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Introduction: Transient phenomena play a key role in coordinating brain activity at
multiple scales, however their underlying mechanisms remain largely unknown. A
key challenge for neural data science is thus to characterize the network
interactions at play during these events.

Methods: Using the formalism of Structural Causal Models and their graphical
representation, we investigate the theoretical and empirical properties of
Information Theory based causal strength measures in the context of recurring
spontaneous transient events.

Results: After showing the limitations of Transfer Entropy and Dynamic Causal
Strength in this setting, we introduce a novel measure, relative Dynamic Causal
Strength, and provide theoretical and empirical support for its benefits.

Discussion: These methods are applied to simulated and experimentally recorded
neural time series and provide results in agreement with our current
understanding of the underlying brain circuits.
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1 Introduction

During both wakefulness and sleep, the mammalian brain is able to implement numerous
functions key to our survival with extraordinary reliability. This implies precise coordination of
transient mechanisms at multiple spatiotemporal scales ensuring both the synergy between
brain regions contributing to the same task, and the non-interference between network
activities in charge of different functions. Evidence for such transient mechanisms is provided
by the variety of neural events that can be observed in brain activity across multiple structures.
Such phenomena may occur in response to stimuli, as has been observed for gamma
oscillations (Tallon-Baudry and Bertrand, 1999; Fries, 2015), and may play a role in the
dynamic encoding of information. However, key phenomena can also occur spontaneously, as
exemplified by the variety of events occurring during sleep. These include SharpWave-Ripples
(SWR) complexes that occur in the hippocampus during the same sleep stages, and take the
form of a slow deflection (the sharp wave, SW) superimposed with a fast short-lived oscillation
(the ripple). SWRs have been extensively studied and a large set of evidence supports their key
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role in episodic memory consolidation and the recall of previous
experiences (Lee and Wilson, 2002; Diba and Buzsaki, 2007; Ego-
Stengel and Wilson, 2010).

In order to understand how these transient phenomena operate
mechanistically, causality measures based on observed neural time series
can be very helpful to quantify the underlying transient influences
between brain structures. Several measures of causality have been
proposed, starting in the econometrics literature with Granger
causality (GC) (Granger, 1969), relying on vector auto-regressive
models. This measure can be generalized to an information-theoretic
quantity: Transfer Entropy (TE) (Schreiber, 2000). In the present work,
we focus on “model-free” quantities such as TE that are defined
independently of the specific functional relationships entailed by a
particular model of the dynamics. TE and GC have been used to
assess the significance of causal links, but also the “strength” of these
links. However, whether they are appropriate quantities to measure such
strength is debated (Janzing et al., 2013; Stokes and Purdon, 2017).

Structural Causal Models (SCM, see Supplementary Section SA for
background) also allow causal strength measures to be evaluated by
their ability to reflect the magnitude of the changes resulting from
removing the causal links. In this context, the relevance of causality
measures has been investigated by Ay and Polani (2008), who discuss
how to account for the effect of knockout experiments, and introduce a
measure of information flow, emphasizing its desirable properties;
Janzing et al. (2013) provide interesting theoretical justifications for
this kind of measure and extend it to define causal strength (CS) of an
arbitrary set of arrows in a graphical model. With respect to TE,
information flow and CS have the benefit to be local, in the sense that
they depend only on the direct causes of the observed effects and their
associated mechanisms. This makes CS a good candidate to measure
transient connectivity changes during non-stationary neural events, as
they would be able to restrict themselves to causal influences that take
place at a specific time, associated to specific arrows in the “unrolled”
causal graph describing time-varying interactions.

However, we will argue that, even in simple unidirectional settings
where a “source” region is driving events in a target region, such TE and
CSmay not reflect well a key element for neuroscientists: the role played
by transient dynamics. Based on the potential outcome framework
(Rubin, 1974), causal reasoning has also been used to provide intuitive
measures of the causal impact of a specific phenomenon happening at a
given time point (Brodersen et al., 2015), by comparing it to a putative
scenario where this phenomenon does not happen and called synthetic
control in economics (Abadie, 2021). This inspired us to take into
account the peri-event change of signals compared to a pre-event stage
as another component of causal influence.

Therefore, we look at causal influences through the lens of
interventions in SCMs to propose a principled quantification of the
strength of causal interactions in peri-event time series, i.e., datasets
collected specifically around the times of occurrence of an identified
phenomenon in neural signals. Based on information theoretic analyses,
we assess the relevance and issues raised by a time-varying
implementation of GC, TE and causal strength (DCS, where D
stands for Dynamic), and extend DCS to a novel measure, the
relative DCS (rDCS), to quantify causal influences reflected by both
the connectivity and the event-related change at the cause. We show
theoretically that rDCS is effective in uncovering dynamic causal
influences for task-dependent events that are often accompanied
with a deterministic component, as well as for spontaneous events.

We also demonstrate how choices made for aligning peri-event time
series collected across multiple occurrences of these events may bias
causality measures, and we propose a way to align the detected events
favoring the recovery of the ground truth causal direction for a uni-
directionally coupled system. The benefits of rDCS over TE and DCS is
demonstrated by both simulated toy models and neurophysiological
recordings of SWRs. Overall, our results suggest that rDCS helps better
quantify the causal interactions between transient dynamical events,
and thus uncover elementary mechanisms that shape brain activities.

2 Methods

2.1 General principles for the analysis of
event-related causal interactions

2.1.1 Structural Causal Models (SCM)
Mathematically, an SCM for variables {V1, . . ., Vd} is a collection

of so-called “structural assignments” of the form

Vj :� fj PAj,Nj( ), j � 1, . . . , d. (1)

where the right hand side function fj determines the assignment of
the value of Vj on the left-hand side based on the values of parents
variables PAj ⊂ {V1, . . ., Vd} and of the so-called exogenous random
variable Nj. The SCM is associated to a directed graph, the causal
graph, where each variable Vj is represented by a node, and the
parent-child relations between them is indicated by a “parent →
child” arrow. While SCMs do not necessary include time
information, we can exploit them to study dynamic interactions
between two subsystems by considering causal relations linking
variables representing one subsystem at past time points, to
variables representing the other subsystem at a future time point.
As an example, Figure 1A shows two uni-directionally coupled brain
regions whose activities are represented by time series
{. . . , X1

t , X
1
t+1, . . .} and {. . . , X2

t , X
2
t+1, . . .} and the corresponding

SCM links the past of X2 to the future of X1. Typically, such a model
also includes dependencies of each regional activity on its own past,
and those dependencies can involve multiple time steps, leading to
causal graphs of the form exemplified in Figure 2A. We focus on
information theoretic causality measures, which are typically “model
free”, in the sense that they can be expressed independently from the
choice of functions fj in the assignments of Eq. 1. However, model-
free estimation of information theoretic quantities is a
challenging problem that we will not address in this paper.
Instead, estimation of the relevant quantities will rely on the
following linear time-inhomogeneous Structural Vector
Autoregressive (SVAR) model.

X1
t : � a⊤t X

1
p,t + b⊤t X

2
p,t + η1t , η1t ~ N k1t , σ

2
1,t( ), (2a)

X2
t : � c⊤t X

1
p,t + d⊤

t X
2
p,t + η2t , η2t ~ N k2t , σ

2
2,t( ). (2b)

where:

• ηkt is the innovation for channel k at time t, sampled
independently from the past values of X and from
innovations at other time points and/or channels,

• Xk
p,t � [Xk

t−1, . . . , X
k
t−p]⊤ is the vector collecting past p samples

of the time series,
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• the t subscript in all parameters (at, bt, ct, dt, k1t , k2t , σ21,t, σ22,t)
comes from our time-inhomogeneity assumptions and is not
standard in the GC literature.

Note that the constraint of independence between exogenous
variables ηkt associated to different channels entails the assumption
of no contemporaneous effects, in contrast to, e.g., Moneta et al.
(2011). Figure 2A exemplifies the associated causal graph for p = 2
and ct = 0, such that X2 is dependent only on X2 itself, encodes
unidirectional causation from X2 to X1. The methods presented in
this paper can be applied to time series generated by any other
Markovian time series model (e.g., non-linear models (Marinazzo
et al., 2011a)). However, the choice of SVAR 1) allows expressing the
link between Granger causality and Transfer Entropy, 2) facilitates
the estimation of all information theoretic quantities (which is
inherently hard in a model-free setting, see, e.g., McAllester and
Stratos (2020), as they get an analytic expression based on second
order statistics), 3) avoids issues related to the non-parametric
estimation of information theoretic quantities (e.g., finite sample
bias), 4) allows to build easily interpretable models of transient
oscillations.

2.1.2 Interventions in SCMs
One key question in causality is estimating the effect of (possibly

imaginary)manipulations (see, e.g., Woodward, 2001) of the system

of interest from data, which boils down to comparing two “worlds”
or scenarios (Shpitser and Pearl, 2008): the original world where no
manipulation is performed, and the “post-manipulation” world.

Both original and post-manipulation worlds typically cannot be
measured simultaneously (e.g., “treatment” and “no treatment” in
the same patient). However, estimating their differences arguably
forms the basis of causal investigations in empirical sciences, for
example, by performing randomized experiments on multiple
instances of a system designed with mutually exclusive
treatments to infer the outcome of manipulations of this system.
However, even performing carefully controlled experiments on close
to identical instances of a system is often challenging in reality, as
many physical and physiological phenomena cannot be easily
reproduced or manipulated. This is typically the case for
spontaneous transient neural events investigated in this paper,
where neurophysiological experimental techniques limit the
understanding and control of their conditions of occurrence, as
well as the ability to precisely modify some aspects of network
activity to test assumptions on the underlying mechanisms.

