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Bistability is a fundamental biological phenomenon associated with “switch-like”
behavior reflecting the capacity of a system to exist in either of two stable states. It
plays a role in gene regulation, cell fate switch, signal transduction and cell
oscillation, with relevance for cognition, hearing, vision, sleep, gait and voiding.
Here we consider a potential role for bistability in the existence of specific frailty
states or phenotypes as part of disablement pathways. We use mathematical
modeling with two frailty biomarkers (insulin growth factor-1, IGF-1 and
interleukin-6, IL-6), which mutually inhibit each other. In our model, we
demonstrate that small variations around critical IGF-1 or IL-6 blood levels lead
to strikingly different mobility outcomes. We employ deterministic modeling of
mobility outcomes, calculating the average trends in population health. Our
model predicts the bistability of clinical outcomes: the deterministically-
computed likelihood of an individual remaining mobile, becoming less mobile,
or dying over time either increases to almost 100% or decreases to almost zero.
Contrary to statistical models that attempt to estimate the likelihood of final
outcomes based on probabilities and correlations, our model predicts functional
outcomes over time based on specific hypothesized molecular mechanisms.
Instead of estimating probabilities based on stochastic distributions and
arbitrary priors, we deterministically simulate model outcomes over a wide
range of physiological parameter values within experimentally derived
boundaries. Our study is “a proof of principle” as it is based on a major
assumption about mutual inhibition of pathways that is oversimplified.
However, by making such an assumption, interesting effects can be described
qualitatively. As our understanding of molecular mechanisms involved in aging
deepens, we believe that such modeling will not only lead to more accurate
predictions, but also help move the field from using mostly studies of associations
to mechanistically guided approaches.
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1 Introduction

1.1 Bistability as a hallmark of biological
systems

The rate at which individuals age and become disabled varies
(Guralnik et al., 1996). Aging trajectories are often nonlinear, with
growing evidence to indicate that specific states of increased
vulnerability or frailty with distinct phenotypes may exist in
selected older adults (Fried et al., 2001; Bouchonville and
Villareal, 2013). Aging (Lopez-Otin et al., 2013), chronic diseases
of aging (Lopez-Otin et al., 2013) and geriatric syndromes (Inouye
et al., 2007) are all highly multifactorial, requiring the development
of computational and modeling approaches to help define the
manner in which different biomarkers may interact with each
other and influence trajectories of aging and the emergence of
specific clinical states.

Both simple and complex systems often exist in either of two
stable states (Tyson et al., 2003), which is a fundamental
phenomenon of nature called bistability. Bistability has been
shown to play a role in many different biological processes
ranging from gene regulation (Anderson et al., 2012), cell fate
switch (Ferrell et al., 2009), and cell oscillation (Ferrell et al.,
2009) to signal transduction (Bagowski and Ferrell, 2001;
Brandman and Meyer, 2008). It is often associated with the
presence of feedback regulation involving opposing pathways
(Ferrell, 2008). Moreover, it has also been implicated in a
number of physiological responses which represent key
determinants of function and independence in late life. These
include working memory (Durstewitz and Seamans, 2006),
hearing (Kondo and Kochiyama, 2017), vision (Kondo and
Kochiyama, 2017), sleep (Selbach et al., 2010), gait (Engbers
et al., 2013), and voiding (Stibitz, 1967; Hosein and Griffiths, 1990).

Dynamic modeling has been used by systems biologists to
develop a quantitative understanding of complex intracellular
signaling networks (Moraru et al., 2008). To investigate whether
bistability plays a role in the emergence of different states of mobility
disability during aging, we sought to build a predictive dynamic
model involving selected biomarker interactions that were reflective
of clinically relevant outcomes, and that were also associated with
properties likely to be conducive to the emergence of bistability. To
that end, we identified biomarkers previously shown to demonstrate
evidence of significant interactions in their associations with
mobility performance, a critical factor for determining the
development and worsening of frailty and functional dependence
(Guralnik et al., 1996). For our deterministic modeling, we have
defined the state of normal mobility performance as falling within
published age-adjusted population norms for standardized
measures of mobility performance, and to that end we have used
a walking speed of less than 0.4 m/s to define limited mobility
performance (Cappola et al., 2003).We searched for biomarkers that
were reflective of mutually-inhibitory pathways since their existence
can create conditions leading to the emergence of bistability (Ferrell,
2002; Brandman and Meyer, 2008), where a system behaves like a
toggle switch between two different states.

Thus, biomarker pairs involving opposing associations with
mobility disability and mutually inhibitory pathways were of
particular interest. Of those, high peripheral interleukin-6 (IL-6)

levels, and low insulin growth factor 1 (IGF-1) levels indicated
evidence of mutually inhibiting associations with mobility disability
(Cappola et al., 2003).

