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Introduction: To measure sleep in the intensive care unit (ICU), full
polysomnography is impractical, while activity monitoring and subjective
assessments are severely confounded. However, sleep is an intensely
networked state, and reflected in numerous signals. Here, we explore the
feasibility of estimating conventional sleep indices in the ICU with heart rate
variability (HRV) and respiration signals using artificial intelligence methods

Methods: We used deep learning models to stage sleep with HRV (through
electrocardiogram) and respiratory effort (through a wearable belt) signals in
critically ill adult patients admitted to surgical and medical ICUs, and in age
and sex-matched sleep laboratory patients

Results: We studied 102 adult patients in the ICU across multiple days and nights,
and 220 patients in a clinical sleep laboratory. We found that sleep stages
predicted by HRV- and breathing-based models showed agreement in 60% of
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the ICU data and in 81% of the sleep laboratory data. In the ICU, deep NREM (N2 +
N3) proportion of total sleep duration was reduced (ICU 39%, sleep laboratory 57%,
p < 0.01), REM proportion showed heavy-tailed distribution, and the number of
wake transitions per hour of sleep (median 3.6) was comparable to sleep laboratory
patients with sleep-disordered breathing (median 3.9). Sleep in the ICU was also
fragmented, with 38% of sleep occurring during daytime hours. Finally, patients in
the ICU showed faster and less variable breathing patterns compared to sleep
laboratory patients

Conclusion: The cardiovascular and respiratory networks encode sleep state
information, which, together with artificial intelligence methods, can be utilized
to measure sleep state in the ICU

KEYWORDS

sleep, sleep staging, intensive care unit (ICU), deep learning-artificial neural network,
artificial intelligence-AI, heart rate variability (HRV), respiration

1 Introduction

The human body is composed of multiple physiological and
organ systems, each with its own structure and function (Bashan
et al., 2012; Ivanov and Bartsch, 2014; Ivanov, 2021). In a complex
multi-component networked state, healthy sleep is a biological
imperative (Mukherjee et al., 2015; Kryger et al., 2017).
Breakdown of this sleep network impairs critical brain and body
functions, including memory (Rasch and Born, 2013), learning,
attention, and affective state (Banks and Dinges, 2007; Killgore,
2010; Mueller et al., 2013; Naiman, 2017; Holding et al., 2019), and
regulation of blood pressure (Khan and Aouad, 2017), inflammatory
processes (Besedovsky et al., 2019; Irwin, 2019), metabolic control
(Leproult and Cauter, 2010; Philip et al., 2012; Ma et al., 2015), and
stress responses (Afolalu et al., 2018; Dunietz et al., 2018; Krause
et al., 2019). The intensive care unit (ICU) is associated with
disrupted sleep, due to internal (e.g., pain,
immunocompromisation, dyspnea, and apnea) and external (e.g.,
noise, circadian mismatch) factors. The network of sleep can be so
distorted in the ICU that conventional sleep stages can be hard to
recognize (Watson et al., 2013). Sleep disruption in the ICU
contributes to delirium (Watson et al., 2012), difficult weaning
from mechanical ventilation (Hardin, 2009; Thille et al., 2018;
Dres et al., 2019), and increased risk of autonomic,
inflammatory, and metabolic dysfunction (Weinhouse and
Schwab, 2006).

Despite the urgency of improving sleep in the ICU, measuring
sleep in this environment is challenging since conventional
polysomnography is difficult to operationalize in the ICU setting
(Boyko et al., 2017). Subjective sleep estimates and movement
analysis using actigraphy can provide crude assessments of sleep
(Boyko et al., 2017; Schwab et al., 2018), but are heavily confounded
by common ICU experiences, including sedation, monitoring,
illness, and immobility. No present method of measuring sleep in
the ICU is satisfactory (Darbyshire et al., 2020), thus alternative
approaches are needed.

In an effectively networked system, key information content can
often be derived from subcomponents, without having access to all
of the system. Some standard sleep state signals are readily acquired
in most medical circumstances such as the electrocardiogram and
respiration. Our first aim for this study was to evaluate the validity of

monitoring sleep in ICU patients using easily obtainable biosignals,
such as electrocardiogram (ECG) and respiration, using artificial
intelligence methods. Although sleep states are commonly discerned
through electroencephalogram (EEG) signals, they can also be
decoded through analysis of non-EEG signals (Radha et al., 2019;
Sun et al., 2019; Sridhar et al., 2020) since sleep modifies a variety of
biosignals (Somers et al., 1993; Fink et al., 2018), including blood
pressure, heart rate, and respiration. Additionally, compared to
EEG, respiration and ECG measurements are easier to acquire
and offer a more practical and repeatable diagnostic tool.
Respiration and ECG signals likely also measure sleep more
objectively compared to actigraphy and subjective assessments.

For this study, we used deep neural network models to estimate
sleep stages by analysis of the networked interactions of cardiac,
autonomic and respiratory systems, from heart rate variability
(HRV), derived from ECG, and breathing signals, obtained with
a single respiratory effort belt. To investigate the performance and
behavior of the models, we analyzed how well the HRV and
breathing models agreed in determining sleep stages both in ICU
patients and in age and sex-matched patients referred to a clinical
sleep laboratory. We further used the sleep laboratory dataset to
compare sleep staging performances, both when the HRV- and
breathing-based models agreed and disagreed, to the gold standard
sleep stage annotations, which involves manual scoring of
polysomnography EEG signals by experts. We also hypothesized
that the HRV and breathingmodels would show larger disagreement
compared to the sleep laboratory dataset given the extent of
respiratory and cardiac physiology in critical illness. We
evaluated whether specific HRV- and respiratory features, and
variables such as medical conditions, severity of illness, and
pharmacological drugs are associated with disagreement of these
two sleep staging models. This is the first study investigating sleep
stages in the ICU with non-EEG biosignals. While future studies
need to follow up with additional analysis on this line of research,
including EEG analysis in ICU patients, in the present study we
estimate to what extent electrocardiogram and respiration signals,
together with machine learning methods, may be able to assist with
sleep analysis in clinics already today.

The second aim of this study was to determine common sleep
statistics and respiratory variables in ICU patients, as well as in non-
critically ill patients undergoing overnight diagnostic

Frontiers in Network Physiology frontiersin.org02

Ganglberger et al. 10.3389/fnetp.2023.1120390

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2023.1120390


TABLE 1 Baseline characteristics.

