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Rhythmic synchronization of neuronal firing patterns is a widely present

phenomenon in the brain—one that seems to be essential for many

cognitive processes. A variety of mechanisms contribute to generation and

synchronization of network oscillations, ranging from intrinsic cellular

excitability to network mediated effects. However, it is unclear how these

mechanisms interact together. Here, using computational modeling of

excitatory-inhibitory neural networks, we show that different

synchronization mechanisms dominate network dynamics at different levels

of excitation and inhibition (i.e. E/I levels) as synaptic strength is systematically

varied. Our results show that with low synaptic strength networks are sensitive

to external oscillatory drive as a synchronizing mechanism—a hallmark of

resonance. In contrast, in a strongly-connected regime, synchronization is

driven by network effects via the direct interaction between excitation and

inhibition, and spontaneous oscillations and cross-frequency coupling emerge.

Unexpectedly, we find that while excitation dominates network synchrony at

low excitatory coupling strengths, inhibition dominates at high excitatory

coupling strengths. Together, our results provide novel insights into the

oscillatory modulation of firing patterns in different excitation/inhibition

regimes.
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Introduction

Synchronization of firing between neurons has been observed

in a wide variety of brain processes and different brain regions

(Diesmann et al., 1999; Steriade 2001; Brovelli et al., 2004;

Buzsáki and Draguhn 2004; Lakatos, Shah et al., 2005, Buzsaki

2006, Kumar, Rotter et al., 2010; Fell and Axmacher 2011; Brunet

et al., 2014; Babapoor-Farrokhran et al., 2017; Zhou et al., 2019).

Coherent firing patterns are thought to be essential for multiple

cognitive functions, including multi-modal information

integration, memory consolidation, information transfer, and

integration of information across large-scale, distributed

neuronal organizations (Varela, Lachaux et al., 2001, Buzsaki

2006, Fell and Axmacher 2011; Buzsáki andWatson 2012; Breton

et al., 2019). Abnormal neuronal synchronization is associated

with cognitive dysfunction in epilepsy, schizophrenia, and other

disorders (Spencer et al., 2003; Lewis et al., 2005; Uhlhaas and

Singer 2006; Başar and Güntekin 2008; Lisman and Buzsáki 2008;

Ferrarelli et al., 2010). Large scale oscillatory patterning - a direct

consequence of neuronal synchronization - is thought to mediate

information transfer throughout disparate brain regions (Fell

and Axmacher 2011; Buzsáki and Watson 2012; Hahn et al.,

2019; Gonzalez et al., 2020). While both synchrony and large

scale oscillations are closely related, they can be distinct and can

happen on different time-scales, thus able to mediate binding of

different signal features for example (Hahn et al., 2019). Cross-

frequency coupling of nested synchronous oscillatory dynamics

supports the organization of information transfer in top-down

and bottom-up functions (Axmacher et al., 2010; Fell and

Axmacher 2011; Aru et al., 2015; Naze et al., 2018; Palva and

Palva 2018).

At the same time, a large body of research has shown that

excitatory/inhibitory (E/I) balance emerges within brain

networks (Wehr and Zador 2003; Liu et al., 2009; Poo and

Isaacson 2009; Stettler and Axel 2009; Tan et al., 2013;

D’Amour J and Froemke 2015) and is important for

regulating spatio-temporal activity patterns (van Vreeswijk

and Sompolinsky 1996; Deneve and Machens 2016; Borges

et al., 2020). E/I balance is observed in evoked responses to

external stimuli, but is also present during spontaneous brain

activity (Atallah and Scanziani 2009; Murphy and Miller

2009; Graupner and Reyes 2013). E/I balance can be loose

(van Vreeswijk and Sompolinsky 1998; Brunel 2000; Salinas

and Thier 2000; Rudolph et al., 2007), i.e. happening over

long time scales, but recent findings have demonstrated that

inhibition can closely track excitation at millisecond

timescales, leaving a brief window of disinhibition for

neurons to fire. This “tight balance” has been observed in

different brain regions (Okun and Lampl 2008; Atallah and

Scanziani 2009) and is now thought to play a significant role

in learning and memory (Letzkus, Wolff et al., 2015) during

various behavioral cycles (Niethard et al., 2016; Niethard

et al., 2018). E/I balance can also regulate the occurrence

of cortical up- and down-states (Shu et al., 2003; Haider et al.,

2006).