1.2 IL-6 and IGF-1: contrasting associations
with mobility disability.

Elevated IL-6 levels in peripheral blood represent a validated
predictor of declining mobility performance in older adults (Cohen
et al., 1997). IL-6 is a pleiotropic cytokine, which in addition to
T-cells and macrophages is also produced by many non-immune
cells (Scheller et al., 2011; Kistner et al., 2022). It is easily measured in
the peripheral blood where its levels are indicative of overall
production from several tissues including fat, liver, and muscle
(Scheller et al., 2011). Nevertheless, in the local
microenvironment, IL-6 levels are carefully regulated, exerting
either pro- or anti-inflammatory effects depending on the acuity
of change and the tissue or intervention being studied (Scheller et al.,
2011). Its effects on skeletal muscle are complex (Scheller et al., 2011;
Kistner et al., 2022), yet most germane to our work are studies
showing that IL-6 promotes both muscle catabolism (Bakker and
Jaspers, 2015) and insulin resistance (Pedersen and Edward, 2009),
with chronic IL-6 administration inducing skeletal muscle atrophy
(Haddad et al., 2005). At the same time, acute increases in IL-6
contribute to the induction of skeletal muscle stem cell responses
after exercise (Toth et al., 2011), while in the absence of all IL-6 the
recovery from disuse atrophy (Washington et al., 2011) and
overload-induced hypertrophy (Serrano et al., 2008) are both
decreased.

IL-6 and IGF-1 demonstrate opposing associations and roles in
mobility performance. Higher IL-6 levels have been linked to
declines in mobility performance, while higher IGF-1 levels are
associated with maintained mobility performance. (Cappola et al.,
2001). IGF-1 is a hormone that is produced mostly in the liver with
synthesis regulated by growth hormone (Bakker and Jaspers, 2015).
In addition to its systemic endocrine effects, IGF-1 is also produced
locally exerting paracrine or autocrine effects in many tissues
(Bakker and Jaspers, 2015). In skeletal muscle, IGF-1 stimulates
muscle fiber hypertrophy via increased protein synthesis (Semsarian
et al., 1999) and decreased protein degradation (Glass, 2010).
Mechanical stretching and muscle contraction induce the
production of IGF-1 isoforms called MGF E and IGF-1 Ea
(Heinemeier et al., 2007), with the former stimulating muscle
stem cell proliferation (Mills et al., 2007) and capacity for
regeneration (Bakker and Jaspers, 2015), while the latter
promotes muscle stem cell differentiation into myotubes (Mills
et al., 2007).

1.3 IL-6 and IGF-1: synergistic and mutually-
inhibitory biomarkers for mobility disability

Epidemiologists view synergy as an example of effect
modification or positive interaction in which joint effects exceed
the sum of separate effects (Rothman, 1995). Cappola et al. (2003)
sought to evaluate the combined effects of different IGF-1 and IL-6
levels on the risk of mobility disability in older women They
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evaluated both the independent and combined effects of levels of
these biomarkers in a cohort of 718 community-dwelling women
65 years and older. When stratifying subjects according to IL-6 and
IGF-1 levels, women who were in both the highest quartile for IL-6
and the lowest quartile for IGF-1 were at far greater risk for disability
when compared to their counterparts who only had either one of
these two biomarkers.

It is noteworthy that IL-6 and IGF-1 appear to be inversely
correlated with each other. For example, transgenic mice
overexpressing IL-6 in all cells demonstrate stunted growth
which is mediated through decreased IGF-1 levels and signaling
(De Benedetti et al., 1997). In contrast, low IGF-1 levels are
associated with chronic inflammation, while growth hormone
replacement reduces both peripheral inflammatory marker levels
(Sesmilo et al., 2000) and monocyte activation (Serri et al., 1999).

These two biological examples demonstrated evidence for this
inverse correlation via mutual inhibition (Bakker and Jaspers, 2015).
For example, systemic elevations in IL-6 may lower IGF-1 levels at
least in part through increased clearance (De et al., 2001). In muscle,
cross-talk between IL-6 and IGF-1 associated pathways may also
occur through activation of SOCS-3 (Al-Shanti et al., 2008; Al-
Shanti and Stewart, 2012), a cytokine-inducible negative regulator of
cytokine signaling, with elevated SOCS-3 levels possibly
contributing to declines in skeletal muscle stem cell function with
aging (McKay et al., 2013). While additional sites of interaction
likely remain to be identified, mTOR (mammalian target of
rapamycin) provides another potential locus of interaction since
IGF-1 stimulates muscle protein synthesis through this pathway,
while IL-6 has the capacity to both upregulate (Bakker and Jaspers,
2015) and downregulate mTOR activity (White et al., 2012), via Akt
and AMPK pathways, respectively (Bakker and Jaspers, 2015).

With all the above considerations in mind, we developed a
predictive dynamic model based on the concept of mutually
inhibiting biomarkers. In our model we assume that mutual

inhibition in specific pathways at the cellular levels extrapolates
to biomarkers’ blood concentrations, which is most likely not a
straightforward dependence. Thus, our model can be considered a
“demonstrator” on how our knowledge of molecular mechanisms
can be potentially translated into a deterministic predictive model.