ICU n (%) Sleep laboratory n (%) p-value

Number of Patients 102 220 0.80

Age (years)

Mean (Std) 68 (9) 68 (9)

Range 50–88 51–101

Sex 0.93

Male 61 (60) 122 (55)

Female 41 (40) 98 (45)

Race 0.99

White or Caucasian 92 (90) 152 (69)

Black or African American 5 (5) 9 (4)

Asian 2 (2) 7 (3)

American Indian or Alaska Native 1 (1) 1 (0.5)

Unknown 2 (2) 51 (23)

Ethnicity 0.92

Non-Hispanic 95 (93) 168 (76)

Hispanic 2 (2) 6 (3)

Unknown 5 (5) 46 (21)

BMI (kg/m2)a 27 (6) 31 (6) 1e-6

Wearable Belt Length (cm)a 89 (12) n/a

Charlson Comorbidity Index 2.2 (2.1) 1.9 (1.7) 0.11

Apnea-Hypopnea-Index n/a 9 (9)

Previous OSA Diagnosis 28 (27) n/a

History of CHF 29 (28) n/a

History of COPD 31 (30) n/a

ICU Type

Medical 33 (34) n/a

Surgical 68 (66) n/a

SOFA Score at first study day

Mean (Std) 3.1 (2.6) n/a

Range 0–11 n/a

Primary and/or secondary diagnosis

Acute Kidney Injury 33 (32) n/a

Shock 30 (29) n/a

Respiratory Failure 21 (21) n/a

Anemia 20 (20) n/a

Sepsis 19 (19) n/a

Pneumonia 15 (15) n/a

Encephalopathy, Altered

Mental Status 14 (14) n/a

Pneumothorax, Hemothorax

Pulmonary Edema, Pleural

Effusion 13 (13) n/a

GI perforation, incarcerated

hernia, SBO, ischemic colitis 11 (11) n/a

Heart Failure 10 (10) n/a

Hemorrhage 10 (10) n/a

COPD, Interstitial lung disease 7 (7) n/a

Fall, Trauma, Burns 7 (7) n/a

(Continued on following page)
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polysomnography recordings for suspected sleep disorders in the
sleep laboratory. We tested robustness of our results through
sensitivity analysis.

Finally, fragmentation and loss of cohesion of the sleep network
is inevitable in the ICU (Freedman et al., 2001), which prevents
patients from getting adequate consolidated periods of rest. As such,
the last aim of this study was to quantify sleep fragmentation in
patients admitted to the ICU.

2 Materials and methods

2.1 Study oversight

Patients were enrolled after written consent in a randomized
clinical trial, Investigation of Sleep in the Intensive Care Unit
(NCT03355053 (https://clinicaltrials.gov/ct2/show/NCT03355053?
term=Investigation+of+Sleep+in+the+Intensive+Care+Unit, n.d.)),
at the Massachusetts General Hospital (MGH) from June 2018 to
November 2019. The clinical trial involved randomizing patients
into three groups, where two of the groups received a low dose of

dexmedetomidine (0.1 or 0.3 mcg/kg/h) overnight continuously for
11 h, and the third group received placebo (normal saline).
Exclusion criteria for the clinical trial include severe dementia,
known pre-existing neurologic diseases or cognitive deficits,
serious cardiac disease, severe liver dysfunction, severe renal
dysfunction, and low likelihood of survival for 24 h-all criteria
can be found in the online supplement. The study was approved
by the Mass General Brigham Institutional Review Board and in
accordance with the Declaration of Helsinki.

2.2 Dataset-ICU Cohort

The sample size for this study was determined by starting with
enrolled patients and then excluding all patients under 45 years of
age and patients who had less than 2 h of ECG or respiratory data.
Patients were non-mechanically ventilated at the time of enrollment,
although some were subsequently mechanically ventilated during
the course of hospitalization; see Table 1. At the start of the trial, a
respiratory belt (Airgo, a CE Class IIa certified wearable medical
device (MyAir LLC, n.d.), Supplementary Figure S1) was placed

TABLE 1 (Continued) Baseline characteristics.

ICU n (%) Sleep laboratory n (%) p-value

Cirrhosis s/p liver transplant 6 (6) n/a

Other medical 34 (33) n/a

Other surgical 47 (46) n/a

In-hospital Mortality 0 (0) n/a

Three Month Mortality 19 (18) n/a

Readmission

Hospital within 30 days 10 (10) n/a

ICU within 30 days 7 (7) n/a

Emergency department within 30 days 4 (4) n/a

Mechanical Ventilation

During hospitalization 26 (25) n/a

Before enrollment 21 (20) n/a

During study period 7 (7) n/a

After 14 day study period 6 (6) n/a

Duration (days)b 0.5 (2.2) n/a

Medications usage within study period

Opioids used 68 (68) n/a

Fentanyl equivalent (mg)a 38 (45) n/a

Benzodiazepines used 23 (23) n/a

Midazolam equivalent (mg)a 4 (6) n/a

Antipsychotics used 24 (24) n/a

DDD-method equivalenta 0.3 (0.4) n/a

aMean (Standard Deviation).
bMedian (Interquartile Range).

Frontiers in Network Physiology frontiersin.org04

Ganglberger et al. 10.3389/fnetp.2023.1120390

https://clinicaltrials.gov/ct2/show/NCT03355053?term=Investigation+of+Sleep+in+the+Intensive+Care+Unit
https://clinicaltrials.gov/ct2/show/NCT03355053?term=Investigation+of+Sleep+in+the+Intensive+Care+Unit
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2023.1120390


around a patient’s chest, as close to the floating ribs as possible, until
they were transferred outside of the ICU. The belt contains a
conductive silver band that measures respiratory effort by sensing
changes in electrical resistance that correspond to changes in belt
length induced by thoracic movements. The amplitude values of the
belt were not calibrated. The sampling frequency was 10 Hz. Patients
did not wear the belt when mechanically ventilated. In addition to
demographic data, we collected information regarding labs,
medications, vital signs, and ICD-10 codes from the hospital’s
electronic medical records. Vital signs at higher time resolution
(0.5 Hz) and electrocardiogram (ECG) (256 Hz) data were collected
from the bedside telemetry monitors over the hospital network using
BedMaster software (Excel Medical, Jupiter, FL). Signals collected
through bedside monitors and the wearable respiratory device both
contained real-time timestamps; correct alignment was manually
reviewed for all patients. Charlson Comorbidity Index (Charlson
et al., 1994) and Sequential Organ Failure Assessment (SOFA)
(Vincent et al., 1996) scores were computed.