Under additional model assumptions, such as the absence of
unobserved confounders, the framework of SCMs (as briefly
introduced in Section 2.1.1 and Supplementary Section SA), can
be leveraged to infer the outcome of manipulations based on
observational data only. Assuming those assumptions are met
(see also Discussion for examples), the SCM inferred from data

FIGURE 1
Analysis of event-related causality via interventions in SCMs. (A) (Top) Diagrams representing two brain regions with uni-directional connectivity
from Region 2 to Region 1 and the post-manipulation scenario where the connectivity is removed. Region 2, as the “cause region”, exhibits transient
events (grey) that influence Region 1 by propagating along the anatomical connection. (middle) SCMs underlying the diagrams, where X1

t and X2
t denotes

states of Region 1 and Region 2. (bottom left) joint distribution of the two nodes in the SCM above reflecting dependencies between them. (bottom
right) Hypothetical Gaussian joint distribution of two nodes in the SCM above with black arrows indicating varied covariance. (B) (Top) An experimental
manipulation of the two-region diagram in (A) related to the intervention in measuring causal strength: cutting the anatomical connectivity. (middle) A
corresponding intervention of the SCM in (A) represents cutting the causal arrow and feeding the effect node X1

t with an independent copy of the cause
node X2

t−1. (bottom) joint distribution of the corresponding intervention distribution in contrast to the joint distribution in (A, bottom left). (C) (Top) Another
experimental manipulation of the two-region diagram in (A): cutting the anatomical connectivity and removing the event-based signal changes at Region
2. (Bottom) The corresponding intervention of the SCM in (A) represents cutting the causal arrow and feeding the effect node X1

t with an independent
copy of a reference state of the cause node X2

tref
. (bottom) joint distribution of the corresponding intervention distribution in contrast to the joint

distribution in (A, bottom left). (D) (Top) A time course of observed peri-event signals of Region 1 (X1
t , red) and Region 2 (X2

t , grey) reflecting the original
scenario. The blue dashed time course represents the post-intervention scenario where X1

t evolves without the influence from X2
t . The interval marked by

grey dashed lines refers to the reference state before the occurrence of events in X2
t . (Bottom) Visualization of the difference between the original and

post-intervention scenarios at each time point.
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can be modified using a family of operations named interventions to
model the manipulations of the system described by the SCM (Pearl,
2000; Peters et al., 2017). Intervening typically refers to modifying
the structural equation associated to one node in the SCM, to study
the modifications it brings about in the system. When interventions
are performed, the only affected mechanistic relations (represented
by arrows in an SCM) are the ones between the intervened nodes
and their parent nodes. For instance, one can impose a fixed
deterministic value to a node, or that this node’s variable is
drawn from a given distribution, independently from other
variables in the SCM (Janzing et al., 2013; Correa and
Bareinboim, 2020; Peters et al., 2017, Chapter 3). Both such
interventions lead to an intervened causal graph where the
arrows between the node intervened upon and its parents are
removed. For a better understanding of the manipuation
modelled in these two cases, consider examples from
experimental manipulations in electrophysiology. The first case
involves fixing a value, as in voltage clamp techniques used to
study channel conductance. By fixing the membrane potential of
a single neuron, the causal arrow between the membrane potential
and extracellular ion concentration is broken. An example of the
second case is injecting current in plasticity studies to maintain

certain firing rates in a patch-clamped neuron, ensuring that the
pharmacological shutdown of certain ion channels does not cause a
change in neuronal firing patterns.

Importantly, while an intervention modifies the graph
associated to an SCM, the variables’ joint distribution can still be
obtained by exploiting interventional knowledge, (unintervened)
observational data and prior assumptions related to the unaffected
conditionals.

For the SCM introduced in Eq. 1, intervening on Vk consists in
replacing its structural assignment by a new one:

Vk :� f̃k P̃Ak, Ñk( ). (3)

where the new function f̃k, set of parents P̃Ak, and/or the
distribution of the exogenous variable Ñk may be differ from the
original ones. The resulting distribution ~PV is called intervention

distribution and denoted P do(Vk :�f̃k(P̃Ak,Ñk))
V (see e.g., Peters et al.

(2017, chapter 6)), where the superscript indicates that we refer to
the distribution resulting from the modification of the SCM’s kth
equation by Eq. 3, which is called a “do operation”. Meanwhile, the
other structural equations and the distribution of their associated
exogenous variables are kept unchanged.

FIGURE 2
D-separation of bi-variate SVAR(2) model. (A) Structural causal model of a bi-variate SVAR(2) model defined in Eq. 2a with uni-directional coupling
from X2 to X1. (B)Conditioning on both past states of X1 and X2 blocks all paths from X1

t−3 to X1
t . Blue nodes represents conditioned nodes while blue arrows

marks blocked paths. Orange arrows marks the unblocked paths. (C) Conditioning on past states of X1 alone blocks all paths from X1
t−3 to X1

t in the uni-
directional case. Color codes are the same as (B). (D) Conditioning on past states of X1 alone does not block all paths from X1

t−3 to X1
t in the bi-

directional case. Color codes are the same as (B). (E) The intervention implemented in devising CS is to break the causal arrows and send an independent
copy X2

p,t to X1
t at each time point. This diagram applies to both CS and DCS (Section 2.2.3). (F) The intervention implemented in devising rDCS is to break

the causal arrows and send an independent copy of the stationary state X2
p,tref

(marked by grey) to X1
t at each time point.
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2.1.3 From causal strength to a measure of event-
based causal influence

Typically, one brain region influences another through axonal
propagation of spiking activity in afferent neurons, and synaptic
transmission to dendrites of the target region. In the simplest bi-
variate case (i.e., if we focus on two brain regions with direct synaptic
projections), this relationship can be represented in an SCM by
Figure 1A(left) where two nodes representing the neural activities of
the two regions are linked by a uni-directional arrow. For the sake of
simplicity, we ignore for now the influence of the past of X2 on itself,
such that the only causal link is from the past (at t − 1) of region 2 to
the present (at t) of region 1. The joint probability can be causally
factorized as P(X2

t−1, X
1
t ) � P(X1

t |X2
t−1)P(X2

t−1), where P(X1
t |X2

t−1)
reflects the stochastic map or causal mechanism between the child
and parent of the arrow: for example, Figure 1A(bottom left) shows a
typical example how a nonlinear structural equation (i.e., the arrow)
induces dependencies between a normally-distributed X2

t−1 and X1
t .

A natural manipulation to study the causal mechanism is to shut
down the synaptic transmission during event occurrence and
compare the outcomes, e.g., via physically cutting the pre-
synaptic dendrite attached to the synapse, or pharmacological
blockade of the relevant ion channel. Suppose that the
experiment could be done, the data obtained in this hypothetical
manipulated scenario can be modeled by another SCM without the
arrow betweenX2

t−1 andX
1
t , as seen in Figure 1A(right middle), such

that they are independent from each other with ~P(X2
t−1, X

1
t ) �

~P(X1
t )~P(X2

t−1) due to the Markov properties (Supplementary
Section SA). In a model-free setting and in absence of data
where this (technically challenging) manipulation is actually
done, the choice of factorized ~P, such as the marginal mean and
covariances, is non-trivial (see illustration in Figure 1A(bottom
right)). Janzing et al. (2013) introduce a well-grounded way to
make this choice to emulate this experimental ablation of
connectivity, that generalize to arbitrary causal graphs.

This approach will be thoroughly discussed in Section 2.2.3 but
here we explain it briefly in this simplified example to provide the
readers with an intuitive understanding of the principles. Figure 1B
illustrates the intervention performed in the SCM: cut the causal
arrow from X2

t−1 to X1
t and feed X1

t with an independent copy of
X2

t−1 (denoted X2′
t−1), where independent copy means that X2′

t−1 is a
random variable statistically independent from any exogenous
variables within the graph, and with the same marginal
distribution as X2

t−1. The idea of this intervention is to achieve
the independence of variables in the post-manipulation world by
exploiting the observational conditional and marginal probabilities
available to us. That is:

• choose ~P(X2
t−1) to be the observed marginal distribution of the

cause, i.e., ~P(X2
t−1) � P(X2

t−1), because it is the only one
available to us in a model-free setting. Consider alternative
choices: we could set the cause to a constant, but which
constant to choose is unclear without additional
information on the system. For example, even taking the
observational average would not be realistic if X2

t−1 is binary,
• replace the cause→ effectmechanismP(X1

t |X2
t−1) by the operation

of feeding the effect nodeX1
t with an independent copy of the cause

nodeX2
t−1 at the same time t− 1, such that themechanism becomes

~P(X1
t ) � ∫P(X1

t |X2′
t−1)P(X2′

t−1)dX2′
t−1 � P(X1

t ). Here again, the

choice of observational density guarantees that the resulting
mechanism is well defined for arbitrary SCMs.

The strength of the causal arrow is then quantified by the
Kullback-Leibler (KL) divergence DKL between original
(unintervened) and intervened joint densities DKL(P‖~P) �
DKL(P(X2

t−1, X
1
t )‖P(X2

t−1)P(X1
t )), which in this simple case

thus boils down to the mutual information between the two
nodes. Figure 1B(bottom) illustrates the contrast between the
actual joint distribution and the intervention distribution for
such intervention: by comparing these two distributions one
could quantify how much the causal mechanism tilts the
Gaussian shape, while they still largely overlap. In a context
where nodes correspond to single neurons, this can be thought of
as a proxy for the experiment of cutting the axon of afferent
neurons, while injecting a current to maintain the baseline level
of excitation in the target neuron, such that it is kept in
naturalistic conditions.

However, we will argue that this choice of intervention is not
an ideal way to measure the event-based causal influences
between two brain regions. Going back to the manipulation
experiment, despite the transient activities occurring at the
pre-synaptic neurons as an input to the synapse, due to the
cutoff of afferents or blockage of ion channels, the activity of the
post-synaptic neuron (i.e., the effect variable) is expected to
remain at baseline level without being influenced by the event
occurring in the cause. In this context, the operation of feeding
the effect node X1

t with an independent copy of the cause node
X2

t−1 at the same time t − 1 still implicitly incorporates the
influence of the event-related transient changes undergone by
X2 at the time t − 1 on X1

t , as the distribution of X2
t−1 may strongly

differ from what it is during baseline activity (without the
occurrence of events). Therefore we propose instead to
reconstruct the baseline state by replacing the independent
copy of the marginal distribution of the event-related activity
X2

t−1 by the marginal distribution of a baseline state in X2
tref

, at a
reference time point tref where the event of interest has not yet
occurred (Figure 1D(Top)), such that the new intervention
distribution becomes ~P(X2

t−1, X
1
t ) � P(X2

t−1)∫ P(X1
t |X2′

tref
)

P(X2′
tref

)dX2′
tref

� P(X2
t−1) ~P(X1

t ). The difference between
feeding independent copies of different marginal distributions
and the resulting baseline joint probability are illustrated in
Figures 1B, C. We thus argue that this is a better reference
scenario for testing the influence of an event between two
brain regions because it accounts for the event-related
variations of the input distribution relative to baseline activity.