2 Methods

2.1 A mathematical model associating IL-6
and IGF-1 with mobility performance.

We created a mathematical model for blood serum levels of IGF-
1 and IL-6 and muscle function (shown at a conceptual level in
Figure 1), that recapitulates changes in mobility over time. The
model includes 5 time-dependent variables in a hypothetical
individual. These included two quantitative biomarkers (blood
serum levels of IGF-1 and IL-6), and three variables defining
deterministically-computed prevalence scores for an individual to
be in one of three specific clinical states: mobile (non-frail), less
mobile (having mobility disability), or dead. We define prevalence
score as a measure of individual’s health outcome, computed as a
deterministically-simulated fraction of individuals with the same
IGF-1 and IL-6 levels that have a given clinical outcome at
certain time.

We assume that IGF-1 and IL-6 levels affect each other through
several molecular pathways, leading to mutual inhibition of each
other. This relationship between IGF-1 and IL-6 is captured in the
biomarker interaction module of the model (Figure 2A). It
implements the assumption of mutual inhibition in which the
production of each factor is inhibited by the other through a
negative feedback mechanism. As a result, increased levels of
either factor result in decreasing the production rate for the other.

The clinical outcomesmodule addresses the relationship of these
biomarkers to relevant clinical outcomes (Figure 2B). Here we
introduced three variables termed “Prevalence score of Mobility”
(M), “Prevalence score of Mobility Disability” (MD), and
“Prevalence score of Death” (D) that corresponds to the
prevalences of an individual to be in a mobile, disabled or dead
state respectively. Note that these prevalence scores are not all
independent variables, as the sum of all three prevalence scores
should be equal to 1. Changes in prevalence scores among these
deterministically-determined states are driven by levels of
biomarkers. We assume that higher IGF-1 levels favor the
maintenance of mobility, while in contrast higher IL-6 levels are
associated with increased mobility disability. We also assume that
feedback of the resulting clinical state on the molecular interactions
is negligible and does not affect the mutual inhibition of biomarkers,
thus also not impacting phenotypic outcomes.

We assumed that the remaining life expectancy is the same for
the whole population, and that mortality is defined by frailty and not
directly affected by the levels of biomarkers. The rationale for not
including a direct influence of IGF-1 or IL-6 on mortality in the
model is the fact that relationships between these biomarkers and
prevalence scores of death from a clinical perspective remain
unclear. While lower IGF-1 levels may contribute to higher
mortality in humans (Sonntag et al., 2012), higher IGF-1 levels
have been linked to many human cancers (Werner and Bruchim,

FIGURE 1
Conceptual model illustrates relationships between biomarkers
predictive of frailty, and their opposing biological roles in key
physiological determinants of frailty such as muscle health. Two
blood-born frailty biomarkers (IGF-1, IL-6) studied in our model
were selected for their demonstrated synergism in predicting risk of
frailty, disability and death in large cohort studies and their mutually
opposing effects at the level of specific target tissues: IGF-1 promotes
muscle growth, while IL-6 favors muscle atrophy and degeneration.
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2012). In contrast, higher IL-6 levels have been linked to increased
mortality both in the context of chronic diseases (Lindmark et al.,
2001), and infections (Sinha et al., 2021) such as COVID-19.

When describing changes over time of the variables included in
this model it is reasonable to assume that they represent continuous
quantities. Therefore we can utilize deterministic temporal
simulations driven by ordinary differential equations that
describe the rate of change of the variables (Resat et al., 2009).
Expressed mathematically in our model, concentrations of IGF-1
and IL-6 biomarkers at any time t are given by functions IGF1(t) and
IL6(t). The differential equation that governs the rate of change for
the variable IGF1 representing the concentration of IGF-1 in blood
serum is:

d IGF1
dt

� kpIGF1

1 + ksIL6 IL6( )2 − kdIGF1 IGF1

Here IGF1 is produced with the constant rate kpIGF1, inhibited
by the square of the amount of IL-6 scaled by parameter ksIL6 and
degraded proportionally to IGF-1’s amount with a rate kdIGF1. We
used the Hill-type kinetic law with the Hill coefficient (exponent for
inhibitor concentration in the denominator) being 2. In chemical
kinetics the Hill coefficient of more than 1 would signify positively
cooperative binding—once inhibitor binds, it enables easier binding
of the next inhibitor. In our context, it corresponds to an increasing
inhibition effect. However, there is no direct analogy, as our model
does not describe an exact mechanism of inhibition, but rather an
effect of mutually inhibiting pathways.