2.3 Dataset-Sleep laboratory cohort

404 patients who underwent overnight polysomnography
(PSG) in the Massachusetts General Hospital sleep laboratory
between January 2019 and January 2020 wore the same
respiratory belt that was used in the ICU cohort. Participants
were enrolled through verbal consent shortly before onset of the
PSG. There were no exclusion criteria and enrollment stopped
after reaching a target sample size of 404 patients. This study was
also approved by the Mass General Brigham Institutional Review
Board. To use sleep laboratory patients as control subjects for
comparison with ICU patients, we applied the same exclusion
criteria, i.e., excluding all patients under 45 years of age. We also
balanced the distribution of age and sex between the ICU and
sleep lab cohorts by applying k-nearest-neighbor matching, as
previously described (Stuart, 2010). We further stratified sleep
lab patients according to their Apnea-Hypopnea-Index (AHI)
severity into no-disordered breathing (AHI <5) and disordered
breathing (AHI >15) groups and applied the same matching
method for each of these subgroups. Seven trained sleep
technicians annotated PSG studies as part of routine clinical
care according to American Academy of Sleep Medicine
guidelines (Berry et al., 2012).

2.4 Biosignals preprocessing

Non-physiological data and data with low signal quality were
removed from both the ECG and respiratory effort belt signal. For
the respiratory signal, this was done with an algorithm checking for
high and constant amplitude (belt not worn) and for absence of
reliable breath detection (low signal quality). For each patient, we
normalized the respiratory signal by subtracting the mean and
dividing by the standard deviation calculated from the 1%–99%
quantile clipped signal. We used the open-source PhysioNet
Cardiovascular Signal Toolbox (Vest et al., 2019) to filter the
ECG signal, extract R peaks based on the Pan Tompkins
algorithm (Pan and Tompkins, 1985), and obtain a signal quality

measure. We provide parameter settings for the preprocessing steps
in the online supplement.

2.5 Sleep Staging

We used deep neural network models that use heart rate
variability (a binary sequence with 1 for a detected R-peak in the
ECG, 0 else) and respiratory effort signals as inputs to assign a sleep
stage (Wake, R, N1, N2, and N3) to every 30-s epoch. We previously
validated this approach on datasets from the MGH sleep laboratory
and the Sleep Heart Health Study (Sun et al., 2019). Here, we used a
model trained with signals from the wearable respiratory belt as
input. For visual representation of the resulting sleep stages for all
patients, swimmer plots were created.

2.6 Breathing features

From the respiratory belt’s signal, we computed four features
using a moving window approach.

i. Respiratory rate (RR): number of breaths (inspiratory peaks)
detected in 10 s (moving window) x 6.

ii. Inter-breath-interval (IBI): time (seconds) between two
consecutive breaths.

iii. Ventilation coefficient of variation (ventilation CVar): we first
computed a proxy of minute ventilation as the sum of positive
amplitude changes (inspiration) over 10 s and scaled it to a
reference of 1 minute (multiplied by 6), then computed the
coefficient of variation over a 30-s window.

iv. Variability index: we computed the coefficient of variation of
the IBIs over a 30-s window, and defined the variability index
as: variability index = (ventilation CVar + IBI CVar)/2,
i.e., the mean of the coefficient of variation computed from
the breathing timing (IBI) and breathing amplitude
(ventilation).

2.7 Statistical analysis-Sleep Staging

2.7.1 Definition-concordant and discordant sleep
For all analyses in this study, we only used data where both HRV

and breathing data was simultaneously available. We applied both
the HRV and breathing-based sleep staging models individually on
all data. Each 30 s epoch in the data was assigned a sleep stage by the
HRV- and breathing-based models, yielding two hypnograms.
Because disagreement in sleep staging in human experts is
common (Danker-Hopfe et al., 2009), and because stages
between wake, N1, N2, and N3 form a continuum, we defined
concordance regarding the stage assigned to a given 30-s epoch of
sleep if the models agreed to within one stage, and discordance if they
did not. Specifically, we defined an ordinal progression of sleep
depth for NREM sleep: W < N1 < N2 < N3, such that, e.g., if the
HRV and breathing-based models assigned W and N1, respectively,
this would be considered concordant; whereas assignments of W
and N2 would be considered discordant. For REM sleep R, models
were considered concordant only if both assigned a stage of R. For
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completeness, the full set of concordant and discordant stage
assignments were.

Concordance: (W, W), (N1, N1), (N2, N2), (N3, N3), (R, R),
(W, N1), (N1, N2), (N2, N3).
Discordance: (W, N2), (W, N3), (W, R), (N1, N3), (R, N1),
(R, N2), (R, N3).

For the sleep lab polysomnography data, sleep staging
agreements between the models and the experts were measured
with confusion matrices and Cohen’s kappa (Cohen, 1960) for both
concordant and discordant data.

2.7.2 Sleep indices
We split each patient’s data into 24 h segments (full day),

starting and ending at 08:00, and further defined day as 08:
00–20:00 and night as 20:00–08:00. For every 24 h segment, we
obtained the HRV-based and breathing-based hypnograms, and
computed the following sleep indices.

1. Total sleep duration (in hours).
2. Concordant sleep duration (in hours).
3. Discordant sleep duration (in hours).
4. Proportion of discordant sleep from total sleep (in %).
5. Sleep fraction (%): sleep duration divided by amount of data

available.
6. Stage R (%), Stage N1 (%), Stage N2 (%), Stage N3 (%), Stage N2

+ N3 (%): Time spent in a specified sleep stage divided by sleep
duration.

7. Sleep fragmentation index (SFI): Number of sleep stage
transitions from (N2, N3, R) to (N1, W) divided by sleep
duration.

8. Wake transitions/hour: Number of sleep stage transitions from
(N1, N2, N3, R) to (W) divided by sleep duration.

We further computed mean sleep indices across the models:

xmean � xHRV + xBreathing( ) / 2

where x is any of the 8 sleep indices listed above.
To ensure robust conclusions regarding sleep indices, we

performed sensitivity analysis, by computing sleep indices using
three complementary approaches. The approaches vary by what
segments are included for sleep index computation, and by which
part of sleep (total sleep or concordant sleep) is used to compute the
sleep indices.