2.2 Candidate time-varying causality
measures

We now present the time-varying versions of commonly-
adopted causal strength measures of a given direction of
causation X2 → X1 and discuss their properties in the context of
transient event-based causality analysis, in light of the above
principles. The candidate measures include time-varying
extensions of Granger causality (GC), Transfer Entropy (TE) and
Causal Strength (CS) (Janzing et al., 2013). To make the comparison
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quantitative, time series are modeled using the bivariate linear
SVARmodel of Eq. 2a and Eq. 2b. As we will see, all measures boil
down to comparing the “full” bivariate model to a model where
the contribution of the cause time series to the effect is removed
in some way. Generalization to more than two observed time
series is possible in all cases and briefly mentioned for each
approach.

2.2.1 Granger causality
Granger causality (GC), as well as its information-theoretic

extension, Transfer Entropy (TE) is rooted in Wiener’s principle
of causality. For the bivariate case, Granger (1969) defines the
statement of (Granger-)causality from X2 to X1 whenever
knowledge of X2

p,t, in addition to X1
p,t, yields a strictly better

prediction of X1
t . This can be interpreted as a comparison

between two prediction scenarios:

• Scenario 1: predict X1
t using both X1

p,t and X2
p,t,

• Scenario 2: predict X1
t using only X1

p,t,

where X1
p,t and X2

p,t refer to the respective p previous past points of
each time series, without further specification, such that in our
notation p can be potentially infinite.

The predictive model describing the first scenario is referred to
as the full model (Geweke, 1984) and corresponds to Eq. 2a of the
SVAR model, where the first variable X1 is dependent on both
variables X1 and X2. An estimate of the innovation variance of X1

t

(σ21,t in Eq. 2a) is the mean squared residual error (σ̂21,t) of the
forecast of X2

t under the assumption that both X1
p,t and X2

p,t

contribute to X1
t . Under Scenario 2 where X1

t is predicted only
by X1

p,t, we have a reduced model

X1
t � a′⊤t X

1
p′,t + η1t ′, η1t ′ ~ N k′1, σ′21,t( ). (4)

where the model order p′, the coefficient a′, the innovations mean
k′1 and innovations variance σ′21 are different from the corresponding
terms in Eq. 2a and are classically re-estimated.

If X2 Granger-causes X1, then the full model should fit the data
more accurately compared to the reduced model as measured by

the estimated variance σ̂′
2

1,t, which should be larger than σ̂21,t. Then
the amount of Granger causality can be defined as the log ratio of
the residual variance between the reduced model and the full
model, which leads to estimating the magnitude of Granger
causality as

GC X2
t → X1

t( ) � 1
2
log

σ̂′1,t
2

σ̂1,t
2

⎛⎝ ⎞⎠, (5)

where the factor 1/2 is chosen for consistency with TE (see Section
2.2.2). While the above linear SVAR model is the most widely used,
Granger causality has been extended to non-linear models following
the same predictive approach (e.g., Marinazzo et al., 2008;
Marinazzo et al., 2011b; Diks and Wolski, 2016; Wismüller et al.,
2021, for a recent review see Shojaie and Fox, 2022).

2.2.2 Transfer Entropy
TE is an information-theoretic implementation of Wiener’s

principle, where a comparison between the prediction
performance of the above two scenarios is quantified with

conditional entropy. TE quantifies to which amount X2

causes X1 in the Granger sense and is defined by the entropy
difference

TE X2
t → X1

t( ) � H X1
t |X1

p,t( ) −H X1
t |X1

p,t,X
2
p,t( ). (6)

Interestingly, using the Kullback-Leibler (KL) divergence DKL

between two probability densities DKL(p‖q) � ∫p(x)log p(x)
q(x) dx,

TE can be rewritten as an expected KL-divergence between the
corresponding conditional probabilities, thereby contrasting the two
above mentioned scenarios:

TE X2
t → X1

t( ) � EX1
p,t ,X

2
p,t

DKL p X1
t |X1

p,t,X
2
p,t( )‖p X1

t |X1
p,t( )( )[ ].

(7)
As noticed by Barnett et al. (2009), under stationary Gaussian SVAR
assumptions the analytic expression of Gaussian entropy applied to
Eq. 6 leads to GC(X2

t → X1
t ) � TE(X2

t → X1
t ) in the limit of

unbiased variance estimation, such that TE appears as a strict
generalization of GC, and can be estimated by GC in the context
of Gaussian SVAR models. TE and GC statistics are two commonly
used measures of causal strength for investigating interactions
between brain regions (e.g., Vicente et al., 2011; Besserve et al.,
2010, 2015; Ding et al., 2006; Wibral et al., 2013, 2014; Barrett et al.,
2010; Wen et al., 2013; Shorten et al., 2021; Cekic et al., 2018, with
several widely applied toolboxes such as Barnett and Seth, 2014;
Montalto et al., 2014; Lizier, 2014; Wollstadt et al., 2019). They
generalize easily to more than two signals by including also the past
of additional signals in the prediction equations when assessing
causality for a specific pair, as is done in conditional pairwise
Granger causality (Barrett et al., 2010; Faes et al., 2011; Runge
et al., 2012; Barnett and Seth, 2014). Based on the observational
conditional distribution of the neural signals being analyzed, these
two measures estimate a quantity that is easily interpretable from a
forecasting perspective. However, they have some limitations with
regard to their interpretability as interventions in the SCM
framework and in the time varying setting that interests us in the
present paper.

A key issue is that the reduced model ignores but does not
remove the influence of past values of X2 (X2

p,t) on X1
t by

marginalizing with respect to them. It can be shown that such
change does not preserve the SCM structure, and leads to violations
of the Markov properties due to the implicit dependency on the
mechanisms relating X2

p,t and X1
p,t, which manifest themselves

through the p(X2
p,t|X1

p,t) term of the marginalization equation
(Ay and Polani, 2008; Janzing et al., 2013):

p X1
t |X1

p,t( ) � ∫p X1
t |X1

p,t,X
2
p,t( )p X2

p,t|X1
p,t( )dX2

p,t. (8)

As a consequence, the reduced model cannot be generally interpreted
as an intervention on the original SCM that would result in a model
where arrows associated to the causal influence of interest would be
removed. In addition, in case of bi-directional coupling, the reduced
model of Eq. 4 is misspecified (in a generic case) for any finite order.
This can be seen easily by exploiting the d-separation criterion
(Supplementary Section SA), as illustrated in Figure 2. Figure 2B
shows the estimation in the full model, where conditioning on both
X1
p,t and X2

p,t blocks all the paths from X1
t−3 toX

1
t such thatX1

t−3 and
X1

t are conditionally independent. For such a uni-directionally-
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coupled system, a finite order for the reduced model also guarantees
such conditional independence, as seen in Figure 2C where all
paths are blocked by conditioning. However, in the same system
with bi-directional coupling, for any k > p (i.e., k > 2), there is
always a path from X1

t−k to X1
t going through nodes of X2 that is

unblocked by (X1
t−p, . . . , X

1
t−1). As Figure 2D shows, 2 paths

from X1
t−3 to X1

t are not blocked by conditioning on X1
p,t. Under

faithfulness assumptions, this implies that there is conditional
dependence between X1

t and its remote past samples, no matter
how many finite past states we are conditioning on. This further
implies that to minimize the forecast error of X1

t in the reduced
model one should ideally exploit the past information of this
time series up to p = +∞.

This issue has been both raised and addressed in the
literature, in particular by resorting to Autoregressive
Moving Average models and state space models for defining
an appropriate reduced model (e.g., (Barnett and Seth, 2015;
Solo, 2016)). However, this remains an important limitation
when extending TE to time-varying versions, where the model
is assumed to be stationary at best locally in time. For example,
when defining a non-stationary SVAR model as Eq. 2a, we
assume a different linear model in each 1-point time window.
The non-locality of TE is particularly problematic for such a
time-varying model assumption because of the implicit
influence of past activities on this quantity.

2.2.3 Dynamic causal strength
To overcome the limitations of TE and GC, Ay and Polani

(2008) have proposed a measure of information flow to quantify the
influence of some variables on others in a system, which has been
further studied and generalized in Janzing et al. (2013) as a measure
of the Causal Strength (CS) of an arbitrary set of arrows in a
graphical model. In the present paper, we define CS in the
context of time-inhomogeneous vector autoregressive processes
and their associated unrolled causal graph, and thus call it
Dynamic Causal Strength (DCS).

DCS can be naturally defined using the SCM interventional
formalism (Pearl (2000); Peters et al. (2017), see Section 2.1.2).
Briefly, interventions are performed on nodes in order to remove
the specific arrows from the causal graph whose influence we
wish to quantify. In agreement with Ay and Polani (2008) and
Janzing et al. (2013), in the context of inhomogeneous SVAR
models (as illustrated in Figure 2A), an appropriate intervention
to remove the causal influence from X2

p,t to X
1
t can be designed as

the following intervention (shown in Figure 2E): remove the
arrow X2

p,t → X1
t by injecting instead X2

p,t′, an independent
copy of X2

p,t with the same joint distribution, in the original
mechanism P(X1

t |X1
p,t,X

2
p,t). The intervention distribution pDCS

models the post-interventional world after removing the causal
arrow from X2

p,t to X1
t and results in the entailed conditional

probability

pDCS X1
t |X1

p,t( ) � p
do X1

t :�f X1
p,t ,X

2
p,t′,η1t( )( ) X1

t |X1
p,t,X

2
p,t( )

� ∫p X1
t |X1

p,t,X
2
p,t( )p X2

p,t( )dX2
p,t,

which does not depend on p(X2
p,t|X1

p,t) anymore, in comparison
to Eq. 8. DCS then quantifies the KL divergence between the

distributions of X1
t |(X1

p,t,X
2
p,t) obtained in both worlds, such

that

DCS X2
t → X1

t( ) � E X1
p,t ,X

2
p,t

DKL p X1
t |X1

p,t,X
2
p,t( ) | pDCS X1

t |X1
p,t( )( )[ ].