Similarly, the equation for the variable IL6 is:

d IL6
dt

� kpIL6

1 + ksIGF1 IGF1( )2 − kdIL6 IL6

The differential equation connecting the prevalence score of
mobility and other prevalence scores is based on the linear
dependency of the prevalence score, where the rate of change for

prevalence score of event A have negative terms proportional to
prevalence score of A (when event A is changing to other events) and
positive terms proportional to prevalence score of all other events
that can be changed to A. The amounts of IGF-1 and Il-6 serve as
modifiers for this relationship. Specifically, as a mobile person may
become disabled, the rate of change for the prevalence score of
Mobility (M) for an individual at each time point has a negative term
proportional (with the coefficient kloss) to the level of IL-6 (the higher
the level of IL-6, the higher is prevalence score of being disabled) and
prevalence of being mobile at this time point. As a disabled person
may recover, the rate of change for the prevalence score of Mobility
(M) has a positive term proportional (with the coefficient kgain) to
the level of IGF-1 and prevalence score of having mobility disability
at this time point. Finally, as a mobile person can die, the rate of
change for prevalence score of mobility has a negative term
proportional to the prevalence score of mobility and is modified
by a parameter kmort. Additionally, mortality increases exponentially
with time. This increase is parameterized by klongevity, which sets the
maximal survival of the people in the population to be 240 months
after the initial measurements of biomarkers, which makes sense for
the mean age of 77.6 years old (range is 65–100 years).

dM

dt
� −kloss IL6M + kgain IGF1MD − kmort e

klongevity t M

Similarly, the rate of change of theprevalence score of Mobility
Disability (MD) of an individual at each time point is increasing
proportionally to the amount of IL-6 with a coefficient kloss,
decreasing proportionally to the amount of IGF-1 with a
coefficient kgain, and decreasing due to mortality. We assume that
those with mobility disability have increased mortality prevalence
score (compared to the mobile population) defined by a parameter
kextra:

dMD

dt
� −kgain IGF1MD + kloss IL6M − kextra kmort e

klongevity t MD

FIGURE 2
A mathematical model illustrates interactions between disability biomarkers IL-6 and IGF-1 in peripheral blood serum (A) and their relationships to
the prevalence score of mobility disability (B). The mathematical model describes the dynamic properties of a bistable molecular system driving changes
in the prevalence score for an individual to be in Mobile, Mobility Disability or Deceased states. Ovals indicate time-dependent variables. Solid black lines
define interactions among biomarkers (A) and changing of outcomes (B), while dashed lines indicate how biomarkers affect such transitions. Arrows
and bars at the end of lines indicate positive or negative interactions, respectively.
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The parameters are all unknown and were estimated using
published data on IGF-1 and IL-6 levels as validation datasets.

2.2 Parameter estimation

The mathematical model described above represents a
phenomenological approximation, and therefore parameter values
are a priori not measurable quantities and are unknown. They were
estimated using published data as validation datasets, an approach to
mathematical modeling called fitting model parameters to data
(Motulsky and Christopoulos, 2004). This was performed using
COPASI (Hoops et al., 2006) parameter fitting engines within
Virtual Cell (VCell), a problem-solving environment (Moraru
et al., 2008). The authors are not aware of any published studies
involving a longitudinal design where all relevant variables
(biomarkers, mobility metrics, etc.) were monitored
simultaneously over an extended period of time in the same
individuals. The model must approximate the known changes in
peripheral IGF-1 and IL-6 levels with aging, as well as their
relationship to mobility performance, disability, and death, and
we had to use data from multiple published studies to fit
parameters in the model.

As the relationship between IGF-1 and IL-6 does not depend on
prevalence score of mobility and disability, we can identify
parameters governing the dynamics of these biomarkers
independent of other components. In the Cappola study, IL-6
ranged between 0.4 and 10.1 pg/ml, however many cases of much
higher levels of IL-6 (up to 43.5 pg/ml) have been observed (Said
et al., 2021). Thus, we set the maximal allowable value of IL-6 to be
25 pg/ml which we use in the model. Similarly, in Cappola study the
maximal observed value of IGF-1 was 300 ng/ml. Other clinical
studies reported similar values: 15–315 ng/mL for Czech population
of 75–80 year old (Kucera et al., 2015), 50–180 ng/mL for Brazilian
population of the same age (Rosario, 2010) and 45–305 ng/ml for
Chinese population (Zhu et al., 2017). Informed by these studies, we
set the maximal value of IGF-1 to be 400 ng/ml. This experimental
data allowed us to estimate values of kpIGF1, kdIGF1, kpIL6 and kdIL6
parameters.

To estimate values of the parameters ksIGF1 and ksIL6 we fitted
these two parameters to the 5 years time courses of IGF-1 and IL-6
blood serum levels. We start from levels reported in Cappola study
and estimate annual changes in biomarker levels using the data
from multiple clinical sources. At the beginning of the Cappola
study, the average age of the cohort is 77.6 years and the mean IL-6
serum level is 3.14 pg/ml. We adopt the changes in IL-6 level
reported by Said et al., 2020 (Said et al., 2021), which finds a linear
increase in IL-6 of 0.05 pg/ml per year in healthy adults. Those data
are roughly consistent with other data we could find. Kiecolt-
Glaser et al. (2003) reported an average annual increase of IL-6
levels in two cohorts of people between 55 and 95 years old. For a
cohort of caregiver adults that are under constant stress, the
average annual increase was 0.063–0.237 pg/ml/yr from ages
77.6–82.6 years old. For healthy adults the annual change was
smaller (less than 0.071) pg/ml/yr) but this result was not
significant. Albani et al. (2009) reported an average annual
increase in IL-6 of 0.0178 pg/ml/yr between the ages of
77.6 and 82.6 for an elderly Italian population.

