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Pulmonary Fibrosis (PF) is a deadly disease that has limited treatment options and is
caused by excessive deposition and cross-linking of collagen leading to stiffening of
the lung parenchyma. The link between lung structure and function in PF remains
poorly understood, although its spatially heterogeneous nature has important
implications for alveolar ventilation. Computational models of lung parenchyma
utilize uniform arrays of space-filling shapes to represent individual alveoli, but have
inherent anisotropy, whereas actual lung tissue is isotropic on average. We
developed a novel Voronoi-based 3D spring network model of the lung
parenchyma, the Amorphous Network, that exhibits more 2D and 3D similarity to
lung geometry than regular polyhedral networks. In contrast to regular networks that
show anisotropic force transmission, the structural randomness in the Amorphous
Network dissipates this anisotropy with important implications for
mechanotransduction. We then added agents to the network that were allowed
to carry out a random walk to mimic the migratory behavior of fibroblasts. To model
progressive fibrosis, agents were moved around the network and increased the
stiffness of springs along their path. Agents migrated at various path lengths until a
certain percentage of the network was stiffened. Alveolar ventilation heterogeneity
increased with both percent of the network stiffened, and walk length of the agents,
until the percolation threshold was reached. The bulk modulus of the network also
increased with both percent of network stiffened and path length. This model thus
represents a step forward in the creation of physiologically accurate computational
models of lung tissue disease.
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Introduction

Pulmonary disease is a leading cause of death (Li et al., 2020) and has been brought to the
attention of the world at large due to the COVID-19 Pandemic (Dorjee et al., 2020). The SARS-
CoV-2 virus presents with a variety of symptoms, some of which may be chronic, such as
pulmonary fibrosis (PF) (Hama Amin et al., 2022). While PF can have a variety of causes, its
treatment options remain limited, and its most insidious form, idiopathic pulmonary fibrosis
(IPF), is deadly (Wolters et al., 2014). In general, PF is characterized by stiffening of the lung
parenchyma as a result of excessive collagen deposition (Wilson and Wynn, 2009) and cross-
linking (Reiser et al., 1986) due to mechanisms that are still not well understood (Wolters et al.,
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2014). The link between lung structure and function in PF also
remains poorly understood, although its spatially heterogeneous
nature clearly has important implications for alveolar ventilation.
Current diagnostic methods do not have the resolution needed to
fully elucidate these implications. However, computational modeling
can play an important role in linking structure to function at the
alveolar level in the fibrotic lung.

Modern computational models, including spring networks and
agent-based models, have provided a useful framework for
understanding the effects of disease progression on the mechanical
properties of tissue. These models have shown, for example, how self-
healing mechanisms (Suki et al., 2020) and cell migrationmimicked by
random walks (Wellman et al., 2018) can potentially contribute to the
progression and repair of fibrotic disease in the lung parenchyma.
Typically, however, models of lung parenchyma utilize uniform arrays
of space-filling shapes such as squares and/or hexagons in two
dimensions (2D) or cubes and truncated octahedrons in three
dimensions (3D) to represent individual alveoli (Denny and
Schroter, 1995; Maksym et al., 1998; Cavalcante et al., 2005; Denny
and Schroter, 2006; Bates et al., 2007; Bates and Suki, 2008;
Parameswaran et al., 2011; Oliveira et al., 2014; Wellman et al.,
2018; Suki et al., 2020). These arrays have inherent anisotropy due
to the limited rotational symmetries of their alveolar units, whereas
actual lung tissue is essentially isotropic even in the normal lung
(Weed et al., 2015). The mechanical consequences of such anisotropies
have been studied (Ma et al., 2013) but are still not fully understood.
Furthermore, models based on regular repeating unit structures
cannot account for the natural variability in alveolar size that the
lung displays (Parameswaran et al., 2009).

A potential solution to the limitation imposed by geometric
regularity is to use Voronoi tessellation to generate random
assemblies of space-filling units. This has been employed in 3D
finite-element models to capture the mechanical heterogeneity of
foams (Redenbach et al., 2012). Voronoi tessellation has also
recently been used to model lung tissue (Beltrán et al., 2022).
Nevertheless, its uses as a realistic representation of lung tissue,
and specifically in modeling disease progression remain to be
validated. To address these needs, we developed a novel Voronoi-
based 3D spring network model of the lung parenchyma, which we
refer to as the Amorphous Network. In the present study, we compare
and contrast this model to both regular polyhedral network models of
the lung parenchyma and to actual lung tissue. We also impose a
random-walk agent-based process on the Amorphous Network model
in order to simulate the effects of cell movement on the progression of
fibrotic disease, and we explore its consequences for lung function.