(9)
A parametric formulation under linear Gaussian model assumptions
is given in Supplementary Section SD.5. Generalization tomore than
two time series is also straightforward following (Janzing et al.,
2013): pDCS and DCS are simply computed by also including
conditioning on the past of all other time series, in addition
to X1

p,t.
Remark: In contrast with Janzing et al. (2013), but in line

with Ay and Polani (2008), we do not use jointly
independent copies of each component of X2

p,t, that is,
the copy preserves the dependency between the successive
past time points of X2. Indeed, Janzing et al. (2013) require
having copies with jointly independent components in order
to assess the individual strength of each arrow in the causal
graph, which would correspond to the influence of each time
lag in our setting. In contrast, this is not a requirement for us as
we are only interested in assessing the overall effect of the
whole past of a given time series on the another. One benefit of
our choice is that it is consistent with the definition of TE: one
can easily check that in absence of dependency of X1

t on its own
past, both TE (based on Eq. 6) and DCS reach the same value:
the mutual information of X2

p,t and X1
t . Given that successive

samples may be strongly correlated in practice, our choice
avoids unnecessary discrepancies between these two
measures to focus on their key difference. In additional, our
choice can be seen as in line with Janzing et al. (2013) when
considering a state representation of the time series’ causal
graph, where the node of variable k at time t would be the vector
[Xk

t , X
k
t−1, . . . , X

k
t−p+1]⊤.

2.3 Near deterministic behavior of TE
and DCS

The analysis of transient neural events leads us to analyze signals
that have limited stochasticity in several respects: on the one hand,
strongly synchronized oscillatory signals can be represented by
SVAR models with low innovation variance, relative to the
variance of the measured signal. Moreover, when a study focuses
on a reproducible type of transient pattern, it is often characterized
by a waveform that has little variability across collected trials. Such a
situation can be modeled with a time-varying deterministic
innovation, exhibiting strong variation of its mean across time,
but no or little variance. We investigate the theoretical properties of
TE and DCS in this regime, showing a benefit of DCS with respect to
TE, but also remaining limitations.

2.3.1 TE behavior for strongly synchronized signals
Besides, it has also been pointed out that the definition of TE in

Eq. 7 has some other non-intuitive implications (Ay and Polani,
2008; Janzing et al., 2013). In particular, there are situations in which
TE(X2 → X1) almost vanishes, although the influence is intuitively
clear. How frequent are the practical situations in which we have
these detrimental effects is unclear; however, theoretical analysis
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suggests that this can happen when the time series are strongly
correlated.

To see this, we can derive from Eq. 7 the case where X2 is a
deterministic function of X1 such that TE vanishes. Take the special
case where X2

t is proportional to X1
t such that X2

t � kX1
t ,

representing a time-wise synchronization of the two signals, the
conditional variance will be

ΣX2
p |X1

p
� ΣX2

p
− ΣX2

pX
1
p
Σ−1
X1
p
ΣX1

pX
2
p

� ΣX2
p
− kΣX2

p
· 1

k2
Σ−1
X2
p

( ) · kΣX2
p
� 0

Plugging into Supplementary Equation S8 in Supplementary
Section SD.4 yields,

TE X2
t → X1

t( ) � log
b⊤t Cov X2

p,t|X1
p,t[ ]bt + σ1,t

2

σ1,t
2

� log
σ1,t

2

σ1,t
2 � log 1 � 0

However, a strong correlation between two observed time series
does not necessarily imply that causal interactions between them are
weak, from an SCM perspective. We will investigate this case in
Section 3.1 and compare with the results of DCS to show that DCS
does not suffer from this non-intuitive vanishing problem.

2.3.2 Insensitivity of TE and DCS to deterministic
perturbations

While several intuitive properties make DCS a good candidate to
quantify causal influences, we exhibit a counterintuitive property
common to TE and DCS in the context of peri-event time series.
Transient neural events are mainly investigated in two types of
analyses: 1) stimulus-triggered (or response-triggered) data that are
temporally aligned by task (or response) onset and 2) event-
triggered data where occurrences of a type of brain-activity
pattern are detected along the time course of the recordings
(manually or algorithmically) and used to create peri-event trials.

In both cases, neural activities are likely to have a deterministic
component appearing in the peri-event ensembles, due the similarity
of the response to successive stimuli in case 1), or due to the
similarity of the neural patterns detected in the recordings in
case 2). Here we will show that, in a linear setting, TE and DCS
are insensitive to such a deterministic component. Specifically, TE
and DCS values are unaffected by interventions on the innovations’
mean at any time point.

First, we exhibit the role played by a deterministic perturbation
in an example.

Example 1. Consider the bi-variate SVAR(1) model in the
following form

X1
t :� aX1

t−1 + bX2
t−1 + η1t , (10a)

X2
t :� η2t , (10b)

with a, b ≠ 0 and a stationary innovation for X1, η1t ~ N (0, 1), but a
non-stationary innovation for X2, η2t ~ N (αδt, t0, σ22,t), with

δt,t0 � 1, for t � t0,
0, otherwise.

{
When varying α, this models a intervention on the second time

series. Then it can be easily shown that the expected time course of X1 is

E X1
t[ ] � αbat−t0+1, t≥ t0 + 1

0, otherwise.
{

This witnesses the causal influence of X2
t0

on values of X1
t at

subsequent times, which for large α results in large deviations
from the baseline expectation of X1

t for t prior to t0. Intuitively,
one may expect that a quantification of the magnitude (strength) of
the causal influence of X2 on X1 should be larger for larger α, as a
transient of larger magnitude propagates from X2 to X1. From a
neuroscientific perspective, this could model an experimental setting
where one brain region is electrically stimulated with increasing
strength to detect whether it is anatomically connected to another.
Obviously, the magnitude of the stimulation is expected to be critical
to elicit a response in the target region. However, TE and DCS
actually turn out to be insensitive to such stimulation.

We will show this in the more general setting of the SVAR(p)
model of Eq. 2a and Eq. 2b.

Proposition 1. For linear SVARmodels defined by Eq. 2a and Eq.
2b, TE and DCS measures are invariant to deterministic
perturbations, i.e., to changes in the mean of the innovation’s
distributions (k1t , k2t ).

Proof. Without loss of generality, we will show invariance to an
elementary intervention at a single time t0 that transforms η2t0 to
η2t0 + α, which boils down to changing the mean parameters of the
innovation k2t0 in Eq. 2a and Eq. 2b. By linearity and symmetry of the
problem for channel 1 and 2, invariance to deterministic
perturbations results from combining several elementary
interventions.

To compute how the intervention distribution of the new
variables denoted ( ~X1

, ~X
2) changes with respect to the

distribution of the original variables, we can examine the
difference with respect to (X1, X2) that has the same innovations,
except for η2t0 for which we remove a constant α. (X1, X2) is then
distributed according to the original distribution (before
intervention), and the difference (U,V) � ( ~X1 −X1, ~X

2 −X2)
follows the equations

Ut � a⊤Up,t + b⊤Vp,t,
Vt � c⊤Up,t + d⊤Vp,t + δt, t0,

which is a set of linear deterministic difference equations with a
unique solution making X and ~X coincide before the intervention1

(Ut, Vt). As a consequence, by linearity, the interventional density ~p
is a shifted version of the original:

~p X1
t ,X

1
p,t,X

2
p,t( ) � p X1

t − Ut,X
1
p,t − Up,t,X

2
p,t − Vp,t( ),

which implies the same for conditional marginal densities, e.g.,

~p X1
t |X1

p,t,X
2
p,t( ) � p X1

t − Ut|X1
p,t − Up,t,X

2
p,t − Vp,t( )

and

~p X1
t |X1

p,t( ) � p X1
t − Ut|X1

p,t − Up,t( ).
As a consequence TE on the intervention distribution writes

1 Because initial conditions of this deterministic linear system are set to zero
before the intervention at t0
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TE ~X
2

t → ~X
1

t( ) � ∫ ~p X1
t ,X

1
p,t,X

2
p,t( )log ~p X1

t |X1
p,t,X

2
p,t( )

~p X1
t |X1

p,t( ) dX1
tdX

1
p,tdX

2
p,t

� ∫p X1
t − Ut,X

1
p,t − Up,t,X

2
p,t − Vp,t( )

× log
p X1

t − Ut|X1
p,t − Up,t,X

2
p,t − Vp,t( )

p X1
t − Ut|X1

p,t − Up,t( ) dX1
tdX

1
p,tdX

2
p,t.

And by change of variable we get the invariance property:

TE ~X
2

t → ~X
1

t( )f � ∫p X1
t ,X

1
p,t,X

2
p,t( )logp X1

t |X1
p,t,X

2
p,t( )

p X1
t |X1

p,t( ) dX1
tdX

1
p,tdX

2
p,t

� TE X2
t → X1

t( ),
which can be generalized to arbitrary deterministic perturbations.
The same reasoning can be applied to DCS leading to invariance as
well (Supplementary Section SB) and this concludes the proof.