At the beginning of the Cappola study, the mean IGF-1 value
was 107.8 mcg/L. Kucera et al. (2015) reported an annual decrease of
IGF-1 serum levels to be 1.98 ng/ml per year for women. Rosario
(Rosario, 2010) reported an average annual decrease of 1.4 ng/mL
for a younger population of 45–70 years old. Additionally,
Vestergaard et al. (2014) found a decrease in total serum IGF-1
in healthy adults of 1.48 percent per year. Thus, we set the annual
decrease of IGF-1 levels in our model to be 1.95 ng/mL per year.

To estimate the prevalence score of mobility, disability and
mortality, we use data from Cappola et al., 2003. They provide
data for 758 individuals subdivided into four cohorts (quartiles) of
IL-6/IGF-1 combinations (398 patients with high IGF-1/low IL-6
levels at the beginning of observations, 128 patients with high IGF-1/
high IL-6 levels, 142 patients with low IGF-1/low IL-6 levels, and
50 patients with low IGF-1/high IL-6 levels) over a period of
60 months for a target group aged 60–65 years old at baseline.
The cut-offs in IGF-1 and IL-6 levels were selected by Cappola
et al. based on their prior studies suggesting a threshold effect for
mobility tasks at approximately these levels. The data available for
each cohort includes the number of individuals having mobility
disability at the beginning of observations, the number of individuals
having mobility disability at 36 months, and timecourse survival
data over 60 months. Resulting gaps were inferred based on linear
approximation.

Finally, the contribution of mobility disability to mortality rates
is defined by the parameter kextra (effectively an amplifier of the
mortality rate of the mobile population resulting in increased death
prevalence score in the mobility disability population). To estimate
this parameter, we looked into studies of mortality rates. Gilmour
and Ramage-Morin (Gilmour and Ramage-Morin, 2021) studied
mortality over a 5 year period among 29,302 Canadians. They found
that older adults who were frail were 3.5 times more likely to die than
those who were not frail. In the Cappola et al. (2003) study, mortality
over 5 years in the least frail population (the 4th cohort, high IGF-1
and low IL-6 levels) was 2.5 times less than in the first cohort (low
IGF-1 and high IL-6 levels) with the most vulnerable population.
Hao et al. (2018) found that in a Chinese population admitted to the
geriatric ward of a hospital, frail patients were 2.09–2.18 times more
likely to die within 3 years than non-frail patients. Based on these
sources, we choose the value of kextra to be 2.5. Having estimated the
value of kextra from the literature, we identify the values of kloss, kgain,
kmort and klongevity by fitting the system of differential equations for
M(t) and MD(t) to the values of MD and M from Cappola study.

Additional details about the source data and the fitting
procedures are provided in the Supplementary Material.S1

2.3 Model simulations

After unknown parameters for each cohort were identified using
parameter estimation, the system of differential equations can be
solved numerically. This produces time-course simulations of the
model that predict prevalence score of mobility and mobility
disability for humans with different initial serum blood levels of
IGF-1 and IL-6. We used VCell (Moraru et al., 2008) for such
simulations, and emphasis was placed on modeling trends since
exact values were often not available. Therefore, our goal was to
predict general trends from a qualitative, and, to a lesser extent,

Frontiers in Network Physiology frontiersin.org05

Schaumburger et al. 10.3389/fnetp.2023.1079070

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2023.1079070


quantitative perspective. The model and simulation results are
available in VCell database that is publicly accessible from within
VCell software (http://vcell.org/). While no registration is required,
one must download and install the software to access the model and
check all simulation results. The model is available by searching for
Aging_Phenotypes in BioModels.

3 Results

In Section 3.1 we demonstrate that the molecular mechanism
described in the Methods section leads to bistability on the molecular
level, where for each pair of initial levels of IGF-1 and IL-6, values
converge to two stable values. In Section 3.2 we demonstrate that this
bistability is carried through into the phenotypic model. In Section 3.3
we describe these two stable clinical outcomes. Finally, in Section 3.4
we identify regions of initial IGF-1 and IL-6 levels that correspond to
these two distinct outcomes. Specifically, we identify a set of pairs of
IGF-1 and IL-6 initial values that define a curve where all
combinations of initial values from two sides of the curve lead to
different phenotypical outcomes.

3.1 Emergence of bistability in IGF-1 and IL-6
levels

After estimating model parameters as described above, we
performed multiple simulations using different initial conditions
corresponding to the known variance in IGF-1 and IL-6 levels of the
studied cohorts: initial IGF-1 concentrations ranged from 40 mcg/L
to 300 mcg/L, while initial IL-6 concentrations varied from
0.001 mcg/L to 0.01 mcg/L. The results showed that the inverse
correlation between IGF-1 and IL-6 (akin to “mutual inhibition”)
leads to two distinct outcomes (steady states) over time (Figure 3).
Depending on the initial values of one biomarker, the values of
another biomarker over extended time periods converge towards

either close to the physiological maximum or close to the
physiological minimum—two qualitatively very different outcomes.