Methods

Creation of the 3D voronoi network

Voronoi geometries are based on distributions of points that
define the locations of individual network cells (Okabe, 2000). This
allows creation of many uniform space-filling geometries. When the
points are arranged in a uniform pattern, cubes, truncated
octahedrons, and rhombic dodecahedrons can be created. With
randomly placed points, non-uniform shapes fill the space. These
shapes all consist of convex polyhedra (Canny and Donald, 1988) with
faces composed of triangles. The truncated octahedron, for example,

has squares and hexagons as faces, and each face is subdivided into
triangular segments that collectively define the various alveolar walls.

In preliminary studies, we found that using a purely random
arrangement of points in 3D does not recreate a realistic geometry
for the alveolar structure of the lung because some of the points, just by
chance, can be very close to each other, which gives rise to distorted
alveoli. To avoid this problem, we employed a Poisson Disk Sampling
(PDS) (Cook, 1986) approach in which points are initially generated at
random and then iteratively accepted if they are more than a minimum
distance d from any other point (Bridson, 2007). However, the value of
d determines how many alveoli can fit into a space of volume V; a large
d corresponds to a small number of large alveoli, and vice versa. Thus, in
order to create a model having a given number of alveoli, p, we need to
know the corresponding value of d. This can be calculated by
considering the volumetric packing efficiency, e, defined by the
fraction of space occupied by spheres of radius r � d/2 centered on
each point in the PDS distribution such that none of the spheres
overlap. In the case of spheres of equal size, we have

Vspheres � p
4πr3

3
(1)

and e is the ratio

e � VSpheres

V
(2)

which for a face-centered cubic lattice is approximately 74% (Hales
et al., 2017). This represents the largest number of spheres that can be
packed into V for a given value of d. Rearranging Eq. 2 gives

d � 2
3eV
4πp

( )
1
3

(3)

for a collection of spheres of equal size randomly packed into V, e �
64% (Scot and Kilgour, 1969), which represents the upper bound for
the PDS approach. In other words, the hypothetical maximum value of
d possible for p points with the PDS approach is obtained by using
e � 0.64 in Eq. 3:

d max � 2
0.48V
πp

( )
1
3

(4)

Once a set of points with a specified value of d is generated, a set of
non-uniform space-filling polyhedra, the Amorphous Network, is
created using the 3D Voronoi algorithm (Okabe, 2000).

Creation of spring models

The 3D Voronoi model consists of a set of space-filling convex
polyhedra (Canny and Donald, 1988) with faces segmented into
triangular sections. The mechanical properties of the model are
provided by having all the edges of the triangular faces be
Hookean springs. The intersections of these springs are the nodes
of the network. Prestress was imposed by setting the resting length of
each spring to 50% of its length in the Voronoi network. The spring
constants were inversely proportional to the resting spring lengths,
corresponding to uniform elastic material properties. However, some
springs had extremely short lengths and so had correspondingly high
stiffnesses. This tended to make the determination of the global
equilibrium configuration of the network numerically unstable, so
we imposed a minimum spring length.
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In order to allow for stiffer regions of tissue to contract without
distorting the shape of the entire tissue, the boundary nodes on the
faces of the tissue were allowed to move within the plane of their
respective faces.

Agent-based modeling of pulmonary fibrosis

Based on our previous agent-based modeling work in 2D (Oliveira
et al., 2014), agents representing migrating fibroblast cells were placed
at random nodes within the network and then allowed to take a
randomwalk of n steps between adjacent nodes, with n taking values of
1, 10, and 100. After n steps, the agents were moved to a new random
node where they undertook a new random walk. Springs that were
walked over were stiffened by a factor of 10, since experiments have
shown that fibrotic tissue is 2–30 times stiffer than normal (Liu et al.,
2010; Liu and Tschumperlin, 2011) (note that this is less than the
stiffening factor of 100 that was used in a previous modeling study
Oliveira et al., 2014). A spring was only allowed to be stiffened once, so
successive walks across it did not lead to further stiffening. This
process was continued until a specified percentage, P, of all springs
had been stiffened. Varying P from 1% to 50% simulated increasing
stages of disease progression. Using n � 1 resulted in spatially random
spring stiffening throughout the network, while n> 1 led to increasing
degrees of connectedness between the stiffened springs. Each value of p
and n was tested in triplicate, each time with different realizations of
random agent movement and different Amorphous Networks.