The focus of this paper is to use computational modeling to

investigate how synchrony and evolution of network-level

excitation and inhibition mediate and interact with each

other, affecting spatio-temporal patterning in the network,

particularly large scale oscillatory activity.

While synchronous network oscillations have been widely

characterized, there is still limited understanding regarding how

structural network properties contribute to their emergence and

interactions. In the hippocampus alone, different types of

GABAergic interneurons are demonstrated to drive the

emergence of synchrony via different signaling mechanisms

(Hilscher et al., 2017) (Wester and McBain 2016). However,

how the coordination of excitation and inhibition evolves due to

changing network states or connectivity and contributes to

generation of synchronous activity in the network

cooperatively or alternatively still remains not fully understood.

In general, the mechanisms generating synchronous

oscillations can be divided into two classes: 1) network

mediated and 2) those driven by cell intrinsic

properties—i.e., neuronal excitability. The prominent example

of the first class is the so called pyramidal-interneuron gamma

(PING) (Traub et al., 1996; Buzsáki and Wang 2012) mechanism

and its derivatives. Here the oscillation emerges as a close

interaction of excitation and inhibition in the network. Strong

excitation triggers an inhibitory burst which feeds back onto the

excitatory neurons, effectively shutting them down for a period of

time. Lifting this inhibition leads to another burst of excitatory

activity, thus repeating the process. In this case the inhibitory

patterning is based on the feedback interactions of excitatory and

inhibitory sub-networks rather than excitability properties of

individual neurons. The second class depends on intrinsic

membrane properties of individual neurons. These properties

include resonant, subthreshold oscillations and/or so called type

2 excitability that promotes synchronization of neuronal spiking

patterns (Prescott et al., 2008). These resonator-type neurons can

be recruited effectively through an oscillating local field potential

(LFP) and mediate coherent activity throughout distant brain

regions as well as contribute to the interplay between brain

rhythms of different frequency bands (Varela et al., 2001).

Coherent, subthreshold membrane potential oscillations are

thought to play an important role in functional selection and

grouping (Engel et al., 2001). Computational modeling studies

have highlighted how periodically-timed input to networks of

neurons with and without resonant excitability strongly

influences neural firing patterns (Lau and Zochowski 2011;

Shtrahman and Zochowski 2015; Roach et al., 2018; Masoliver

and Masoller 2020; Hansen et al., 2022).

The specific unresolved questions that remain are: to what

degree can these two classes of synchronizing mechanisms

coexist within the same network? What promotes dominance

of one mechanism over another within a network? And how does
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emergence of synchronous oscillations temporally regulate the

E/I balance within a network in the presence and absence of

external oscillatory drive? Here we use biophysical,

computational models of excitatory-inhibitory neural networks

to demonstrate how external oscillatory drive interacts with

intrinsic network dynamics to synchronize networks

composed of neurons with type 2 excitability, at different

global levels of excitation and inhibition. By systematically

varying synaptic strengths, we demonstrate multiple dynamic

regimes displaying heterogeneous network firing patterns and

identify two distinct synchronization mechanisms emerging as a

function of the interplay between excitation and inhibition. Our

results show that when excitatory synaptic strength is relatively

low, neural subthreshold membrane oscillations, coupled with

external resonant driving current are able to generate ordered

spiking, increase synchronization, and constrain the E/I ratio to a

balanced state. On the other hand, when the network is strongly

connected by excitatory synapses, global synchronization is

generated by the interaction between synaptic excitation and

inhibition. In addition, although external oscillatory drive

modulates network dynamics, its effects vary depending on

network properties, from generating detailed firing patterns

within synchronous network bursts to modulating inter-burst

intervals. Finally, we show that, counterintuitively, synchrony at

low excitatory synaptic coupling is dominated by excitation while

at high excitatory synaptic coupling, synchrony is dominated by

inhibition.

Methods

Neuron model

In the networks (schematic shown in Figure 1A), neurons are

modeled using a modified Hodgkin-Huxley model with the

addition of a slow, low-threshold K+ current. Due to this

current, individual cells display type 2 phase response

dynamics (Stiefel et al., 2008), with spike frequency adaptation

and subthreshold, theta band membrane potential oscillations.