A1. Inclusion criteria: Any amount of sleep. Sleep indices
computed on total sleep.

A2. Inclusion criteria: At least 2 hours of concordant sleep. Sleep
indices computed on total sleep.

A3. Inclusion criteria: At least 2 hours of concordant sleep. Sleep
indices computed on concordant sleep.

For each approach, we carried out the following test
procedure: For every subject we computed the mean sleep
indices (mean xmean across all 24 h segments). We then
applied a Mann-Whitney U (MWU) test (H0: “equal

distribution for both groups”) and Mood’s median test (H0:
“equal medians for both groups”) to assess statistical
difference between the ICU and sleep lab (overall and AHI
subgroups) subjects. We considered sleep indices to be
significantly different for two groups (Mann-Whitney U) with
a significantly different effect direction (Mood’s median test) if
both tests resulted in a p-value of less than 0.05. We chose to
apply non-parametric tests instead of t-tests because we found
that none of the data were normally distributed in either the ICU
or sleep lab group, where we define non-normally distributed to
mean that either the Shapiro-Wilk or D’Agostino’s K-squared
test rejects null hypothesis of normality for alpha = 0.05. We
report test results for all applied statistical tests.

2.7.3 Sleep fragmentation in the ICU
We characterized sleep fragmentation in the ICU (Freedman

et al., 2001) by the following metrics using HRV model-based sleep
stages.

1. Proportion of day (08:00–20:00) spent asleep.
2. Proportion of night (20:00–08:00) spent asleep.
3. Proportion of sleep occurring in the day versus in the night.
4. Proportion of REM sleep occurring in the day versus in the night.
5. Number of sleep periods, with a duration of at least 1 minute,

per 24 h.
6. Number of sleep periods, with a duration of at least 5 minutes,

per 24 h.

2.7.4 Subgroup analysis
The ICU patients were manually grouped according to their

primary and main conditions, and the median sleep indices (HRV-
based model, analysis approach A2) were computed for each
group. The Kruskal-Wallis H test was applied to assess
differences of individual sleep indices between groups.

2.7.5 Latent feature representation of sleep
To assess similarities and differences in the latent feature

representation between sleep epochs in the ICU and the sleep
lab, we computed unsupervised UMAPs (Uniform Manifold
Approximation and Projection) (McInnes et al., 2020) based on
the sleep staging neural networks’ last hidden layer activations.
UMAPs were created separately for the HRV-based model and
breathing-based model across pooled sleep lab and ICU data, see
supplement for details.

2.7.6 Disagreement between HRV and breathing
models-error analysis

We hypothesized that the following variables affect discordance
in the HRV- and breathing-based models: 1) specific features from
cardiac and respiratory signals (see supplement and Results); 2)
daily dosing of opioids, benzodiazepines, and antipsychotics; 3)
SOFA score, a measure of a patient’s illness severity. HRV and
breathing features of interest were: RR interval, RR root mean square
of successive differences (RMSSD), HRV very low frequency power
(VLF), HRV low frequency power (LF), HRV high frequency power
(HF), inter-breath-intervals, respiratory rate, respiratory variability
index, ventilation CVar, cardiopulmonary coupling (Thomas et al.,
2005) (CPC) low frequency coupling (LFC), CPC high frequency
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coupling (HFC). We computed these features for concordant and
discordant sleep parts for each 24 h segment and performed a
Mann-Whitney U test with a significance level of 0.01 for each
feature pair. Next, we computed features for each 24 h segment and
performed multilinear regression analysis with a LASSO penalty,
with the features as independent variables and the discordant
proportion (log-transformed) as the dependent variable. To test if
daily administered doses of opioids (in Fentanyl milligram
(Patanwala et al., 2007)), benzodiazepines (in Midazolam
milligram (MacLaren and Sullivan, 2005; Guina and Merrill,
2018)), antipsychotics (DDD method (Leucht et al., 2016)) and
the SOFA score were associated with discordance, we computed
Pearson and Spearman correlations between each of these variables
and the proportion of discordant sleep for each 24 h segment.

2.8 Statistical analysis-Breathing

For every 24 h segment with at least 2 hours of concordant sleep,
we computed the breathing features as described above from
concordant sleep and for each sleep stage. For each patient we
averaged the features across all nights. For ICU and sleep lab
cohorts, we computed the mean and standard deviation of each
feature and assessed statistically significant differences between
cohorts with t-tests for Gaussian features or Mann-Whitney U
tests and Mood’s median test (analogous to sleep stage analysis)
for non-Gaussian features.

Results are reported in accordance with the Strengthening the
Reporting of Observational Studies in Epidemiology (STROBE)
guidelines (Elm et al., 2007).

3 Results

3.1 Dataset

129 patients were enrolled in a clinical trial in the ICU at the
Massachusetts General Hospital; we excluded two patients under
45 years old, and 25 patients for having less than 2 h of ECG or
respiratory data available from our analysis, resulting in a cohort size
of 102 patients (41 females, 61 males). In a sleep lab cohort, out of
404 enrolled patients, 97 were excluded due to age under 45 years,
resulting in a sample size of 307 before matching. Matching resulted
in 220 (98 females, 122 males) sleep lab patients, 77 (40 females,
37 males) with an AHI <5 and 52 (18 females, 34 males) with an
AHI >15. Age distributions were similar for ICU and matched
groups, both for male and female subjects; see Supplementary Table
S1 for details. Table 1 summarizes the baseline characteristics of the
ICU and the matched sleep lab cohort.

3.2 Biosignals preprocessing

After signal preprocessing, we obtained 6,728 h (280 days) of
ECG data, 3,886 h (162 days) of breathing data, and 3,502 h
(146 days) of simultaneous ECG and breathing data for the ICU
cohort. For the sleep lab cohort, the numbers were 1,634, 1,609, and
1,562 h, respectively. Mean (SD) hours of data available per patient

in the ICU (N = 103) were ECG 66.0 (27.8), Breathing 38.1 (28.1), for
simultaneous ECG and breathing signals 34.3 (24.6), and for the
sleep lab (N = 220) 7.4 (0.8), 7.3 (1.0), 7.1 (0.9) hours respectively.