3.2 Emergence of switch-like behavior in
clinical outcomes

We then tested our hypothesis that this IGF-1/IL-6 relationship
leads to switch-like behavior in the predicted clinical outcomes. For
different initial values of one biomarker, we observed two different
trends in the prevalence score ofmobility. Figure 4A illustrates that for
individuals with initial IGF-1 below a critical threshold (vertical line),
the prevalence score of mobility decreases over time. When the initial
IGF-1 value is above the threshold, the clinical outcomes are the
opposite: the prevalence score of mobility increases over time. This
effect significantly increases over time. While at 5 years individuals
with the same initial levels of IL-6 but distinct IGF-1 levels have the
prevalence score of mobility roughly proportional to the initial IGF-1
levels, at longer time periods (20 and 30 years) we see a striking effect
of the different initial levels of IGF-1: even small variations around the
critical value exert a profound effect on the mobility outcome, a
switch-like behavior. Conversely, Figure 4B demonstrates a similar
pattern in the predicted future of mobility outcome for individuals
with the same initial level of IGF-1 but with different initial levels of
IL-6. Note that while biomarker levels express true bistability (over a
period of time longer that the lifespan of individuals in the study),
clinical outcomes never reach a true steady state because of to-death
transition, so they express “switch-like” and not bistable behavior.

3.3 Emergence of two drastically different
clinical phenotypes

We further examined the influence of the switch-like effect of
initial biomarker on mobility outcome. We performed simulations
representing a hypothetical individual with mean biomarker values

FIGURE 3
Dynamic time course simulations of biomarkers demonstrate bistability with respect to their initial levels. Each line represents a time course of IGF-1
(A) and IL-6 (B) for different initial combinations of IGF-1 and IL-6 biomarkers. Variations in initial levels (time point 0) lead to just two qualitatively distinct
outcomes over extended time periods: either close to the physiological maximum, or close to physiological minimum. Such bistability is caused by the
mutual inhibition mechanism for IGF-1 and IL-6 pathways. This hypothetical model is designed to illustrate isolated interactions between IGF-1 and
IL-6 based on their initial levels since other effects and factors are not considered.
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FIGURE 4
The prevalence score of beingmobile depending on the initial levels of serumbiomarker IGF-1 (A) and IL-6 (B) exhibit switch-like behavior with small
changes in initial levels around critical values leading to dramatically different outcomes at later times. (A). The prevalence score of mobility are simulated
for an individual with the population mean level of IL-6 and varying initial levels of IGF-1. The prevalence score of being mobile at 5 years after initial
measurement of IGF-1 gradually increase as the initial IGF-1 level increases. As time increases, the critical threshold between negative and positive
outcomes becomes more evident. Although very few people survive to 20 or 30 years, the prevalence score of these surviving people to be mobile is
significant if they had initial IGF-1 values above the threshold, while for peoplewith IGF-1 levels below this value, the prevalence score ofmobility is almost
zero. (B). Similar trends in the prevalence score of mobility is expressed when we consider a population with the same initial level of IGF-1 and varying
levels of IL-6. With initial IL-6 levels above a critical threshold, the prevalence score of being mobile rapidly decline. Below the threshold, the situation is
the opposite.

FIGURE 5
The mobility prevalence score over time for individuals with different initial levels of IGF1 and IL6. Top and bottom lines correspond to the best
(highest IGF-1 and lowest IL-6 levels) and worst (lowest IGF-1 and highest IL-6 levels) phenotypic outcomes possible within that each cohort,
respectively. The solid line corresponds to the average values of IGF-1 and IL-6 within each cohort. The prevalence score of remaining mobile for each
cohort falls into the area between the two dashed lines, with most individuals falling into the shaded area. Two possible outcomes present
themselves in all cohorts except for Low IGF/High IL6: either the longer an individual lives, the higher is the prevalence score of remain and die being non-
frail/mobile (the prevalence score increases to one and then suddenly drops to zero, indicating a death of an individual - mobile phenotype), or the
chances of beingmobile rapidly decrease (frail phenotype/declines inmobility). (A)All individuals with initial levels of low IGF-1 and high IL-6 belong to the
frailty disability phenotype: the prevalence score of beingmobile decreases rapidly. (B) Individuals with initial levels of high IGF-1 and high IL-6 can fall into
both phenotypes. The individual’s mobility prevalence score decreases initially, but then start increasing: the longer person lives, the higher their chances
to remain and die being mobile. The average individual has roughly 30% chances of dying in a mobile state. (C)Majority of individuals with initial levels of
low IGF-1 and low IL-6 express frailty phenotype. (D) Majority of individuals with initial levels of high IGF-1 and low IL-6 case belong to non-frail
phenotype.
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of the four distinct cohorts studied. Figure 5 demonstrates that
different combinations of high/low values for IGF-1 and IL-6)
(Cappola et al., 2003) produce different mobility prevalence score
within each quartile.