Consequently the neurons act as resonators rather than

integrators. The membrane voltage of each neuron is

governed by:

FIGURE 1
Model network and trajectories of measures of synaptic E and I currents for increasing excitatory synaptic strength, wE. (A) Schematic of model
network consisting of excitatory and inhibitory cells randomly coupled with all excitatory (inhibitory) synaptic strengths set to wE (wI). All cells receive
oscillatory external drive currents at frequencies between 0 and 40 Hz (green curve) and random noisy current inputs (yellow lightning bolts). (B,C)
Total synaptic current (E—I difference) is on the y-axis and E/I ratio is on the x-axis. The inhibitory synaptic strength wI is fixed at 0.3 mS/cm2

while the excitatory synaptic strength, wE, is increased linearly from 0 to 2 mS/cm2. (B) No external oscillatory drive is present. The arrows mark the
direction of the evolution of the E-I current measures as a function of increasing wE. Error bars indicate SE over 10 simulation runs with random initial
conditions and different random network realizations. (C) Comparison of trajectories in the absence (0Hz, blue) and presence of external oscillatory
drive at resonant frequency of 5 Hz (red) and non-resonant frequency of 40 Hz (yellow). (Inset) The maximum E/I ratio on each trajectory curve
under external oscillatory stimulation at different frequencies. In this panel and in subsequent figures, results shown are averages over three
simulation runs with random initial conditions and different random network realizations.
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C
dVi

dt
� −gNam

3
∞(Vi)h(Vi − VNa) − gKdrn

4(Vi − VK)
− gL(Vi − VL) − gKsz(Vi − VK) + Idrivei + Inoisei − Isyni

(1)
Each neuron receives a sub-threshold constant current input,

which is sampled from a uniform distribution from IDC
i = [-0.8,

0.8] μA/cm2. In addition, the whole network is driven with a

global sinusoidal current with amplitude A = 0.3 μA/cm2 (if not

stated otherwise). Thus, the external drive is defined as:

Idrivei � IDC
i + A sin(ωt) (2)

where ω is varied to yield oscillations of 0–60 Hz. Values of IDC
i

and A are chosen so that all neurons display only sub-threshold

membrane oscillations even at the peak of each sinusoidal cycle.

Each neuron additionally receives Poisson random noisy current

input Inoisei consisting of brief (0.05 ms), square, 30 μA/cm2

current pulses, delivered at average frequency of 40 Hz.

Ionic currents are gated as follows. For Na + channels:

m∞(V) � {1 + exp[−V − 30.0
9.5

]}−1
(3)

dh

dt
� h∞(V) − h

τh(V) (4)

where h∞(V) � {1 + exp[V+53.07.0 ]}−1, and τh(V) � 0.37 +
2.78{1 + exp[V+40.56.0 ]}−1.

The kinetics of the K+ delayed rectifier current are

governed by:

dn

dt
� n∞(V) − n

τn(V) (5)

with n∞(V) � {1 + exp[−V−30.010.0 ]}−1, and τn(V) � 0.37 +
1.85{1 + exp[V+27.015.0 ]}−1.

The gating of the slow, low-threshold K+ current evolves as:

dz

dt
� z∞(V) − z

75.0
(6)

with z∞(V) � {1 + exp[−V−39.05.0 ]}−1.
The leak conductance is given by gL = 0.02 mS/cm2. Other

parameters are set to C = 1 μF/cm2, gNa = 24.0 mS/cm2, gKdr =

3.0 mS/cm2, VNa = 55.0mV, VK = -90.0mV, and VL = -60.0 mV.

Network structure and dynamics

Networks were composed of 250 excitatory model neurons

and 250 inhibitory model neurons connected randomly to each

other based on a directed Erdos-Renyi-Gilbert random graph

(Figure 1A). Connectivity density was 3%, providing

approximately 15 out-going synaptic connections per cell.

Although the excitatory to inhibitory cell ratio may not be

physiological compared to some brain areas, we chose to keep

the symmetry between the excitatory and inhibitory populations

so that excitatory and inhibitory signaling could be directly

compared and controlled by their relative synaptic strengths

(see Discussion for more explanation).

The general form of the synaptic current transmitted from

neuron j to neuron i is modeled as:

Isynij � w exp (−t − tj
τ

)(Vi − Esyn) (7)

The parameter w represents the strength of synapses

originating from excitatory cells (wE) or originating from

inhibitory cells (wI). Specifically, all out-going synapses from

excitatory cells have strength wE regardless of their postsynaptic

target (either another excitatory cell or an inhibitory cell).