As P increases, percolation occurs at the percolation threshold
when a contiguous chain of stiffened springs spans the network, or
percolates across it, for the first time (Stauffer and Aharony, 1992).
Such a percolation is expected to have a strong effect on the bulk
modulus of the system (Oliveira et al., 2014). The percolation
threshold, pc, for irregular 3D networks can be estimated as
(Zhukov et al., 2019)

lnpc x( ) � 5.04
x

− 2.06 (5)

where x is the node degree (average number of links per node, where
springs are the equivalent of links in this network). We used this
equation to estimate the percolation threshold for our network.

Geometric validation

To validate the structure of our Amorphous Networks, we
compared their 2D and 3D geometries to cubic and truncated
octahedral network and lung structural data from the literature.
For the 2D validation, slices were taken through the 3D network at
15-degree rotation intervals between 0 and 165° relative to one of the
principal axes of the network. This was chosen due to the rotational
symmetry in the truncated octahedral network. We determined the
distribution of cross-sectional areas of the alveoli in the slices. Areas
that were less than 10% of the mean area for a given slice were
removed. The angles between alveolar walls at each intersection were
estimated by approximating each wall as a straight line between
connected intersections and measuring the angles between these
lines. These distributions were compared to measurements taken
from lung slices by Oldmixon et al., 1988, which only included
3 wall intersections, so to make the comparisons equivalent, we

considered only 3-wall intersections in the Amorphous Network
slices. For the 3D validation, we determined the distributions of
the polyhedral volumes.

To evaluate the fibrotic changes in the 2D slices, stiffening of the
springs was translated to disease progression in the faces. Each alveolar
wall is represented by a face that is composed of three springs, and so a
face that intersects with the slice was set to a disease progression of
0–3 based on the number of springs that were stiffened. In the 2D
image, the walls were then colored and thickened based on the
intensity of disease progression to better visualize fibroblastic foci.

Simulated breathing

To simulate breathing, the volume of the network was doubled by
imposing a linear strain of 0.26 onto the nodes of the network. These
strains were directed radially outward from the center of the network.
We then determined the equilibrium configuration of the network as
that which minimized its total elastic energy using a first-order gradient
descent method using a custom C++ code (Herrmann, 2021). The
ventilation of each of the polyhedra that represented individual alveoli
was calculated from the difference between the polyhedral volume
before and after the network was stretched according to

ϵV � Vhigh − Vlow

Vlow
(6)

where ϵV is the volumetric strain, Vhigh is the stretched volume, and
Vlow is the baseline volume. Ventilation heterogeneity was
characterized by computing the coefficient of variation (CV) of ϵV
for each disease state.

To evaluate how the mechanical properties of the network
changed as a result of disease progression, the bulk modulus B of
the network was calculated from the total volume V of the network
and the sum of the elastic energies in all the spring as follows. First, the
change in energy, ΔE, of the network when V is increased by ΔV is

ΔE � 1
2
HΔV2 (7)

where H is the volumetric modulus. Since H � B/V, Eq. 7 rearranges
to become

B � 2VΔE
ΔV2

(8)

Equation 8 was used to evaluate the bulk modulus of the networks.

Force propagation

To evaluate the effects of force transmission due to structural
differences between the Amorphous Network and the regular
networks, a 2D analysis was conducted on the Amorphous
Network compared to a regular hexagonal network. The process of
creating the 2D network was similar to the 3D network except that
area efficiency was used instead of volumetric efficiency to create the
PDS. All springs were set to have a resting length of 0.5 times their
length in the Voronoi configuration with an imposed minimum
length. A small region in the center of each network,
approximately 12.5% the diameter of the total network, was
stiffened 10-fold, and the complete spring networks were solved for
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their equilibrium configuration. The angles of the reaction forces on
the fixed boundary nodes of the network were evaluated to test for
inherent directionality of forces in the network.

Computation

Matlab R2021b was used for calculations, statistical analysis, and
creation of figures.