3.3 Statistical analysis, Sleep Staging

In the sleep laboratory data, 131,157 out of 173,977 30-s epochs
(75.4%) were assigned concordant sleep stages (see Methods) by the
HRV- and breathing-based models. The models showed higher
staging agreements with experts for concordant data than for
discordant data, both when agreement was evaluated with
Cohen’s kappa with AASM standard stages (W, R, N1, N2, N3),
as well as with combined NREM stages (W, R, NREM), see Figure 1.

Sensitivity analysis, consisting of three analysis approaches
resulted in the following total sleep times (TST), concordant
sleep times (CST), and proportions sleep (S (%)) per 24 h
segment (numbers given as mean (SD)):

A1. Inclusion: any sleep; sleep indices computed on total sleep.

ICU: 102 subjects (274 24-h segments), TST 6.2 (3.1) hours, S
(%) 50.4 (19.7)
Sleep lab: 220 subjects (220 segments), TST 4.9 (1.6) hours, S (%)
73.9 (19.3)

A2. Inclusion: ≥2 h of concordant sleep; sleep indices computed
on total sleep.

ICU: 80 subjects (163 segments), TST 8.6 (3.0) hours, S (%)
56.4 (18.7)
Sleep lab: 190 subjects (190 segments), TST 5.3 (1.3) hours, S (%)
76.7 (16.4)

A3. Inclusion: ≥2 h of concordant sleep; sleep indices computed
on concordant sleep.

ICU: 80 subjects (163 segments), CST 4.2 (1.7) hours, S (%)
58.3 (26.9)
Sleep lab: 190 subjects (190 segments), CST 4.1 (1.4) hours, S (%)
76.8 (18.2)

Sleep staging results for each patient over time are shown in
Figure 2 and Supplementary Figure S2, sample hypnograms for both
ICU and sleep lab patients are shown in Figure 3.

3.3.1 Sleep indices
For approach A2 (see Methods), the results of the sleep indices

computation on a 24 h level for the HRV and breathing models,
together with the expert labels for the sleep lab data, are shown in
Figure 4. Mean total sleep time per 24 h in the ICU was determined
to be 6.5 h with the HRV-based model and 11.8 h with the
breathing-based model (+81.5%). In the sleep lab, total sleep time
was determined to be 4.9 h with HRV-based model and 5.7 h with
breathing model (+16.3%) and 5.6 h by the human sleep expert.

Figure 5 depicts sleep indices (mean of breathing and HRV-based
indices) distributions for all patients. In the ICU, there was a greater
proportion of N1 compared to the AHI <5 sleep lab cohort (p MWU =
0.05) and significantly less N2 compared to all sleep lab cohorts (p <
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0.001). The proportion of N2+N3 was reduced compared to total sleep
lab (p< 0.01) and sleep labAHI<5 (p< 0.001) cohorts but not compared
to the sleep lab subgroup with AHI >15. While stage R distributions
showed heavier tails in the ICU cohort (p MWU = 0.05). Median wake
transitions per hour of sleep were similar in the ICU and sleep lab
AHI >15 groups (3.6 and 3.9), but lower in the sleep lab AHI <5 group
(2.7, p < 0.05). The ICU cohort showed a larger proportion of
discordance between the breathing and HRV-based sleep staging
models compared to the sleep lab cohort (41% and 19%
respectively). In the ICU, a median of 25% of the day (08:00–20:00)
and 41% of the night (20:00–08:00) were spent asleep. 38% of total sleep
and 51% of R sleep occurred during daytime hours.

In post-hoc analyses, we investigated if the amount of N1,
N2+N3, and the number of awakenings in the ICU is explained
by the predictor variables age, sex, BMI, and SOFA score by fitting
multivariable regression models. The total variance of N1 explained
by the predictors was 6.4%, with no significant coefficients (age b =
0.4, p = 0.2; sex b = 9.2, p = 0.1; BMI b = 0.3, p = 0.6; SOFA b = 1.2,
p = 0.5). The total variance of N2+N3 explained was 15.2% with
significant associations with age and sex (age b = −0.6, p = 0.048; sex
(with male as 1, female as 0) b = −11,6, p = 0.03, BMI b = 0.35, p =
0.5, SOFA b = −1.3, p = 0.4). The total variance of the number of
awakenings was 4% with no significant associations. In an additional
analysis, we have fitted a multilinear regression variable to the
amount of REM sleep with predictor variables age, sex, BMI,
SOFA, total amount of opioids, benzodiazepines and
antipsychotics, and indicator variables for the primary diagnoses.
The model explained 29% of the variance with no significant
coefficients.

The following sleep indices results for the ICUwere confirmed (same
effect direction, all significant) by all analysis approaches A1-A3: Elevated
discordant sleep time and proportion, reduced N2 proportion, and
reduced N2+N3 proportion. The number of wake transitions per
hour of sleep in the ICU was increased compared to the total sleep
lab cohort (significant in 2 out of 3 analysis approaches), significantly
increased compared to the sleep lab AHI <5 cohort (significant in all
analysis approaches), and similar compared to the sleep lab
AHI >15 cohort (not significantly different in any analysis approach).
Results for the three analysis approaches are presented in Supplementary
Tables S2–S6; a summary is presented in Supplementary Table S7.

3.3.2 Subgroup analysis
The median and interquartile ranges of sleep indices for patients

grouped by diagnosis are shown in Figure 6 (and Supplementary Table
S8 for numerical values including test results). KruskalWallis tests were
not significant for any of the sleep indices (minimum p-value of
0.08 observed for N3 proportion). Patients with lowest N2+N3 (%)
observed had diagnoses of hemorrhage, shock, and encephalopathy,
and patients with highest N1 (%) had diagnoses of hemorrhage, sepsis
and encephalopathy. Discordant sleep proportion was highest for
patients with cirrhosis and liver transplant, pneumothorax,
respiratory failure, and pneumonia, and lowest for patients with
shock, hemorrhage, and acute kidney failure.