Results of modeling presented in Figure 5 suggest that initial IL-
6 and IGF-1 levels may help to stratify individuals into two
contrasting phenotypes (Figure 6). Individuals in the “high-
mobility” group have IGF-1 levels which do not decrease (and
may in fact increase over time), and have increased prevalence
score of surviving in a mobile state. In contrast, individuals in the
“low-mobility” group have decreasing levels of IGF-1 and decreasing
prevalence score of mobility through their remaining lifetime.

3.4 Initial level of biomarkers as phenotype
predictors

The exact trajectory of declining mobility and disability and
death is subject to individual variability and happenstance and
impossible to derive from just two biomarkers. Nevertheless, one
can estimate the strength of the predictive value of these biomarkers.
We performed a phase plane analysis of the two distinct clinical
states or phenotypes discussed above in relation to the initial levels
of IGF-1 and IL-6. Figure 7 shows the regions corresponding to

either mobile/resilient (green) or less mobile/frail/disabled (orange/
yellow) phenotypes in the overall population according to our
simulations. These regions are superimposed on the plot of
Cappola et al. (Cappola et al., 2003) that stratified the study
population into 4 cohorts according to the IGF-I and IL-6 serum
levels. The upper left quadrant identifies participants in the highest
risk group (illustrated in Figure 5A), and the lower right quadrant
shows those in the lowest risk group (illustrated in Figure 5D).

Our simulation results classify all individuals in the 1st quadrant
as having the frail phenotype, while individuals in the 2nd, 3rd and 4th

quartiles will have either the resilient of frail phenotype according to
the position relative to the curve. These results show a much more
fine-grained predictive power of our model compared to the results
of Cappola et al.

4 Discussion

4.1 Mathematical modeling as a tool to
predict dynamic behavior

The classical approach to the analysis of the effects of
biomarkers on clinical phenotypes is statistical modeling: a set of

FIGURE 6
Bistability of IGF-1 or IL-6 blood levels could create conditions
for the bistability involving two different clinical states pertaining to
absence or presence of a frailty phenotype. In this schematic cartoon
in the top panel we show the initial levels of IGF-1 and Il-6: from
high IFG-1 (blue)/low IL-6 (pink) on the left to the opposite low IFG-1
(blue)/high IL-6 (pink) on the right. In the bottom panel we show the
corresponding resulting trends inmobility. Going from left to right, the
black line shows a sketch of trajectory an individual experiences as
IGF-1 level goes down and IL-6 level goes up. The exact form of
trajectory depends on multiple factors that are not considered in this
simplified cartoon, but individuals with IGF-1 above a certain critical
value for IGF-1 and/or those with IL-6 values below a certain critical
value for IL-6 will demonstrate the presence of the normal mobility
phenotype. In contrast, presence of lower IGF-1 and/or higher IL-6
levels will favor declines in mobility performance, leading to disability
and an ultimate death. Individuals with initial levels of IGF-1 and IL-6
around the critical threshold (schematically shown as a vertical dashed
line) are pushed toward either normal mobility or declining mobility.

FIGURE 7
Bistability in biomarkers defines two distinct phenotypes based
on deterministically computed mobility disability outcomes.
Superimposing the switch points produced by the mathematical
model over the experimental study population of Cappola et al.,
2003 illustrates a critical threshold (grey line) that divides the
population into 2 groups. In the first group (green), the steady state
serum level of IGF-1 is high, while IL-6 levels are low, indicating more
positive phenotypic outcomes such as lower prevalence score of
frailty and declines in mobility performance throughout the lifespan of
the group. In the second group (yellow), the steady state serum level of
IGF-1 is low, while IL-6 is high, indicating more negative phenotypic
outcomes such as higher prevalence score of frailty and declines in
mobility performance throughout the lifespan of the group. The
shading indicates areas with majority of study population (the
darker—the more subjects).
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statistical assumptions on a generation of data that then allows the
inference of the probability of certain events or relationships
between variables. In contrast, dynamical models are based on a
set of assumptions on mechanisms of interactions. Dynamical
models can go beyond the predictions of statistical models, but at
the cost of making assumptions that may not be explicitly validated
by existing data. We have built a dynamical model that predicts
functional outcomes over time based on hypothesized mechanisms
of interactions between biomarkers IGF-1 and IL-6 and their
relationship to mobility and frailty phenotypes. In the absence of
knowledge about molecular mechanisms of pathway interactions,
the dynamical model serves as proof of concept. However, as more
data on molecular mechanisms and their relationship to clinical
outcomes become available, dynamical modeling will be able to
provide more precise predictions, while also helping to move the
field from a study of association to approaches guided by
mechanisms. However, it is important to emphasize that even if
detailed molecular mechanisms are not known, dynamical models
can be constructed using phenomenological approximations of
high-level hypotheses (“black box” approach) that yield valuable
insights and have significant predictive power, as shown in this
study.