Results

Geometric analysis

The average (±SD) number of polyhedra in the Amorphous
Network was 1232 (±12). Each polyhedron representing an alveolus
had an average of 73 ± 16 edges and connected to an average of 15 ±
3 surrounding polyhedra. This is similar to the truncated octahedral
network in which each truncated octahedron has 14 faces and connects
to 14 surrounding octahedra. Furthermore, if the faces of a truncated
octahedron are divided into the fewest possible triangles by drawing
lines between its nodes (4 triangles per hexagon and 2 triangles per
square), the resulting polyhedron has 66 edges. Examples of the

truncated octahedral network, Amorphous Network, and their cross-
sectional slices are shown in Figure 1.

A slice through the cubic network along one of the primary axes
(not shown) comprises a rectangular grid (the aspect ratio of each
rectangle depends on the angle of the cut relative to the axes of the
cubes). Each node thus has 4 links, and so is denoted as degree 4. The
alveolar volumes are all identical with a CV of 0, and there is 90-degree
rotational symmetry about each of the principal cube axes. These are
characteristics that do not match those of real lung tissue.

The truncated octahedral network (Figure 1A) is a space-filling
geometry that is often used in modeling lung parenchyma but, like
the cubic network, it also has limited rotational symmetry. The
alveolar areas seen in 2D slices can exhibit regular patterns and can
assume either unimodal or bimodal distributions. An example is the slice
shown in Figure 1B, which consists of uniform octagons and squares. At
cut angles of 45, 90, 135, the CV of the area distribution approaches zero
(Figure 2A) as the patterns become uniform hexagons or squares. This is
not characteristic of lung tissue. At other slice angles, the SD varies
strongly with angle (Figure 2B). The cumulative distributions of dihedral
angles Figures 2D and D, show a staircase pattern that is not similar to
measured data (Oldmixon et al., 1988). Furthermore, the alveolar volumes
in this network are identical, which again is not physiological.

We constructed Amorphous Networks with e values (Eq. 2) of 0%
(random network), 20%, and 40%. The dihedral angle distributions

FIGURE 1
(A) Example truncated octahedral network. Each alveolus (different colors) is represented by a truncated octahedron. (B) 2D slice through a truncated
octahedral network. The pattern of areas is regular and has a bimodal distribution. (C) Example amorphous network. Different colors represent individual
alveoli. (D) Slice of an amorphous network where there is no clear pattern.
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obtained with e � 0%; e � 40% were significantly different from each
other, with the CV of the alveolar volumes for the e � 40%Amorphous
Network showing less heterogeneity than the random network. We
found that e = 10% gave a structure reminiscent of real lung tissue. For
the healthy Amorphous Network, the CV of the volumes was
0.42 compared to the literature value of 0.63 ± .08 (Parameswaran
et al., 2009). The equivalent diameters calculated from the areas of the
slices from the Amorphous Network had a CV of 0.32 compared to the
literature value of 0.25 ± .05 (Parameswaran et al., 2009). The dihedral
angles from the 2D slices had a standard deviation of 23.8° compared
to the mean literature value of 19.2° (Oldmixon et al., 1988).

Figure 3 compares the fibrotic structures both in 2D and 3D
generated by the agent-based model for n = 1 and n = 100, each with
disease progression percentages of 1%, 5% and 20%. Figures 3A–F
demonstrate that with n = 1, fibrosis develops in isolated patches of a
few links in size that lead to relatively homogeneous disease. In
contrast, when n = 100, fibrosis mostly spreads along continuous
paths leading to clumping of the stiffened springs (Figures 3G–L).

We used e = 10% for the agent-based disease progression model.
The average number of springs per node was 8.8, so the estimated
percolation threshold using Eq. 5 was approximately 0.23. Across all
models, the SD of the dihedral angles increased slightly with increasing
disease progression (Figure 4A), and this did not appear to change

with the expanded network. There were no clear trends in the CV of
the alveolar areas from any of the networks (Figure 4B) apart from an
increase in CV in the expanded networks.

Ventilation heterogeneity

The ventilation CV increased both as the percent disease
progression increased and as n increased, until the percolation
threshold was crossed after which the CV dropped (Figure 5). This
was consistent for all values of n. The most highly clustered model
(that with n � 100) produced the highest ventilation heterogeneity
with a CV reaching close to 12% near the percolation threshold.