3.3.3 Latent feature representation of sleep
We generated two-dimensional maps by using the deep neural

network last hidden layer’s activation for each epoch as inputs for
the UMAP (Figure 7). Coloring the data points with the predicted

FIGURE 1
HRV-and breathing-based sleep stage concordance and human agreement. Model performance evaluation on 220 age and sex-matched sleep
laboratory patients. Data where the HRV- and breathing-based sleep stages were in concordance (see main text for definition) also showed higher
agreement with human expert labels. In total, 75.4% of all 30 s epochs were assigned concordant sleep stages by the models. For the discordant sleep
epochs, the breathing-based sleep stages had markedly higher agreement with the expert labels than the HRV-based sleep stages.
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sleep stage shows clusters that correspond to those sleep stages
(Figure 7A). For some sleep stages more than one cluster is apparent
(HRV: R, N1, N3; Breathing: R, N3). For each sleep stage, estimated
Gaussian kernel densities of the UMAP-derived features show that
the ICU features largely overlap with the sleep lab features, but are
more widely dispersed (i.e., more variable) than in the sleep lab
cohort (Figure 7B).

3.3.4 Disagreement HRV and breathing model-
error analysis

Out of 44 computed biosignal-based features, 27 showed a
significantly different distribution (Mann–Whitney U test,
significance level 0.01) between concordant and discordant sleep,
see Supplementary Tables S9–S10 for details on the difference
between HRV and breathing models. For N1, significantly

reduced mean values in discordant sleep were observed for HRV-
VLF, HRV-LF, HRV-HF, HRV-RMSSD, inter-breath-intervals,
respiratory variability, ventilation CVar, CPC-LFC, CPC-HFC,
and significantly increased for respiratory rate. For N2, NN-
interval duration, inter-breath-intervals, respiratory variability,
ventilation CVar were reduced, while HRV-VLF, HRV-LF, and
respiratory rate were increased. For N3, NN-interval duration
was decreased, while HRV-VLF, HRV-LF, HRV-HF, HRV-
RMSSD, respiratory variability, ventilation CVar and CPC-LFC
were increased. Lastly, for REM sleep, we observed increased
HRV-RMSSD and CPC-HFC for discordant sleep compared to
concordant equivalents.

In the multivariate linear regression analysis, the automated
feature selection (see supplement for details) led to a model with
53 input variables (F-test statistic of 1.51, a F-test p-value of 0.036)

FIGURE 2
Sleep stages in the ICU over time. Swimmer plot visualizing sleep stages over time for 102 ICU patients. One line represents one patient, and patients
are sorted by the proportion of sleep stage discordance (see main text for definition). For sleep epochs where HRV and breathing-based models were in
concordance (60% of the data), the data is colored according to the sleep stages NREM (pooled N1, N2, and N3), REM and Wake as assigned by the
breathing-based (top half of each line) and HRV-based (bottom half of each line) sleep staging models. Epochs where HRV and breathing-based
models were discordant (40% of the data) are marked as orange. Both sleep stage distribution and the amount of discordance considerably varied among
patients.
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and an r-squared value of 0.424. Hence, on a 24 h segment level, the
computed HRV and breathing features could explain up to 42% of
the variance of discordant sleep proportion.

None of SOFA scores, amounts of opioids, benzodiazepines or
antipsychotics administered correlated with the discordant sleep
proportion (all p-values for Pearson and Spearman
correlations >0.05, see Supplementary Table S11).

3.4 Statistical analysis-Breathing

Figure 8 shows the mean and standard deviation of breathing
features during sleep for each patient. The mean and standard
deviation of respiratory rate during sleep was significantly larger
for the ICU (mean respiratory rates = 17.4 cycles per minute,
respiratory rate standard deviation = 4 cycles per minute, p <
0.01), compared to the sleep lab patients. The median inter-
breath-interval during sleep was significantly lower in the ICU
(3.8 s) compared to the sleep lab (4.7 s). Effect directions were
the same (with significance p < 0.001) for the sleep lab
AHI <5 and sleep lab AHI >15 groups. The mean and standard
deviations of the ventilation’s coefficient of variation (as a proxy for
minute ventilation) was significantly smaller in the ICU (p < 0.05).
The mean respiratory variability index in the ICU was smaller
compared to the AHI>15 group (p < 0.001) and larger to the

AHI<5 group (not significant). See Supplementary Table S12 for
a summary and Supplementary Table S13 for details.

4 Discussion

Our main contributions are the following key findings: 1) In
the ICU, heart rate variability (through ECG) and respiratory
information can provide meaningful information about sleep
stage, quality, and fragmentation-this is significant because
HRV/respiratory signals are much more easily obtained in the
ICU than conventional polysomnography and interactions
within the sleep network are encoded within these signals; 2)
Sleep stage concordance between HRV- and breathing-based
models was associated with higher agreement with experts
compared to sleep stage discordance; 3) The proportion of
sleep stage concordance was lower in the ICU (60%)
compared to the sleep laboratory cohort (81%); 4) Clear
differences were evident between sleep indices of ICU patients
and those of an age and sex-matched clinical sleep laboratory
cohort, such as decreased N2 and N2+N3 proportions in the ICU;
5) Sleep indices of ICU patients, particularly awakening
frequency, resemble those of sleep-disordered breathing (SDB)
sleep laboratory patients more closely than those of non-SDB
patients; 6) Sleep in the ICU is fragmented, consistent with a

FIGURE 3
Hypnogram sample cases in the ICU and sleep laboratory. In this study, we used deep neural networks to stage sleep from both HRV-and breathing
data, and defined concordance between the two resulting hypnograms (see main text). Hypnogram data for three sample patients from the sleep
laboratory and three sample patients from the ICU are shown here and sorted by HRV- and breathing model concordance. The sleep laboratory data
(clinical polysomnographies) included expert-scored sleep stages and respiratory events. Abbreviations: AHI D./T. Apnea-Hypopnea Index
diagnostic/titration part of split night.
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breakdown of the sleep network; 7) ICU patients showed higher
respiratory rate compared to sleep laboratory patients, higher
breathing variability compared to non-SDB sleep laboratory
patients, and lower breathing variability compared to SDB
sleep laboratory patients.