Arguably, this result is not what we would expect from an event-
related measure of influence, because in the above example of Eq. 10a
and Eq. 10b, setting a large α intuitively leads to a large influence of X2

on X1 provided b ≠ 0. Provided that TE and DCS can be made
arbitrarily small by reducing the innovation’s variance σ22,t
(according to their analytical expression in Supplementary Section
SD), TE and DCS may detect no influence despite this strong effect
on the mean ofX2

t . Although this invariance result is rigorously derived
for linear SVAR models, it uncovers an issue for non-linear models as
well, the magnitude of the causal influence associated to deterministic
perturbation then depending chiefly on the non-linear properties of the
system under study, and not on the magnitude of the changes triggered
by the perturbation. Moreover, linear SVAR(p) models being able to
approximate nonlinear dynamics, this suggests that deterministic causal
influences cannot be detected by TE or DCS for a broad class of models
in practice.

As elaborated above, this is in contrast to what would be expected in
the neuroscientific context, and directly relates to the observational,
event-related setting that we investigate: the deterministic component is
due to the alignment of the data with respect to an event of interest, and
we do not have a different condition to contrast the occurrence of this
event with what would have happened in its absence. This analysis calls
for building a synthetic baseline condition that would allow
deterministic changes to be detected.

2.4 A novel measure: relative Dynamic
Causal Strength

2.4.1 Motivation
Following the guidelines for event-based causality (presented in

Section 2.1), we propose a novel measure, the relative Dynamic Causal
Strength (rDCS), as a modification of DCS. This measure aims at taking
into account the influence of event-based changes in the cause signals
independent from the connectivity (the mechanism), and notably those
driven by deterministic exogenous inputs. In the specific problem we
are investigating, the cause is the past states of X2, denoted X2

p,t, while
the mechanism can be represented by the model in Eq. 2a and
symbolized by the corresponding causal arrow in the causal graph.
DCS only deletes the causal arrow in the post-intervention scenario but
preserves the event-related change in the cause itself.

In the case whereX2 is driven by a deterministic exogenous input in
a transient window, the cause exhibits significant changes relative to
baseline; thus, intuitively, the causal effect should also be enhanced even
if the causal arrow remains the same (i.e., the coefficient b stays
unchanged). Apart from intervening on the causal arrow, further
intervention can be implemented on the cause node to construct a
post-intervention scenario where the cause receives no time-varying
innovations. Therefore, inspired by causal impact (Section 2.1.3) which
characterizes the difference between the current state and a baseline
state, we propose (additionally to DCS) to replace the marginal of X2

p,t

by the marginal of X2
p,tref

, that we denote pref(X2
p,tref

), for a reference
time tref. The reference time tref is typically chosen to be a stationary
period before the occurrence of the transient deterministic
perturbations and statistics of X2

p,tref
can be averaged by statistics of

X2
p,t within this period. This leads to the relative Dynamic Causal

Strength (rDCS)

rDCS X2
t→X1

t( )
� EX1

p,t ,X
2
p,t

DKL p X1
t |X2

p,t ,X
2
p,t( ) p

do X1
t :�f X1

p,t ,X
2
p,tref

,η1t( )( )
X1

t |X1
p,t ,X

2
p,t( )

�����������⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
(11)

with

p
do X1

t :�f X1
p,t ,X

2
p,tref

,η1t( )( )
X1

t |X1
p,t,X

2
p,t( )

� ∫p X1
t |X1

p,t,X
2
p,t( )pref X2

p,t( )dX2
p,t (12)

The implementation of rDCS given a SVAR model is derived in
Supplementary Section SD.6. Generalization to more than two time
series can be done in the same way as for DCS, by including extra
conditioning on the past of other time series for all quantities.

Intuitively, the term relative originates from the comparison
between the current past state X2

p,t and the reference past state
X2
p,tref

. It is then natural to predict that in the uni-directional case,
rDCS(X2 → X1) = DCS(X2 → X1) for any reference time tref if X

2 is
stationary because stationarity implies that themarginal distributions of
X2
p,tref

and X2
p,t are identical. As a particular case, this result implies that

a transient loss of causal link from X2 to X1 will lead to rDCS = 0, while
for a stationary bivariate system, DCS = rDCS is constant.

2.4.2 Sensitivity of rDCS to deterministic
perturbations

The definition of rDCS implies sensitivity to deterministic
perturbations. Indeed, taking the example in Section 2.3.2, the
reference state X2

p,tref
is unaffected by the deterministic

perturbation. Consequently, the translational invariance does not
hold for the intervention distribution because

rDCS ~X
2

t → ~X
1

t( ) � ∫ ~p X1
t ,X

1
p,t ,X

2
p,t( )log ~p X1

t |X1
p,t ,X

2
p,t( )

∫~p X1
t |X1

p,t ,X
2
p,t( )~pref X2

p,t( )dX2
p,t

dX1
t dX

1
p,tdX

2
p,t � ∫p X1

t − Ut,X
1
p,t − Up,t ,X

2
p,t − Vp,t( )log p X1

t − Ut |X1
p,t − Up,t ,X

2
p,t − Vp,t( )

∫p X1
t − Ut |X1

p,t − Up,t ,X
2
p,t − Vp,t( )pref X2

p,t( )dX2
p,t

dX1
t dX

1
p,tdX

2
p,t � ∫p X1

t ,X
1
p,t ,X

2
p,t( )log p X1

t |X1
p,t ,X

2
p,t( )

∫p X1
t |X1

p,t ,X
2
p,t( )pref X2

p,t + Vp,t( )dX2
p,t

dX1
t dX

1
p,tdX

2
p,t ≠∫p X1

t ,X
1
p,t ,X

2
p,t( )log p X1

t |X1
p,t ,X

2
p,t( )

∫p X1
t |X1

p,t ,X
2
p,t( )pref X2

p,t( )dX2
p,t

dX1
t dX

1
p,tdX

2
p,t � rDCS X2

t → X1
t( ),

because ~pref is not translated by the deterministic perturbation in
the way ~p(X2

p,t) is (as the perturbation is happening after the
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reference time), such that the denominators do not allow equating
the integrated terms by change of variables in the generic case.
Therefore rDCS is capable of uncovering transient causal influences
between stimulus-triggered events exhibiting a deterministic
waveform.

2.5 Alignment for spontaneous events

The relevance of peri-event time-varying causal analysis
using the proposed rDCS, as well as TE and DCS, depends on
the modeling assumptions of peri-event data. In particular, we
assume that the neural events we want to study reflect a sequence
of continuously changing hidden states and that values at each
peri-event time point t′ are sampled i.i.d. across trials from the
same ground truth distribution (Shao et al., 2022) at t′. This is
easily justified for stimulus-evoked events, as addressed in
Section 2.3.2 and Section 2.4.2, with an intrinsic reference
time for occurrence (i.e., the triggering time). However,
analyzing spontaneous events whose occurrence times are not
known a priori, such as transient events observed during sleep,
requires 1) a selection procedure to identify them and 2) a
procedure to choose a reference time point for each detected
event, which is used to align all of them on a common peri-event
time grid. The idea of reference points for alignment is similar to
the anchor points in Phase Rectified Signal Averaging (Bauer
et al., 2006). In contrast with such work, we focus on a transient
phenomenon at the time scale of a peri-event time window
instead of a very fast increase in the signal amplitude. Given a
signal exhibiting spontaneous events, common procedures
involve 1) selecting the events by thresholding a filtered
version of this signal (that amplifies the events’ features of
interest); 2) aligning events according to the local peak of this
same filtered signal to best reflect the evolution of the underlying
state. The result may only approximately recover the ground
truth distribution of the events, as it is influenced by the choice of
filtered signal and putative signal perturbations.

Importantly, selection may lead to a biased estimation of
event statistics and peri-event dynamics, due to selecting data
based on a specific detection signal, resulting in a misleading
characterization of causal interactions (e.g., wrong causal
directions as seen in Supplementary Figure S6B). We will thus
study how event selection affects the estimation of causal
influence and propose an appropriate procedure on this basis.
To model the effect of selection, we use an SCM-based
perspective on selection bias (Bareinboim and Pearl, 2012;
Bareinboim et al., 2014). We can modify the SCM in
Figure 2A to incorporate an additional node S representing
the selection variable, which is a binary variable indicating
whether the time window, with specified reference time point,
is selected (Supplementary Section SC for background). Typically
S is defined by testing whether a continuous random variable D
goes over a predefined threshold. D is itself a function of the time
series nodes within the peri-event time window, corresponding,
for example, to the aforementioned filtering operation. A
practical example is the detection of oscillatory events using a
band-pass filter, where the dependency of D (and thus S) on other
nodes reflects the dependency of the filtered signals on past

samples of X through the coefficients of a causal Finite
Impulse Response (FIR) filter.

In practice, we can a priori choose S to depend either on the
cause variables X2 (Figure 3A) or on the effect variables X1

(Figure 3B). Assuming that the filter (i.e., for constructing the
continuous RV) is well chosen, and the selection threshold is high
enough, choosing windows satisfying S = 1 will typically “over-
select”, i.e., exclude some peri-event time series that would
actually be relevant for our analysis. Figure 3C(left, top right)
illustrates how thresholding selects only a subset of peri-event
trajectory samples at t′ = 0 in a simulated scenario. This over-
selection can then be modeled as sampling peri-event data from a
conditional peri-event distribution p(X|S), while we are
interested in analyzing a ground truth distribution p(X). This
conditioning may induce a so-called selection bias in the
estimation of quantities we are interested in, notably the
conditional distributions that enter the calculations of TE,
DCS and rDCS. The impact of such bias on those quantities
as been investigated in Bareinboim and Pearl (2012); Bareinboim
et al. (2014) within the SCM framework, as we describe in the
following.

For simplicity and consistency with the Results section, we will
restrict ourselves to models with a unidirectional causal effect (either
X1 → X2 or X2 → X1) and assume that S is only dependent on a finite
number of past peri-event times (t′ ≤ 0) as in the case of a causal FIR
filter (for other cases, refer to Supplementary Section SC.2). Figures
3A, B illustrate in this setting that the conditional associated to
causal arrow (X2 → X1) can be recovered at any peri-event time only
when the selection node depends on the cause variable
(Supplementary Section SC.2 for justification). Specifically, this
means that P(X1

t | X1
p,t,X

2
p,t, S) � P(X1

t | X1
p,t,X

2
p,t) for the SCM

in Figure 3A. For the opposite direction, P(X2
t |

X1
p,t,X

2
p,t, S) ≠ P(X2

t | X2
p,t) for negative peri-event time t′ ≤ 0.