The network with the greatest ventilation heterogeneity, the 20%
disease progression with a walk length of 100, was tested at 4 network
sizes between 200 and 2000. The ventilation CV did not appear to
change above ~500 alveoli (Supplemental Figure S1).

Bulk modulus

The value of B also increased as the percent disease progression
increased (Figure 6A). Figure 6B shows the difference between B

FIGURE 2
(A) CV of areas collected from 2D slices of the truncated octahedral network and the amorphous network. (B) Standard deviations of dihedral angles
collected from 2D slices of the truncated octahedral network and the amorphous network. (C) Cumulative distribution of dihedral wall angles from truncated
octahedral network. (D)Cumulative distribution of dihedral wall angles from amorphous network. The different colors in (C,D) correspond to slice angles from
0 to 165 in 15-degree intervals. The black dashed line is the distribution from published lung data (Oldmixon et al., 1988).
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obtained n � 10 and n � 100 divided by B obtained with n � 1.
Inspection of Figure 6B shows the rate of change of B with n � 100
is greater than for the random network, with a maximum difference of
over 10% near the percolation threshold.

Force isotropy

Figures 7A, B demonstrate that the Amorphous Network had no
preferential reaction force directions at the boundary. In contrast, the

FIGURE 3
Stiffened springs in the Amorphous Network. (A,B,G,H) 1% disease progression. (C,D,I, and J) 5% disease progression. (E,F,K, and L) 20% disease
progression. (A–F) Agent step length of 1, i.e., random spring stiffening. (G–L) Agent step length of 100, showing clear clustering of disease progression. 2D
images (B,D,F,H,J, and L) Healthy walls in green, 1/3 progression in yellow, 2/3 in orange, and complete in red.
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hexagonal network had clear directionality in the reaction forces at the
boundary nodes (Figures 7C, D). It is also clear that the Amorphous
Network has more heterogeneity in force than the hexagonal network.

Discussion

We have introduced a novel 3D Voronoi-based spring network,
the Amorphous Network, as a more realistic model of the network
structure of the lung parenchyma that recapitulates the naturally
occurring random variation in alveolar shapes and sizes. We
applied an agent-based model simulating fibrosis development to

investigate how ventilation heterogeneity and bulk tissue modulus
change as disease progresses. Our results show that the novel
Amorphous Network provides a more realistic alveolar geometry
compared to networks that use uniform polyhedra such as the
truncated octahedral network (Figures 1, 2). We have also shown
that an increase in the degree of clustering of fibrotic lesions (Figure 3),
achieved by allowing longer random walks of fibrotic agents in the
network, increases the CV of alveolar ventilation (Figure 5) and leads
to a moderate increase in B (Figure 6). Lastly, we demonstrate using
2D simulations in Figure 7 that force propagation is isotropic in the
Amorphous Network but not in a regular hexagonal network.

An interesting property of the Amorphous Network is that it is
structurally and mechanically isotropic on average despite having a
heterogeneous structure. In fact, compared to regular networks that
are anisotropic (Figure 2), the isotropy of the Amorphous Network is a
consequence of its heterogeneity. This has interesting consequences
for force transmission. For example, the mechanical force of local
stiffening would be transmitted much farther in a cubic network if one
of the axes of the cubes coincided with the direction of an imposed
force such as gravity (unpublished observation). Preferential
directions of force are also evident in the hexagonal 2D network
(Figure 7B). In contrast, our simulations illustrated in Figures 7A, B
show no preferential direction for force transmission in the
Amorphous Network, consistent with observations in lung tissue
(Weed et al., 2015). The Amorphous Network achieves this by
dissipating forces in random directions. This has important
biologic implications because anisotropy of force transmission
could result in mechanotransduction being direction dependent,
which is apparently not the case in reality. Randomness may also
be a key property of development. It has been shown that a regular
bifurcating airway network would amplify the smallest error in
structure during growth, as opposed to a heterogenous fractal
airway network that is tolerant to such error propagation (West,
1990). The native heterogeneity of alveolar structure may also be
similar. For example, a small error in the truncated octahedron may
become amplified during growth but this will not happen in the
Amorphous Network that builds natural variability into its space-
filling structure.