4.1 Sleep in the ICU

In this study we compared sleep of ICU patients with age and
sex-matched sleep laboratory patients. Sleep indices of ICU patients

obtained from the HRV- and breathing-based deep neural network
sleep staging models were similar across three different sensitivity
analyses. Compared to the sleep laboratory cohort, we observed a
shift of NREM sleep stage proportion fromN2 and N3 towards more
light and non-restorative N1. This may be significant, as there has
been growing evidence that deep NREM sleep has a crucial role in
neurophysiological phenomena such as immunity, glucose
metabolism, hormone release and memory (Léger et al., 2018).
The median amount of REM sleep in ICU patients was lower
compared to non-sleep disordered breathing and similar to sleep
disordered breathing patients from the sleep laboratory. Further,

FIGURE 4
Sleep staging results. Sleep staging results for a surgical and medical ICU (N = 80 subjects, 163 24 h segments) and for an age- and sex-matched
sleep laboratory cohort (N = 190 subjects, 190 nights), where for each 24 h segment or night sleep was detected at least once. Inclusion of all available
ICU patients (N = 102), i.e., without minimum sleep requirement, resulted in a mean total sleep time of 6.2 (3.1) hours per 24 h in the ICU. Sleep stages
were determined by breathing (respiratory effort) and heart rate variability (HRV)-based deep neural network models. For the sleep lab, additional
human expert labels were available. (A). Mean (one standard deviation) sleep indices. TS: total sleep time (hours), CS: concordant sleep time (hours), DS:
discordant sleep time (hours), S: sleep percentage of total recording (%), SFI: sleep fragmentation index, WT: wake transitions per hour of sleep. (B).
Median (inter-quartile range) sleep indices for ICU and sleep lab cohort for both breathing- and HRV- based sleep staging models.
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sleep of ICU patients was highly fragmented: patients spent a
median of 25% of the day and 41% of the night
asleep. Moreover, 38% of total sleep and 51% of REM sleep
occurred during the day.

The significant differences between the ICU and the sleep
laboratory patients provide evidence that the sleep network is
frequently deranged during critical care. Our results reinforce
prior published findings (typically PSG studies with smaller
sample size (Boyko et al., 2017)), including abnormal
hypnograms, high arousal index, abnormal sleep stage shifts, a
reduction of deep NREM and varying amount of REM sleep
(Hilton, 1976; Aurell and Elmqvist, 1985; Freedman et al., 2001;
Parthasarathy and Tobin, 2004; Elliott et al., 2013; Boyko et al.,
2017). Furthermore, there is growing evidence that sleep in the ICU,
especially for ventilated patients, is often abnormal and cannot be
scored with traditional EEG-based scoring criteria (Cooper et al.,
2000; Watson et al., 2013). Potentially, periods of discordance

observed in our study coincide with EEG patterns that have been
classified as “atypical sleep” and “pathological wakefulness” in
previous studies examining sleep in the ICU(Cooper et al., 2000;
Watson et al., 2013).

The presented results are important as there is evidence that
sleep impairment in the ICU is associated with delirium (Watson
et al., 2012). Delirium, a state of brain dysfunction with fluctuating
awareness, disorganized thinking, and an altered level of
consciousness (Watson et al., 2012), is associated with long-
lasting cognitive impairment after hospital discharge and
accelerated onset of dementia (Fong et al., 2015). While the
mechanism of delirium is not entirely established, the absence or
reduction of deep, restorative NREM sleep and REM sleep, and
disturbances of circadian rhythms may be risk factors of developing
delirium (Watson et al., 2012). Cardiovascular and pulmonary
signals, as we have shown here, can help monitoring sleep more
routinely in the ICU, which can guide measures to preserve sleep

FIGURE 5
Sleep indices in the ICU and in the sleep laboratory. Sleep indices distribution visualized with violin plots and embedded boxplots (inter-quartile
ranges: black rectangles) and medians (white dots); numerical values at bottom of distribution plots show median (interquartile range). (A). Sleep Indices
(mean of breathing and HRV-based indices) in the ICU (N = 80 patients) and age and sex-matched sleep lab cohorts (N all = 190 subjects, N AHI<5 =
69 subjects, N AHI>15 = 49 subjects), both with requirement ofminimumof 2 h of detected sleep. Mann-Whitney U (MWU) tests andMood’smedian
(MM) tests were applied to compare the ICU and sleep lab cohorts, and significance was indicated if both tests reached a given significance level. Stage R
distributions showed heavier tails in the ICU cohort; statistical comparisons of differences did not reach significance. In the ICU, there was a larger
proportion of light sleep (N1) compared to the AHI<5 sleep lab cohort (p MWU = 0.05), and significantly less N2 compared to all sleep lab cohorts. The
proportion of N2+N3 was also reduced compared to total sleep lab and AHI<5 cohorts but not compared to subjects with AHI>15. Median wake
transitions per hour of sleep were similar in the ICU and AHI>15 group (3.6 and 3.9), and significantly lower in the AHI<5 group (2.7). The ICU cohort
showed a significantly greater proportion of discordance between the breathing and HRV-based sleep staging models. (B). Sleep fragmentation indices
obtained in the ICU. Median 25% of the day (08:00–20:00) and 41% of the night (20:00–08:00) were spent asleep. 38% of total sleep and 51% of R sleep
occurred during the day.
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continuity, such as managing noise and light levels better or
concentrating times of procedures and exams to allow more
consolidated periods of rest.

4.2 Feasibility of staging sleepwith heart rate
variability and respiratory signals

The deep neural network activation patterns, visualized in 2D-
space with embedding maps, of ICU patients shared similarities to
those of sleep lab patients but additionally showed activation
patterns uniquely observed in the ICU. This means that large
parts of the ICU input data were processed by the artificial
networks in such a way that the learned data representations
(i.e., high-dimensional features about sleep before making the
final sleep stage decision) resembled representations resulting
from input data that are like the training data (the networks
were trained using sleep lab data). This result helps mitigate
concerns about a too-large covariance shift. Because the sleep
network appears to be fundamentally changed in the ICU,
activation patterns that are not present in sleep lab patterns are
potentially of interest, and more research is needed to understand
the significance and implications of these clusters, as they may
affect reliability of models or indicate certain pathological states
present in the ICU population and not in sleep laboratory
populations. 27 out of 44 HRV, CPC, and breathing features
significantly differed between concordant and discordant sleep
epochs, indicating that these well-established and interpretable
features might be used a-priori to assess the reliability in sleep stage

assessment by HRV- and breathing-based sleep staging models.
This result was confirmed with a multivariate linear regression
model, using HRV and breathing features from 24 h segments as
independent variables, where 42% of the variance of discordance
proportion was explained by these features. Surprisingly, we found
no association between the discordance of the models and use of
opioids, benzodiazepines and antipsychotics, or health status of the
patient (SOFA score). Similarly, patients grouped by primary and
secondary diagnosis, did not show statistically significant
differences in model discordance. This is remarkable, as we
hypothesized more severe medical conditions would lead to a
higher discordance, but non-significance may be a result of low
sample size per subgroup.