For the case where S depends on the effect variable, P(X1
t |

X1
p,t,X

2
p,t, S) ≠ P(X1

t | X1
p,t,X

2
p,t) for negative peri-event time t′ ≤

0 and P(X2
t | X1

p,t,X
2
p,t, S) ≠ P(X2

t | X1
p,t,X

2
p,t) for t′ < 0 (see also

Supplementary Section SC.2 and Supplementary Figure S4). The S-
dependent and S-independent conditionals are visualized in
Figure 3E for an example SVAR(1) model, as described in
Section 2.3.2, where the innovations η1t and η2t are drawn from a
uniform-distribution. Similarly, the conditional model of the post-
intervention scenario for rDCS with selection node depending on
the cause satisfies

p
do X1

t :�f X1
p,t ,X

2
p,tref

,η1t( )( )
X1

t |X1
p,t,X

2
p,t, S( )

� ∫pref X2
p,t( )p X1

t | X1
p,t,X

2
p,t, S( )dX2

p,t

� ∫pref X2
p,t( )p X1

t | X1
p,t,X

2
p,t( )dX2

p,t

� p
do X1

t :�f X1
p,t ,X

2
p,tref

,η1t( )( )
X1

t |X1
p,t,X

2
p,t( )

Therefore, the KL divergence for the ground truth direction
X2 → X1 can be estimated correctly when selecting the event based
on the ground-truth cause variable “S(X2)”, while this does not hold
for the opposite direction X2 → X1 nor when selecting based on the
ground-truth effect “S(X1)”. As the true causal direction is unknown,
we thus propose that, to investigate the dominant causal direction
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FIGURE 3
Illustrationofselectionbiasdueto thresholdingandalignment. (A)SCMofabi-variateSVAR(2)modelwithuni-directionalcoupling fromX2 toX1 andaselectionnodeS
depending on states of the cause variable before peri-event time (t′< =0). The selection node S represents partial selection of samples due to thresholding of the filtered
cause signal (as the detection signal). Orange arrowsmakes the recoverable arrowswith the current selectionnode,while purple arrows indicates the unrecoverable ones.
(B)ThesameSCMas in (A)withtheselectionnodedepending inasimilarwayontheeffectsignal. (C)Anexampleeventensemble for thecausevariableX2

t in (A,B)and
thedetection threshold. (D)Zoomedeventensenbles for (C) (left) andhistograms for selectedsamplescompared to thefull sample (right). Toppanel illustratesselectionbias
atground truthperi-event time t′=0.Theorangeandshadeddistributions representshistogramsatasingle time t′=0.Bottompanel showsselectionbiasat theperi-event
time t′ =0 fordetectedevents alignedby thepeak. Thedataset aligned in thisway reflects at t′ =0 is a local averageof the state trajectories in aneighborhoodof the target
ground truth state. (E) Illustration of recoverability when aligning by the cause. Subplots show joint distributions of the lagged variables and the putative effect variable of a
SVAR(1) model with uniformly distributed innovations, with left column for the ground-truth alignment, middle column for aligning by the cause and right column for
aligning by the effect. The conditional is only recoverable for the top middle panel. See Supplementary Figure S4 for the cases of peri-event time t′=0 and t′>0.
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between two event ensembles, we should focus on comparing the
causality measures (TE, DCS and rDCS) for each direction when the
events are aligned on the putative cause, i.e., X2 → X1|S(X2)
compared to X1 → X2|S(X1). Although rDCS is expected to be
biased for the second case when aligned by the effect variable, for
uni-directionally coupled systems, as the ground truth rDCS is zero,
we expect the bias to still lead to a comparatively small rDCS value
relative to ground truth, such that the contrast between two
directions is preserved.

Other factors may affect the estimation of causal strength. Since
rDCS is defined as the expectation over the KL divergence over the
past states X1

p,t and X2
p,t (Eq. 11), reliable estimation of

rDCS(X2
t → X1

t ) also depends on the unbiased sampling of the
joint probability of X1

p,t and X2
p,t. We argue here that this is

approximately satisfied as the conditioning is made on a specific
detection signal rather than on these variables, such that they are
mildly affected by it.

Next, the above mentioned alignment procedure may affect
causal strength estimation. Perfect alignment (considered ground
truth) refers to the condition where the ground-truth hidden
states are identical for all trials at each peri-event time t′ in an
extracted event ensemble, as shown in Figure 3D for t′ = 0. In this
scenario, no further alignment is needed as all trials are
intrinstically aligned. In order to study the influence of the
aforementioned selection bias specifically due to thresholding,
we may still apply selection to the perfectly aligned dataset,
resulting in excluding below threshold samples from the
estimation procedure. We refer to this situation as single-time
selection of events where trials are aligned based on known
ground-truth reference time. This setting assumes that one
knows the hidden state, which is possible only for stimulus
triggered or simulated events, but impossible for
experimentally observed spontaneous events. In the latter case,
by thresholding over the whole observed signal one typically end
up selecting successive sliding time windows that all have a
detection signal exceeding the threshold (e.g.,
Figure 3D(Bottom right)). Selecting all these points can be
interpreted as smoothing the ground truth state over all these
neighboring state space points, an alignment scenario which we
name as smoothed alignment of events. In practice, a common
alternative is to further select among above-threshold
overlapping peri-event time-windows the local peaks as the
reference points, which can be understood as a non-uniform
subsampling of the smoothed alignment and can be unified into
the same scenario category.

2.6 Data processing pipeline

The whole analysis procedure can be conducted in two phases:
event selection and causal analysis. We will elaborate on the detailed
steps in each phase in the following.

• Phase 1: Event Selection
1. Filtering: given a bi-variate signal (as a simple case), for

different purposes of study, one would need to find an

appropriate filter to apply to the original signals such that
certain features of the underlying system can be amplified.
For example, to locate the SharpWave-Ripples (introduced
in the Introduction and analyzed in Section 3.3) that are
prominent in the ripple band [80–250]Hz, one would use a
bandpass filter such that the irrelevant components are
attenuated. Events can be also detected with a template
matching procedure, which is another type of filtering
(Supplementary Figure S2).

2. Thresholding: a certain threshold is determined
beforehand (up to the specific feature of the question)
and applied to the filtered signal. As the filtered signal is
designed to amplify the feature, time points where the
filtered signals are over the threshold are candidate
reference points. Reference points define the peri-
event time t’ and are used to extract peri-event data
as multiple trials.

3. Alignment: the thresholding procedure can be applied to
either the cause or effect signals. One can select all
candidate reference points obtained by filtering either
signal (for the smoothed alignment case) or the time
points of local peaks (of the filtered signal) as reference
points. Then the bi-variate peri-event trials are extracted in
a fixed-length window surrounding the reference points,
thus forming the peri-event ensemble for further analysis.

• Phase 2: causal analysis
1. Model order selection: as mentioned in Section 2.2.1, our

estimation of information theoretic quantities is based on
time-inhomogeneous SVAR models. One thus needs to
determine the optimal SVAR model order that best reflects
the underlying dynamics. A common approach for model
order selection is the Bayesian Information Criterion (BIC),
which we have extended to the time-varying case in Shao
et al. (2022) using the extracted event ensembles obtained
in the first phase.

2. SVAR model estimation: Shao et al. (2022) also provide a
way to estimate the SVAR model with the extracted event
ensemble and the optimized model order. Thus we will obtain
an estimate of the autoregressive parameters, i.e., the
autoregressive coefficients and innovationmean and variance.

3. Computation of causality measures: with the estimated
autoregressive parameters and the signals second order
statistics, we can estimate the time-varying causality
measures as detailed in Supplementary Section SD: TE
based on Supplementary Equation S8, DCS on
Supplementary Equation S9 and rDCS on
Supplementary Equation S10.

Notably, the causal analysis procedure can be applied to event
ensembles obtained with any type of alignment. However, as
elaborated in Section 2.5, we propose to compare the causality
measures in two different directions from the event ensembles
where trials are aligned by the putative causes. To facilitate the
application of this analysis framework, we have made available the
code that performs the aforementioned experimental procedure (see
https://github.com/KaidiShao/event_causality_frontiers).
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3 Results

In this section, we first focus on illustrating the properties of TE,
DCS and rDCS with simulated toy models. The problem of
vanishing TE occurring with synchronized signals and the
benefits of DCS in the same situation will be investigated in
Section 3.1. Next, we simulate a simple uni-directionally coupled
SVAR(4) system with rhythmic perturbations of the cause variable
to generate transient events, where we will show that rDCS is able to
reflect the change of causal effects due to this perturbation while TE
and DCS fail. We also study the influence of the alignment method
in the same example, as well as in experimental in vivo recordings
from uni-directionally coupled hippocampal regions during SWRs.

3.1 The case of strongly-correlated signals

As mentioned in Section 2.3.1, TE does not capture well causal
influences when the cause and effect signals are strongly correlated
with each other, contray to DCS. Here, to illustrate such contrast, we
simulate a bivariate dynamical system in the form of two
synchronized continuous harmonic oscillators x(t) and y(t), with
uni-directional coupling (i.e., x(t) driving y(t)):

d2x

dt2
� −2ζxωx

dx

dt
− ω2

xx + nx,

d2y

dt2
� −2ζyωy

dy

dt
− ω2

yy + cx + ny.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (13)

In this system, x(t) is designed as an under-damped oscillator
(ζx = 0.015722), which approximately oscillates at a period Tx = 200
samples corresponding to natural (angular) frequency ωx = 2π/Tx =
0.0314 rad/sample. To achieve synchrony, y(t) is also designed as an
under-damped oscillator (ζy = 0.2) whose intrinsic oscillation
gradually vanishes and finally follows the oscillation of x(t) with
a coupling strength of c = 0.098. For y(t), Ty = 20, ωy = 2π/Ty = 0.314.
We also add small Gaussian innovations to both oscillators:
nx ~ N (0, 0.02), ny ~ N (0, 0.005). Adding this noise allows
fitting a SVAR model to the signals to assess the causal
interactions with TE and DCS. SVAR parameter estimation
would fail with deterministic signals by causing the covariance
matrix estimates to be singular.