Likewise, wI is the strength of all out-going synapses from

inhibitory cells. The values of wE and wI will be changed

systematically. tj refers to the spiking time of neuron j, and τ

is the synaptic constant time with value of 0.5 ms, simulating fast

AMPA-like excitatory synapses or fast GABA-A-like inhibitory

synapses. The reversal potential Esyn is set to 0 mV for excitatory

synaptic current and -75 mV for inhibitory current. Eventually

the total synaptic input into a postsynaptic neuron is the

summation of currents from the set of all connected

presynaptic neurons Γi, Isyni � ∑j∈ΓiI
syn
ij .

The dynamics of the network were simulated from random

initial conditions with a time step of 0.05 ms, using a fourth-

order Runge-Kutta method. Dynamics were allowed to evolve to

an asymptotically stable state, then network measures were

computed over a 3 s time window. The results shown are

averaged over three simulations, each from different random

initial conditions and with different instantiations of the random

network connectivity. To demonstrate the robustness of

simulation results, Figure 1B shows average results for

10 simulations with random initial conditions and different

random network realizations.

Synchrony measurement

The measure of synchronization of the firing pattern in the

network is adopted from (Golomb and Rinzel 1994) and is

calculated as the averaged fluctuation over all the neurons

normalized by the fluctuations of each neuron:

SN �
�������

σ2V
1
N∑N

i�1σ
2
Vi

√
(8)

To compute synchrony SN, each spike train is convolved with a

Gaussian with a width of about 1/10 of the mean inter-spike interval

to create a neuronal voltage trace. The specific choice of the width

does not affect the results. Then σ2V is calculated as the variance of

the averaged neuronal voltage traces, while σ2Vi
indicates the variance

of the voltage trace for the ith neuron. The values of SN lie between

0 and 1 for random firing and perfect synchrony, respectively.
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Quantification of input dependent spike
recruitment

To quantify spike timing patterns within network bursts, the

timestamps of spikes within each burst are extracted and

differences with the timing of the first spike in the burst are

computed. Neurons with higher driving constant current, IDC
i ,

are expected to fire earlier relatively in the burst (Roach et al.,

2018; Roach et al., 2019), and the relationship between IDC
i and

spike time within a burst turns out to be linear approximately.

Next, a straight line is fitted using least-squares regression for this

relationship. Regression line slopes are used as an index for cell

recruitment ordering within bursts with a negative value

representing the general temporal difference when neurons

having various IDC
i values are recruited; slope of 0 means that

all neurons fire synchronously in the burst with no time lags. The

values of the slopes are averaged over all the bursts over the whole

simulation time period.

Results

Total synaptic current and E/I ratio under
different external oscillatory drives

In our model networks, we investigated how changes in

relative coupling strength between excitatory and inhibitory

sub-networks, in the presence or absence of external

oscillatory drive, affect generation of synchronous network

oscillations. We also tested how these activity states affect E/I

balance in the network. To systematically study different regimes

of connectivity strength, we set inhibitory synaptic weights (wI)

constant at 0.3 mS/cm2 while varying excitatory weights (wE)

from 0 to 5 × wI. We define total excitatory (E) current (arriving

during time-period T) as the sum of all excitatory postsynaptic

potentials (EPSPs, as defined by Eq. (7)) arriving at excitatory

and inhibitory neurons, and conversely total inhibitory (I)

current as the sum of all inhibitory postsynaptic potentials

(IPSPs) arriving at both cell populations. We subsequently

calculated the E/I current ratio of these two values as

E

I
� ∫T

0
∑i ∑j∑kwE exp[tj,k−tτ ](Vi(t) − EE

syn)dt∫T

0
∑i ∑j∑kwI exp [tj,k−tτ ](Vi(t) − EI

syn)dt
(9)

where k denotes the spike number occurring in the jth pre-

synaptic cell, j sums over all E cells in the numerator and over all I
cells in the denominator, and i sums over all cells in the network.
The difference E—I of these values, referred to as total synaptic
current, was computed similarly.

