentially result in an increase in heart
rate, as the effect of vagal stimulation on heart rate strongly
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depends on the level of sympathetic stimulation occurring
concurrently (Sunagawa et al., 1998). This phenomenon, known
as accentuated antagonism, is partly attributed to the inhibitory
effect of the vagally released ACh on the release of NorEpinephrine
from nearby sympathetic nerve endings. Additionally, the
complexity of the cardiovascular system, resulting from the
many interactions of numerous sub-components, means that
the system as a whole exhibits properties that the individual
components acting alone cannot demonstrate. The system’s
nonlinearity, coupled with the multiple feedback mechanisms of
sympathetic and vagal activity on cardiovascular control, makes
the system extremely sensitive to input, even infinitesimal changes
(Sunagawa et al., 1998). Therefore, we do not explicitly endorse the
use of the mean of the sinusoid, i.e., the so-called vagal tone, to
detect depression. Rather, it is the author’s opinion that brain-
heart related biomarkers are more promising in targeting specific
oscillations and spatial information over the scalp or brain region
associated with afferent or efferent peripheral activity
(Pfurtscheller et al., 2017; Catrambone et al., 2021; Pfurtscheller
et al., 2021; Pfurtscheller et al., 2022; Pfurtscheller et al., 2023).

Prospectively, the diagnosis and treatment of depression and its
subtypes should move from a symptomatic- and brain-centred view
exclusively to a functional and whole-body framework where vagally-
mediated CAN dynamics play a crucial and causal role. In other words,
modern medicine for this highly disabling mood disorder should
reverse the current diagnostic and treatment framework for
depression by moving from a symptomatic-only and brain-
dominated view to a new functional-vagal and whole-body
conception. To this extent, science needs to achieve the following goals:

Gain Fundamental Knowledge on SympathoVagal activity &
Functional Brain-Body interplay. There is the need to develop
effective biomarkers of dynamical sympathovagal activity and
associated CAN/brain-heart interplay to characterize physiological

sympathovagal activity and functional BHI in healthy conditions.
These biomarkers may be defined from generic multivariate signal
processing methods and subsequent feature extraction in the time,
frequency, and/or nonlinear and complexity domains; Characterise
brain-heart-mediated emotional responses. There is the need to
characterise a dynamical emotional profile in the healthy through
time-varying autonomic- and CAN-related metrics. Gender, age, and
other socio-demographic factors should be considered because they are
known to affect heartbeat dynamics and, therefore, CAN-related and
BHI-related metrics; Characterise brain-heart-mediated biomarkers
specific of emotional dysregulation and depression. An impaired
dynamical emotional profile of depression should then be
characterised throughout treatment by mapping and comparing
associated autonomic and CAN and BHI patterns to a healthy
profile. Experimental paradigms including standardised emotional
elicitation as well as personalised recall scripts combined with non-
invasive brain stimulation should be employed to stimulate the
emergence of dysfunctional emotion regulation. The desired
outcome may be achieved through identifying personalized
autonomic and BHI-related features that are distinct to each
individual and contribute to their depressive symptomatology. By
utilizing these features, the pace and intensity of brain and vagal
stimulations can be adjusted accordingly, enabling concurrent
progress towards remission and recovery.

Taking a functional-vagal perspective and a broader view of the
nervous system into account can help clinicians better understand the
clinical symptoms of depression that drive current practice and allow
for objective neurophysiological assessment. Instead of changing the
current clinical paradigm, this approach can complement the existing
diagnostic framework and provide new diagnostic criteria that take
into account the essential role of aetiology and pathophysiology in
diagnostic decision-making. By adopting quantitative assessments
based on specific BHI-related disease biomarkers, modern

FIGURE 1
Functional BHI, HRV series, and vagal activity in exemplary healthy and depressed conditions. Vagal activity is illustrated in the Fourier domain, so
each sinusoid represents a component of vagal oscillations. The mean of each sinusoid is linked to the so-called “vagal tone,” which may be reduced in
depression. The amplitude of each sinusoid is thought to be linked to vagally-dominant hypoarousing symptoms in depression.
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psychiatry can align itself with other medical specialties, including
cardiology and neurology. This approach will enable psychiatry
to achieve a more comprehensive understanding of the biological
underpinnings of mood disorders, bringing it closer to the
diagnostic and treatment practices of these related fields. This
holistic view may contribute to the update of the so-called
Research Domain Criteria (Morris and Cuthbert, 2012), which
proposes to study five psychopathological domains including
negative and positive valence, cognitive systems, social
processes, and arousal/regulatory systems to better understand
mood disorders.

It is important to note that a comprehensive investigation of
dysfunctional neural dynamics in depression should also consider
sympathetic dynamics. In terms of symptomatology, sympathetically
dominated hyperarousal is marked by emotional hyperactivity,
reactivity, impulsivity, anxiety, and anger, accompanied by
parasympathetic hyposensitivity. Evidence concerning the correlation
between sympathetic activity and depression is relatively scarce
compared to vagally-related measures, likely due to challenges in
quantitatively assessing sympathetic activity (Valenza et al., 2018).
Nevertheless, it is posited that dysfunctional sympathetic dynamics
may contribute to the increased risk of cardiac complications observed
in depression (Nicholson et al., 2006; Barton et al., 2007; Dong et al.,
2012). Indeed, exposure to risk or trauma has been found to stimulate the
ANS, resulting in sympathetic and/or parasympathetic hyperalertness,
leading to a pathological mood state in which an individual is unable to
experience positive emotional states (Corrigan et al., 2010). When
uncontrolled ANS (i.e., sympathetic-dominant hyperarousal and/or
parasympathetic-dominant hypoarousal) cannot control heightened
emotional or depressive states, patients often report being unable to
cope with emotional and physiological arousal (Ogden, 2006; Corrigan
et al., 2010). The “window of tollerance” model of autonomic arousal
states that there is a “window” of healthy autonomic tolerance when
intense emotions and a state of calm or relaxation can be integrated and
integrated throughout the body. The periaqueductal grey area, which is
also part of the CAN, is thought to be involved in these mechanisms
(Corrigan et al., 2010; Beissner et al., 2013). Identifying CNS-ANS or
brain-heart markers of depression—ideally under naturalistic
conditions—can help maintain or re-establish a healthy “Window of
Tolerance,” for example, through personalised concurrent brain-body
stimulation.

Considering the swiftly growing body of scientific evidence
highlighting dysfunctional BHI dynamics in a range of
pathological conditions (Taggart et al., 2011; Tahsili-Fahadan
et al., 2017; Joyner, 2019; Riching et al., 2019; Riganello et al.,
2019; Liu et al., 2020; Méloux et al., 2020; Costagliola et al.,
2021; Nowroozpoor et al., 2021; Tumati et al., 2021; Vaccarino
et al., 2021; Bekała et al., 2022; Grassi et al., 2022; Kumral et al.,
2022; Lazaridi et al., 2022; Liu et al., 2022; Seligowski et al.,
2022; Wang and Peng, 2022; Xue et al., 2022), it is possible that
cardiologists will run EEG/psychometric/emotional
assessments before their standard clinical evaluation.
Likewise, psychiatrists and clinical psychologists may need to

conduct EEG/MRI scans and 24-h cardiac holter monitoring to
consider depression as a neurocardiovascular disorder.”
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