Using the Euler method with a time step of 1 and random initial
points (N (0, 1)), we simulated 2000 trials of this uni-directionally
coupled system with 1000-point length. We discarded the first
500 points to ensure that the time series reach a sufficient level
of synchronization. We can see this system as a stationary SVAR(2)
process because numerical simulation with the Euler method
generates data as a function of the last two past states. The idea
of using a SVAR(2) model is elaborated on in the Supplementary
Section SE. Notably, modeling simulated data with a SVAR(2) model is
also possible if the numerical integration method is switched to Runge-
Kutta, despite the SVAR(2) parameters having a more complex form
than the continuous formulation of the system.

Figure 4A shows the results of time-varying TE and DCS for
assessing the causal effects between x(t) and y(t). Calculation is
performed in both the ground truth direction (x(t) → y(t)) and the

FIGURE 4
TE fails when the signals are strongly synchronized. (A) Control experiments where synchrony is not changed. (top) Example trace of the bivariate
signal in the control experiment. (middle) Time-varying design of innovation’s variance for both variables in the control experiment. (bottom) Time-
varying TE and DCS results in the control experiment. (B) TE underperforms during transient increased synchrony induced by a tiny change in noise
variance. The transient change can be seen as an event. Subfigure designs are the same as (A).
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FIGURE 5
Causal analysis for simulated perturbation events with non-zero innovations. (A) Example signal traces of the bi-variate SVAR(4) system (black). Blue
and red traces mark two example events detected by thresholding over the cause X2

t . Blue and red dots show other reference points. (B) (Top) Hidden
states for ground-truth alignment (left), single time selection of the ground truth event ensembles due to thresholding (middle) and events aligned by
local peaks over threshold (right). (Middle) ground truth event ensemble for X1

t (left) and bi-variate ensembles of the other two selections aligned by
X1
t (middle, right). Thin blue line represents the threshold in X1

t . (Bottom) Same settings as in (middle) but aligned by X2
t . (C) Example elements of coupling

strength in the ground truth directions X2
t → X1

t (red) and the opposite direction X1
t → X2

t (blue) for 3 types of event ensembles aligned by putative cause.
(D) TE (left), DCS (middle) and rDCS (right) for all 3 types of event ensembles aligned by putative cause.
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opposite direction. We first look at the control experiment. Consistent
with the system’s stationarity, TE is constant in both directions while
being higher in the ground-truth direction. DCS in the ground-truth
direction stays at a relatively high level, despite some small oscillation
under a frequency similar to the intrinsic oscillation frequency of x(t).

With respect to the detection of causal direction, both measures
are able to detect the correct direction (i.e., causation for x(t)→ y(t)
is much larger than in the opposite direction). It is also reasonable
that DCS in both directions is higher than TE, according to its
definition in section 2.2.3. However, from the control experiment,
we cannot conclude that the smaller TE values are due to its
definition or due to the strong synchrony in the signals.

Therefore, we introduced a transient decrease of the noise
variance in the cause signals (x(t)). The logic of designing this
transient change is the following: the level of synchronization will
increase with weaker noise, but the system and input magnitude
remain the same because the contribution of the noise change to the
signal amplitude is negligible; thus if TE is insensitive to the level of

synchronization of signals, its values are expected to stay constant.
However, as the results show in Figure 4B, there is a transient
decrease of TE during the interval where noise variance is decreased,
suggesting that TE performs poorly in the cases where the cause and
effect signals are strongly synchronized. As such strong
synchronized oscillations are common phenomena in the context
of transient neural events, one would need to pay extra attention
when using TE (as a widely-applied causality measure) to investigate
the direction of causation during these transient phenomena.

3.2 The case of deterministic perturbations

In this section, we directly address the benefits of rDCS over TE and
DCS when applied to signals driven by deterministic perturbations. To
illustrate this specific property, we designed some simple transient
events perturbing the innovation parameters of a stationary SVAR
process with uni-directional coupling. The events are generated by

FIGURE 6
Event-based causal analysis for SWRs in rodent hippocampal CA3 and CA1 regions. (A) Examples signal traces of the original signals and bandpass
filtered signals of CA3 and CA1 regions (black). Blue and red tracesmark two example events detected by thresholding over the cause CA3 and aligned by
the local peak. Blue and red dots show other reference points. (B) Event waveforms of SWR event ensembles at CA3 (left) and CA1 (right) regions aligned
by CA3 (Top) and CA1 (Bottom) signals. Shades repensent the ensemble standard error averaged over 1024 channel pairs. (C) Peri-event causality
measured by TE (Top), DCS (middle) and rDCS (Bottom) for event ensembles aligned by the putative cause (left) and the putative effect (right). Shades
reflect standard deviation of 100 repeated bootstrapped ensembles.
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feeding the cause signal with innovations with non-zero time-varying
means, such that both signals will exhibit temporal oscillations.We refer
to these events as perturbation events in the following sections. These
perturbations intrinsically define a hidden state that parametrizes the
ground truth distribution of peri-event data.We exploit the hidden state
and demonstrate that the proposed alignment method in Section 2.5 is
efficient for recovering the time-varying causal direction between the
two variables.

3.2.1 Simulation procedure
We simulated a non-stationary uni-directionally-coupled

autoregressive system defined in Eq. 2a and Supplementary Eq.
2b. The causal direction is X2 → X1. The system is designed as a
bivariate SVAR(4) process with a time-invariant coefficient matrix:
a⊤ = [−0.55, − 0.45, − 0.55, − 0.85], b⊤ = [1.4, − 0.3, 1.5, 1.7], c⊤ = [0,
0, 0, 0] and d⊤ = [0.9, − 0.25, 0, 0.25]. These coefficients were
randomly generated and kept after checking the stability of the
SVAR(4) system. Uni-directional interactions are ensured by setting
the autoregressive coefficients associated to interactions in the
opposite direction (i.e., c) to zero for all lags.

We enforce non-stationarity of η2t , the innovations of the ground
truth cause process {X2

t }. Both innovations η1t and η2t are drawn from
a Gaussian distribution with unit variance (with no correlation in
between, i.e., Cov[η1t , η2t ] � 0); the difference is that E[η1t ] � k1t � 0
while E[η2t ] � k2t is non-zero and time-varying. We designed the
time-varying profile of k2t as a Morlet-shaped waveform to mimic
the oscillatory properties of neural event signals:
k2t � H exp(−(αx)2/2) cos(5αx), where α = 2/25 is a constant
controlling the event duration, and H = 4 is the amplitude of the
highest peak in the center of the event. The total duration of the
Morlet-shaped waveform is 101 ms. The innovation’s mean
designed for X2 is shown in Figure 5B (top left panel).

We generated this bi-variate SVAR(4) process for 1300s
consisting of 5,000 trials of perturbation events by transiently
varying η2t , detecting event occurrence based on the cause X2

t , as
illustrated in Figure 5A. The central peaks of these Morlet events are
used as the ground-truth reference points for which peri-event time
t′ = 0, and used to extract a dataset of multi-trial events ensemble
with a 200-ms peri-event window such that t′ ranges, from −99ms to
+100ms (i.e., there is no alignment procedure that could lead to
selection bias, see Section 2.5). The event waveforms of the cause
variable X2

t and the effect variable X1
t are illustrated in Figure 5B

(bottom left, middle left). The whole process is repeated 100 times to
obtain variabilities plotted in the figure.

3.2.2 Effect of trial selection and alignment on
model estimation and causality measures

The designed deterministic innovation (i.e., identical across
trials), can be seen as imposing a hidden state evolving across the
peri-event interval. The event ensembles obtained by this ground
truth model define a dataset where no event selection and alignment
is needed. We can compare the SVAR model estimation and
causality measures resulting from this dataset to the outcomes
obtained by selecting and aligning events based on either variable
X2 or X1, as discussed in Section 2.5.

To validate the recoverability theory in the presence of selection
bias due to the event detection procedure, we test the single-time
selection setting (see Section 2.5) where sub-threshold trials are

removed from the ground truth peri-event dataset (as illustrated in
Figure 3D(Top right)), thus preserving the ground-truth hidden
states (Figure 5B(Top middle)). The peri-event trials having
reference point values higher than a threshold d0 = 3SD for the
chosen variable are selected, where the standard deviation is
computed from the whole signal. The selected event ensembles
are shown in Figure 5A(middle center) for thresholding based onX1

t

and Figure 5A(middle right) for thresholding based onX2
t . Notably,

this kind of selection is only feasible when the hidden state in known,
which is not realistic practically for real data.

Next we demonstrate the appropriateness of the approach
performed on real data (i.e., selection and smoothed alignment based
on putative cause), we set d0 as a threshold and performed smoothed
alignment over the original signal itself. We obtain an event ensemble by
selecting local peaks for points over d0 as new reference points, which is
shown in Figure 5B(middle right and bottom right). This can be seen as a
smoothed version of the ground-truth dynamics, which is also
confirmed by checking the aligned hidden states (Figure 5B(Top right)).

While inferring SVAR model parameters of the event ensembles
according to Shao et al. (2022), the truemodel order 4) can be recovered
for all five ensembles. Figure 5C demonstrates the recoverability of
conditional probabilities for ensembles aligned by the putative cause.
Coupling strengths from the putative cause to the putative effect are
plotted in red. As described in the simulation procedure in Section 3.2.1,
the coupling strength is constant over time, which is reflected in
Figure 5C(left). Consistent with the theory in Section 2.5, biased
selection of event trials on the samples at t′ = 0 leads to unbiased
estimation of the coupling strength X2

t → X1
t aligned by the cause X2

(denoted also as “|X2” in Figure 5C(middle)). By comparison, the
coupling strength in the other direction is slightly biased at negative
peri-event times (t′) but still relatively close to its true value 0). This
contrast holds for alignment with local peaks over threshold, as seen in
Figure 5C(right).