One of the challenges in capturing the full complexity of human
aging throughmathematical models stems from the fact that the rate
at which individuals age and become disabled demonstrates great
heterogeneity both between subjects, as well as over time within the
same individuals (Guralnik et al., 1996). Clinical and research
evidence indicates that specific states of increased vulnerability or
frailty can be identified in subsets of older adults using criteria for
the existence of distinct clinical presentations or frailty phenotypes
(Fried et al., 2001; Bouchonville and Villareal, 2013). Our
mathematical model focuses on IL-6 and IGF-1, a pair of
biomarkers with opposite effects on the likelihood of developing
mobility disability (Cappola et al., 2003). The model suggests the
existence of critical IGF-1 and IL-6 blood levels where even small
variations around these values may lead to strikingly different
outcomes in mobility performance, a feature that plays a central
role in the development of frailty and functional dependence. This
demonstrates a switch-like behavior in predicting mobility
disability: slight differences in the initial level of either biomarker
do not show significant differences in the short term, but over the
long term (10–20 years) result in completely distinct overall risks of
declining mobility performance. This suggests that the synergistic
but inverse relationship between IGF-1 and Il-6 may facilitate a
“switch” from a state in which a resilient individual has a low risk of
future disability towards another phenotypically-distinct state or
phenotype which is associated with frailty and a high risk of future
disability (Figure 4)—a hallmark of bistability.

Bistability represents a fundamental property of certain
systems which can exist in either one of two stable states
(Tyson et al., 2003). Such systems function in a manner similar
to a toggle switch, transitioning from one stable state to another
(Tyson et al., 2003; Wilhelm, 2009) once the parameters
controlling the system’s function start diverging in one
direction or another around certain critical values. Within
biological systems, bistability is key for understanding decision-
making processes such as cell cycle progression, cell death, cellular
differentiation, and development (Tyson et al., 2003; Wilhelm,

2009). In our manuscript, a double-negative feedback loop leads to
bistability; however, both positive and double-negative feedback
loops can also generate bistability, resulting in the emergence of
switches leading to all-or-nothing decisions involving oocyte
maturation, calcium signal transduction, and cellular polarity
(Ferrell, 2002; Brandman and Meyer, 2008). The principle used
to construct our “proof-of the-concept” model can be applied to
many different biological systems where mutually antagonistic
pathways are assumed to be involved in the development of
contrasting phenotypes.

4.2 Potential clinical insights from ourmodel

Our findings provide mathematical evidence in support of the
concept that interactions among biomarkers and associated pathways
may show a certain type of synergy that can ultimately lead to bistable
behavior. These observations do not diminish the key importance of
stochastic or random events within the complex and variable
multifactorial pathways which lead to disease, disability, or death.
Rather, these considerations provide potential insights in support of
additional layers of systemic organization and complexity that may
help define those clinical conditions or phenotypes which clinicians
and investigators have observed within subsets of older adults. These
could include different categories of specific frailty states such as the
Fried Frailty Phenotype whichmanifests as the combination of weight
loss, exhaustion, weakness, slow walking speed and low physical
activity (Fried et al., 2001), or obesity-related frailty with muscle
weakness and poor physical performance (Baumgartner et al., 2004).
Another common clinical scenario in geriatrics practice includes acute
changes in muscle weakness or mental status that frequently lead to
emergency room visits and imaging studies, without any positive
finding for stroke, transient ischemic attack, urinary tract infection, or
other metabolic abnormalities. Explanations for such events usually
are described as depletion of reserve (physical or cognitive) in each
individual to the threshold level of showing clinically evident
symptoms (and thus acute changes become apparent). However,
the mechanism of bistability and switch-like behavior described in
this paper may represent an alternate or complementary explanation
of such clinical observations.

Point of care testing represents the capacity to perform a
diagnosis using laboratory tests obtained in the course of a
clinical visit, with such results helping to guide the rapid
formulation of an individualized treatment plan (Kost, 2002).
Based on historical precedents, it remains unlikely that
biomarker data obtained from large longitudinal studies of aging
will be rapidly translated into permitting or facilitating decision-
making at the bedside. Nevertheless, principles uncovered in our
study could help advance the progress of aging research in several
important directions. Above all, our finding that the co-existence of
mutually-inhibitory biomarkers for disability may lead to the
emergence of bistability supports the existence of specific frailty
states or phenotypes that develop late in life. Such considerations
may help provide an added justification and a clearer focus on
specific targets for future pathophysiologic studies into physical,
cognitive or mental frailty (examples include, among others,
sundowning or acute confusion towards late afternoon which
often resolves towards evening or episodic psychotic events) and
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other geriatric syndromes. Finally, it will be especially important to
extend such work towards the identification of specific mechanisms
through which mutually inhibitory pathways interact with each
other and contribute to bistability. Such more detailed knowledge
combined with correspondingly refined dynamical modeling will
likely offer particularly important novel targets for the development
of innovative future therapies (Inouye et al., 2007).
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