FIGURE 4
(A) Standard deviations of the dihedral wall angles in the amorphous networks vs. percent disease progression. (B)CV of areas from amorphous networks
vs. percent disease progression. (A,B)Circles and solid lines represent values at baseline network volume, and squares and dashed lines represent distributions
at stretched volume. The vertical black dotted line is the percolation threshold.

FIGURE 5
CV of alveolar ventilation in the amorphous network vs. percent
disease progression for different randomwalk lengths. The vertical black
dotted line is the percolation threshold.
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The heterogeneity of the Amorphous Network is also displayed in
its cross-sections (Figures 1, 3). The 2D slices from uniform polyhedral
networks can display repeated patterns that can form uniform or
bimodal area and angle distributions (Figure 2), and therefore they do
not recapitulate the geometry reflected in physiologic data. The
Amorphous Network, however, does not have geometric
preferences at particular angles, and has heterogeneities similar to

real parenchyma. On the other hand, the area distributions found with
the Amorphous Network in the present study did not change
significantly as disease progressed or the value of n increased
(Figure 4), both of which would be expected. This is likely due to
the fact that we did not allow the most highly stressed alveolar walls in
the model to rupture. This would result in the merging of the two
alveoli, and a corresponding decrease in surface area and overall

FIGURE 6
(A) Calculated bulk modulus of the amorphous network vs. percent disease progression, normalized to mean control bulk modulus. (B) Relative change
in bulkmodulus between the 1-step and the 10-step and the 1-step and 100-stepmodels vs. percent affected. The vertical black dotted line is the percolation
threshold.

FIGURE 7
(A) Probability distribution of reaction force angles in the amorphous network, an aggregate of three independent network configurations. (B) The
amorphous network, with stiffened region in center. (C) Probability distribution of reaction force angles in the hexagonal network. (D) The hexagonal network,
with stiffened region in center. (B,D) The reaction forces at the boundary are shown as arrows, where the color indicates the angle of the reaction force.
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material stiffness. Rupture was previously introduced to account for
the emergence of subpleural honeycomb structures that produced
increased heterogeneity in a previous 2Dmodel (Wellman et al., 2018).

The cross-sections shown in Figure 3 also clearly demonstrate the
localizing of fibrotic regions. In the models where the distribution is
random, the fibrotic regions are spread across the whole sample,
whereas in the models with walk length of 100, the regions of disease
and lack of disease are clearly distinguishable from each other. The
clusters also appear to have more concentrated fibrosis progression,
shown in red, with increased step length compared to the random
fibrotic regions. It is worth noting that as the Amorphous Network
reaches equilibrium, concavities may form depending on the
parameters of the network, and this is a key element that
distinguishes the Amorphous Network from a 3D Voronoi
network. These concavities are shown for the Amorphous Network
in Figures 1, 3.

The ventilation heterogeneity seen in the Amorphous Network
model (Figure 5) represents alveolar level ventilation. To our
knowledge, this has not been measured experimentally despite the
availability of technologies such as micro-CT (Jones et al., 2016).
This lack of alveolar-level data makes a direct comparison of model
heterogeneity to heterogeneity in the lung difficult. However, the
12% maximum CV appears to be low compared to reported data
(Mata et al., 2021). This may be a consequence of modeling the
spread of fibrosis using a simple random walk. The random
movement is perhaps physiological under normal conditions, but
in fibrosis it can be different. Fibroblasts have the tendency to
migrate toward regions of stiff exrtacellular matrix (Lo et al.,
2000), and on stiff matrixes they can transdifferenciate to
myofibroblasts and deposit more ECM making it progressively
stiffer (Hinz, 2009). A patchier diffusion-like spreading could be
more realistic whereby the migration of the agents is controlled by
local feedback such as tissue stiffness itself, and could lead to more
region-specific disease progression, such as at the periphery of the
lungs (Wellman et al., 2018). When combined with alveolar rupture,
the model by Wellman et al., 2018, was able to reproduce the
peripheral honeycombing typical of IPF. Heterogeneous structures
in future models could be analyzed using stereology to further
validate the geometry, and stereology could be applied to estimate
alveolar volumetric distributions from histological images.
Additionally, direct measurement of volumes using micro-CT
scans would be invaluable to the application of the Amorphous
Network (Jones et al., 2016). The behavior of the model as a whole
could be compared to measurements from Electrical Impedance
Tomography (Tomicic and Cornejo, 2019).