Figure 5D (Top, middle, bottom) shows the corresponding results
of how causalitymeasures perform in the three alignment scenarios. For
clearer visualization of TE and DCS with a zoomed vertical scale, see
Supplementary Figure S8. During the periods where no transient events
occur, all three measures are able to infer a time-invariant causal effect
in the ground-truth direction (X2 → X1) compared to the opposite
direction. Besides, in line with theoretical predictions, DCS is higher
than TE and is equal to rDCS. During the perturbation events, in the
ground truth direction TE and DCS remain constant and rDCS exhibit
a rhythmic pattern. These results match the theoretical predictions: TE
and DCS measures the connectivity strength, which does not change,
while rDCS measures the combined causal effect related to the
connectivity and the event-based changes at the cause, yielding
larger variations transmitted to the effect node.

In the transient time scale, thresholding leads to selection bias in
estimating causality measures. In the case where event ensembles are
aligned by single-time selection of the causeX2

t , TE andDCS of the ground
truth direction is underestimated while rDCS is slightly overestimated
around t′ = 0. A bias appears in the opposite directionwhile aligned by the
effect, but the direction of causation is detected correctly. The case of local
peak alignment shows similar results, except the peak amplitude of the
smoothed rDCS is less amplified. Notably, in the smoothed case, a
transient increase is observed in both TE and DCS, resembling the
envelope of the perturbation. This is likely an effect of the smoothing
procedure but is quickly interrupted by a negative bias due to thresholding,
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making the results unreliable in detecting transient changes. We also
showed a negative example with putative effect alignment in
Supplementary Figure S5, where the coupling strength in the causal
direction is much weaker than the model in Figure 5. The coupling
strength of the causal direction undergoes a sharp decrease at peri-event
time t′ = 0, leading to a transient underestimation of TE, DCS and rDCS
for both single-time and local peak scenarios. The close-to-zero value of
rDCS is misleading for the inference of transient causal interactions, thus
illustrating the unreliability of putative effect alignment.

Thus, this simulation experiment of perturbation events
demonstrates the effectiveness of rDCS in reflecting the causal
influence when the cause is perturbed by a deterministic
exogenous input compared to TE and DCS, validating that rDCS
is a better measure to address event-based causal interactions. More
importantly, we highlight here the trial alignment problem when
dealing with event-based data, especially when events occur
spontaneously. Supplementary Figure S7 is a clear example
showing the impact of alignment on information-theoretic
measures: aligning on the actual effect could reverse the detected
direction of causation. Thus, by contrasting the different impacts of
alignment on information-theoretic measures, we show that in
practice, selection via thresholding and aligning the event
ensemble with the local peaks of the putative cause is a good way
to assess the ground truth event-based causality given uni-
directional connections. This approach will be further applied to
real data in the next section.

3.3 Validation on SWRs-based causality
between CA3 and CA1 regions

Sharp Wave-Ripple (SWR) events, hypothesized as a key
element in implementing memory consolidation in the brain,
have been reported in the electrophysiological recordings within
the hippocampus of both macaques and rodents. In this section we
detect SWRs in an experimental dataset to investigate the behavior
of TE, DCS and rDCS in a neuroscientific context where the event-
hosting brain regions are uni-directionally coupled, i.e., in a
situation where the causal direction is known a priori.

SWRs are primarily generated in the CA1 area of the hippocampus.
The somas of CA1 pyramidal cells are located in the pyramidal layer (‘pl’)
while their dendritic trees are rooted in the stratum radiatum (‘sr’). It is
hypothesized that the dendritic trees receive strong excitatory inputs from
the pyramidal cells in CA3 which generate post-synaptic activities in the
dendritic trees. This results in LFP activities at low frequencies (0–30Hz,
due to the sharp-wave) and in the gamma band (30–80Hz, due to
CA3 oscillations). Then the dendritic activities propagate to the soma,
where recurrent interactions between inhibitory and excitatory cells
generate a fast oscillation, the ripples (80–250Hz).

We applied the event-based causality analysis to an open source
dataset where electrophysiological recordings in the CA3 and
CA1 regions of rodent hippocampus have been performed with
4 shanks of 8 channels simultaneously in each region (Mizuseki
et al., 2014). In agreement with the SWR generation mechanism
explained in the above paragraph, anatomical studies (Csicsvari et al.,
2000) support uni-directional anatomical coupling between these two
regions within the hippocampal formation, i.e., the ground truth
direction is known to be CA3 → CA1. The analysis is based on two

Local Field Potential (LFP) data sessions recorded from the rat named
‘vvp01’ with a sampling rate of 1252 Hz. An example trace of a channel
pair of both CA3 and CA1 regions is shown in Figure 6A. As SWRs are
more challenging to observe during behavioral sessions, we perform our
analysis only on a session of sleep which lasts 4943.588s.

Following Mizuseki et al. (2009), we detect SWRs by applying an
49-ordered FIR filter in the frequency band [140, 230]Hz to each
channel of signals in both regions. The detailed detection procedure
has been elaborated in Section 2.6 for the reference of readers and is
similar to what is performed in Section 3.2. We set a threshold over
the mean of the filtered signals (5 SD) to locate the events and align
them according to the local peak time points over threshold.

Figure 6A(Bottom) shows the case aligned on the CA3 signals.
The peri-event window for display has been chosen to be [-79.9,
79.9]ms, while VAR model estimation and the BIC-based model
order selection are performed according to Shao et al. (2022). For
each channel pair, we obtain two bi-variate event ensembles,
corresponding to the two alignment conditions; thus, in total, we
extract 2*1024 event ensembles (1024 channel pairs and 2 alignment
conditions). The event waveforms and statistics of an example
channel pair for different alignments are illustrated in Figure 6B.

SWR-based causality measures shown in Figure 6C compare the
alignment by the putative cause and by the putative effect. The
reference states used for estimating rDCS are the averaged states
over the first 16ms time points in the window. The standard
deviation plotted in the figure originates from 100 times
bootstrapped ensembles and the variability is averaged over
1024 channel pairs. In line with the theoretical predictions, the
ground truth direction (CA3 → CA1) is well recovered when using
an alignment by the putative cause, but not when aligning by the
putative effect. TE, DCS and rDCS in the opposite of the truth
direction are not significantly different from zero, which is
consistent with the uni-directionality of anatomical connections
posited by anatomical studies. Significantly stronger causal
influences in the ground truth direction are shown by TE, DCS
and rDCS before the alignment point (t′ = 0), matching the
hypothesized SWR generating mechanism that the CA3 region
drives the SWR interactions in CA1 region. The lack of
difference between the two directions in more stationary states
might be explained by the ineffectivity of causal measures based
on linear VAR models to capture non-linearity (Shajarisales et al.,
2015). The transient increase in the non-ground truth direction
when using alignment on the putative cause might be explained by
the selection bias elaborated on in Section 2.5.

4 Discussion

In summary, we have discussed the benefits and shortcomings of
two time-varying causality measures (TE and DCS) in characterizing
causal interactions based on peri-event data. To address their
insensitivity to deterministic perturbations, we proposed a novel
measure, rDCS, justified within the SCM framework. We compared
the performance of these causality measures on perturbation events
with innovations having time-varying means and
electrophysiological recordings of hippocampal SWRs. The
benefits of rDCS are supported by the perturbation events
presented in Section 3.2. As causality analysis of transient events
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aims at uncovering the network mechanisms underlying these
phenomena (e.g., addressing whether one event drives the other),
we argue for the use of rDCS as it provably captures causal influences
due to event-related changes in the cause that propagate to target
regions through anatomical connections, even if these changes have
little variability across trials. The outcome of rDCS is further
illustrated on in vivo recordings of SWRs events in two
hippocampal subfields.

Transient events are nonstationary signals that likely occur
when the brain undergoes a transition from one state to another.
Studying the “local” properties of the underlying non-
equilibrium dynamics in regions of the state space might
provide insights into the mechanism driving this transition.
Earlier methods investigating such local dynamic properties
include the local Lyapunov exponent (Pikovsky, 1993), while
other common methods characterize local interactions between
state variables within a short sliding time window, e.g., the local
cross correlation (Buchner et al., 2009) or piecewise Granger
causality (Ding et al., 2006). Our approach, although focused on
the meaningful quantification of causal strength, is in line with
the latter idea, where the time-varying SVAR model finds a 1-step
local linear mapping in the trajectory formed by event
trajectories, thus enabling to reveal transient causal
interactions at a fast time scale, which may differ from the
results obtained at equilibrium. As the measures are based on
SVAR models, they can also be easily extended to a spectral form
in order to capture the rich spectral properties in transient
dynamics.

Contrasting the three measures of causal strength, TE is
designed to assess conditional dependencies in observational
data, while DCS and rDCS exploit this information to infer
the impact of performing interventions of the SCM. In theory
and as shown in the experiment of Section 3.1, TE can lead to
counterintuitive outcomes applied to strongly synchronized
events (a widely observed nonlinear phenomenon). While
support has been provided for DCS and rDCS to be more
appropriate measures of causal strength, they still require, like
TE, certain assumption to be met (see also Section 2.1). A major
concern is unobserved confounding, which might bias the
estimated causal directions (e.g., the Simpson’s paradox in
Pearl (2000)). Confounding effects can be corrected for by
including activities from other regions, and there are also a
few theoretical approaches to account for unobserved
confounding under strong assumptions (Geiger et al., 2015;
Mastakouri et al., 2021).

Selection bias is a fundamental issue for analyzing spontaneous
neural activities, especially in case of any unsupervised detection or
analysis. In this study we have demonstrated its impact on the
alignment of the detected transient events and the resulting bias in
causal inference. However, our proposal of putative cause alignment
to estimate causal effect is theoretically supported only in the case of
uni-directional coupling. Future work should assess the effect of
selection bias in the case of bidirectional interactions and establish a
framework to correct for such bias, not only in the context of causal
strength inference but more generally for recovering the underlying
event dynamics.
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