These results demonstrate that the presented method of
measuring sleep in ICU patients, insofar as our cohort is
representative, is a potential alternative to EEG-based methods in
many cases. We did observe more inconclusive sleep stage
assessments (measured by discordance of the HRV- and
breathing-based sleep staging models) than in the sleep
laboratory. Although we found partial explanations for these
discordances, more research is necessary to understand the
critically-ill-specific relationships between brain and sleep states,
HRV- and breathing signals.

4.3 Respiratory analysis

Mean respiratory rate during sleep was significantly higher in
the ICU compared to all sleep lab cohorts. Variance of respiratory

FIGURE 6
Sleep indices for ICU patients grouped by diagnosis. Median and interquartile ranges for sleep indices for ICU patients with at least 2 hours of
detected sleep (N = 80), grouped by their primary or main condition, with number of patients per condition shown in parentheses. Kruskal Wallis tests
were not significant (p > 0.05) for any of the sleep indices.
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rate was significantly increased compared to total sleep lab cohort
and AHI<5 subgroup but not compared to
AHI>15 subgroup. Conversely, mean inter-breath-intervals were
significantly lower in the ICU compared to all sleep lab cohorts.
Interestingly, the variance of the inter-breath-intervals was also low
in the ICU (comparable to sleep lab AHI<5, significantly lower than
AHI>15 group). Breathing variability, which considers variability in
timing and amplitude of breaths, was higher in the ICU group than
in the AHI<5 sleep lab patients and lower than in AHI>15 sleep lab
patients. This suggests that there is greater baseline instability of
respiratory patterns in the ICU, likely reflecting acute illness, even
when respiration is mildly abnormal. On the other hand, this level of
instability is seen in healthier (non-ICU) patients with severe sleep
apnea. Similarities of breathing statistics in ICU patients and in SDB
sleep laboratory patients, and overall higher breathing variability in
the ICU patients, underscore the high prevalence of sleep-disordered
breathing in the ICU patients.

4.4 Limitations

In our observational study, we did not have EEG recordings
available in the ICU, only in the sleep laboratory. Therefore, we
could not analyze relationships of sleep EEG and the HRV- and
breathing-based sleep stage assessments in ICU patients. Joint
analysis of cerebral cortex, cardiac, and respiratory activity would
allow a more holistic analysis and understanding of sleep physiology
in the ICU but are a practical challenge in this population. The
presented study could not and did not aim to investigate the
question of how the presented non-EEG based sleep state estimation
agrees with human sleep experts having EEG available. Rather, we
aimed to investigate the properties and behavior of the different models
(in the form of concordance) when used in critically ill patients, and
with acknowledging the limitation of not having EEG but having a
relatively large sample size, analyze sleep and estimate sleep indices.
This may serve as a first step towards the goal of non-EEG based sleep

FIGURE 7
Latent Feature Analysis. Two-dimensional UMAP (UniformManifold Approximation and Projection) representations were computed with all epochs’
last hidden layer activations of the HRV-based and breathing-based deep neural networks. (A). Data points are colored by predicted sleep stage, revealing
clusters that correspond to sleep stages in both sleep lab and ICU data. (B). For each sleep stage, probability density functionswere estimated for the sleep
lab and ICU data. While there is overlap between distributions (showing features computed from the ICU data are similar to features computed from
the sleep lab data), the distributions of the ICU data are more dispersed (showing features in the ICU that are not present in the sleep lab data).
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staging in the ICU, and certainly studies need to confirm analyses with
EEG measurements. Additionally, while this study focused on the
assessment, analysis, and interpretation of sleep stages and sleep
fragmentation, further research should also explore the potential of
other non-EEG markers, such as cardiopulmonary coupling, as reliable
tools for estimating sleep states in the ICU. Similarly, investigations
should be carried out to determine the advantages of using ECG and
respiration biosignals over actigraphy as markers for sleep states in
the ICU.

Further limitations are that the training data for the models
consisted of night-data only and potential circadian HRV
variation over 24 h is therefore not accounted for. This
unaccounted circadian effect is likely small compared to
respiratory and pathological driving in ICU population.
While the sample size of our study is relatively high
compared with other sleep studies done in the ICU setting,
102 patients is still likely a relatively low number relative to the
full spectrum of ICU patients and sleep physiology. As the target
enrollment of the clinical trial is 450 patients, we hope to be able
to follow up with more granular analysis of sleep in the ICU in
the future. Patients in this cohort were admitted to surgical and
medical ICUs, thus results in other types of ICU’s (e.g.,
neurological, cardiothoracic) might be different. Further,
because we studied sleep in patients mostly not mechanically
ventilated, the accuracy of the proposed sleep measurement
method and reported sleep results during mechanical
ventilation might differ. Finally, all patients were randomized
into three groups as part of our clinical trial, where they were
infused overnight for 11 h, starting usually at 8pm, with 0.1 or

0.3 mcg/kg/h dexmedetomidine (low dose) or placebo (normal
saline). When this ongoing quadruple blinded trial is concluded,
it will be possible to analyze the effects of low dose
dexmedetomidine, if any, on our measures of interest.

We present the following hypotheses based on the outcomes
of our observational study. Further research is needed to validate
these findings: 1) Using ECG and respiration as biological signals
can provide insight into sleep network pathologies in the ICU,
though further research is needed to compare the accuracy to full
polysomnography; 2) HRV and breathing patterns may contain
information about disease pathologies in the ICU that is not
captured by EEG analysis; 3) ICU patients may show reductions
in signatures of deep NREM sleep, and dispersion of sleep into
the day, compared to sleep laboratory cohorts; 4) The
distribution of REM sleep among critically ill patients and
within patients over time in the ICU may be uneven; and 5)
The ability to monitor sleep-like states in the ICU without
complex monitoring may enable better tracking of sleep-wake
state boundaries and fragmentation, the impact of such
fragmentation on delirium and other ICU outcomes, and even
estimate the effects of sleep-targeted therapies.
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