With regard to the stiffness of the lung parenchyma, we first
note that phenomena at the percolation threshold often show sharp
transitions. For example, B has been shown in other models to
suddenly increase when the percent disease progression crosses the
percolation threshold (Bates and Suki, 2008; Oliveira et al., 2014).;
small isolated clusters of stiff springs have relatively little effect on
overall tissue stiffness, but when they suddenly connect together in
a contiguous chain that spans the tissue, they are able to collaborate
in a much more effective way (Stauffer and Aharony, 1992; Oliveira
et al., 2014). The Amorphous Network of the present study,
however, does not display such a sharp transition (Figure 6A),
probably because the network is prestressed and the springs
become stiffened by a factor of only 10 as opposed to the factor
of 100 used previously (Bates and Suki, 2008; Oliveira et al., 2014).

Thus, the sharpness of the transition at the percolation threshold is
related to the difference in properties before and after a bond is
occupied by the percolation process. Indeed, additional simulations
with the Amorphous Network where springs were set to be
1000 times stiffer generated a much steeper increase of the bulk
modulus (Supplemental Figure S2). There are also differences in
percolation behavior between 2D and 3D networks. In 2D
networks, the common structure used to model the parenchyma
is a hexagonal pattern for which the percolation threshold is 0.65,
implying that a majority of the springs have to become fibrotic
before significantly affecting the stiffness of the network. The
percolation threshold in our 3D network is only 0.23, which
highlights the importance of dimensionality and structure when
using models to mimic diseases.

There are a number of limitations that arise from the simplicity
of our Amorphous Network model. The use of volumetric efficiency
as a means of controlling the parameters of the Amorphous
Network (Eqs 1–4), while straightforward, nevertheless did not
reproduce real parenchymal distributions exactly. This could
have been due to a number of confounding factors, such as the
lack of airways, pleura, and external forces such as gravity and
variation in pleural pressure. The effect of gravity on the lungs
causes gradient that appears as heterogeneity, where the alveoli at
the top of the lung are under a greater stress than those at the base of
the lung, which leads to ventilation heterogeneity (Prisk, 2014). We
also tested a uniaxial expansion and found that for the same change
in volume, the ventilation CV increased compared equiaxial
expansion, indicating that there is potential for this model to
explore different regions of the lungs to evaluate regional
heterogeneity in future models. These omissions also potentially
affected ventilation distributions. We also represented tissue
stiffness using Hookean rather than non-linear springs, and we
did not include either tissue viscoelasticity or surface tension, all of
which would have greatly complicated the model and made finding
its mechanical equilibrium configuration much more challenging
numerically. Furthermore, we modeled fibrosis as a single change in
intrinsic spring stiffness, with no gradient allowed for disease
progression, no breakage nor healing of the springs, and we
employed purely random agent movement without the possibility
for mediator-driven chemotaxis or a stiffness-driven biased random
walk (Wellman et al., 2018). Additionally, our model does not
represent the biological mechanisms that lead to individual
forms of IPF. These limitations are shared by a number of
previous parenchymal modeling studies such as the 2D
percolating model presented by Bates and Suki, 2008 that
utilized linear springs and binary fibrotic/non-fibrotic springs.
On the other hand, these other 2D models excel at showing
fibrotic clusters and area heterogeneity, but they are either 2D
(Wellman et al., 2018) or lack natural heterogeneity of the lung
structure (Parameswaran et al., 2011). Hence, they cannot predict
ventilation distribution of the healthy lung nor can they estimate the
worsening of ventilation distribution due to disease. In contrast, the
Amorphous Network of the present study is able to reveal a link
between the nature of disease progression and changes in alveolar
ventilation heterogeneity and overall tissue stiffness (Figures 5, 6).
We hypothesize that inclusion of complex features, such as
viscoelasticity, rupture, and airways would further increase
ventilation heterogeneity, which warrant further investigation.
Despite these limitations, the Amorphous Network represents a
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step forward compared to current uniform models, and future
extensions with more volumetric data and quantitative analysis
will further develop on this foundation.

Conclusion

We have introduced and investigated a novel structural network
model of the lung parenchyma, and by adding agents, we have
demonstrated its ability to predict ventilation heterogeneity and
parenchymal bulk mechanical properties as pulmonary fibrosis
progresses. This model thus represents a step forward in the creation
of physiologically accurate computational models of lung tissue disease.
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