We observed that the relationship between the E/I current

ratio (X-axis) and the difference between E and I currents

(Y-axis), with a linear increase of wE, forms a non-monotonic

loop (Figure 1B). Initially, for weak but increasing wE values, E/I

ratio increases while the total current difference grows at a much

slower rate (arrow 1). As wE increases through intermediate

values, E/I decreases while the current difference increases at a

higher rate (arrow 2). Finally, as wE increases through high

values, both E/I ratio and the current difference rapidly

decrease (arrow 3). Further, the detailed shape of the loop

depends on the presence of external oscillatory drive and its

frequency (Figure 1C). For weak excitatory coupling (wE), if the

driving frequency is between 5 and 10 Hz (which matches the

natural frequency of subthreshold membrane oscillations in the

neuronal model), we observe a sharp decline in the maximal E/I

ratio observed (red curve). However, if the oscillatory drive has a

frequency outside this range, the loop’s shape (yellow curve)

converges to that observed when no drive is present (blue curve).

Interestingly, the part of the loop corresponding to strong

excitatory coupling (i.e. high wE values) does not change with

frequency of external oscillatory drive. Thus, for weak wE, the

network dynamical state quantified by E-I balance is highly

dependent on the frequency of oscillatory drive, while for

higher wE, network E-I dynamics are independent of

oscillatory drive. Qualitatively similar results are obtained

when the inhibitory synaptic strength wI is larger, as shown in

the (Supplementary Figure S1). However, increased inhibitory

synaptic strength limits the maximum E/I ratio and thus the

domain of the E/I trajectory loop, which is further diminished if

the resonant oscillatory drive is present.

These results suggest that cellular resonance with oscillatory

drive plays an important role in network dynamics when

excitatory synaptic strength wE is weak, while network

dynamics are less influenced by the oscillatory drive at high

wE. Therefore, we divide the network dynamical state into two

regimes: 1) the resonance regime around the first turning point of

the total current-vs-E/I trajectory curve (between arrows 1 and

2), and, 2) the network-driven regime after the second turning

point of the trajectory curve (between arrows 2 and 3). Below, we

will elucidate the properties of the dynamics and the resulting

mechanisms for network synchronization in these two regimes.

Cellular resonance in the weak excitatory
coupling regime

We first investigated the dynamical E/I ratio and spatio-

temporal activity patterns for weak wE (Figure 2A), at different

frequencies of external drive. We measured the level of

synchrony in the network, and depicted it as a color of the

curve. The frequency of the driving oscillation was varied

between 0 Hz (no oscillation) and 40 Hz. At these two

boundary values, the horizontal extent of the E/I trajectory

loop is the largest (i.e. maximal E/I ratio is achieved) and

synchrony begins to appear as the trajectory approaches the

second turning point (at highest wE values in this regime). On the
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other hand, when the driving signal is a 5 Hz oscillation the

network fires at an intermediate synchrony level (~0.6) and the

horizontal extent of the loop (i.e. the maximal E/I ratio, see inset

Figure 1C) is significantly reduced. Given this strong frequency-

dependence of the total current-vs-E/I trajectory loop, we

identify this region as the resonance regime. We next

investigated network-wide pattern formation as a function of

the parametric position on the loop. To visualize the spatio-

temporal patterning within the network, we display raster plots

and calculate the burst triggered averages of excitatory and

inhibitory currents in the network, for two wE values, and for

three oscillatory drive frequencies (0 Hz, 5 Hz, 40 Hz; markers in

Figure 1A). When wE is weak, (wE = 0.08 mS/cm2; pink markers

in Figure 2A, panels b, c, d depict raster plots and panels e, f, g

depict the current traces, with blue indicating excitatory and red

indicating inhibitory cells/traces respectively, and yellow curves

represent the oscillatory driving current), spiking with 0 Hz (no

oscillatory drive) and 40 Hz is sparse and random. In contrast,

the 5 Hz oscillatory drive increases the firing rates of the neurons

and network synchrony by regulating phase locking of spikes at a

specific phase of the oscillation. Moreover, in this regime, the

phase of locking systematically varies from cell to cell and

depends on the constant current, IDC
i , that is applied to the

cell (see Methods). To better depict this, we adjusted the y-axes of

the raster plots so that cell order is a monotonic function of the

cells’ constant current input, IDC
i . This ordering provides

information about the relative magnitude of individual cell

input and may underlie network structural reorganization if

spike timing dependent plasticity is present. The analysis of

burst triggered current averages (Figures 2E–G) reveal that

within this regime, the dynamics is driven by resonant

activation of excitatory cells, with inhibitory neuron activation

being significantly weaker.

Moving along the trajectory loop to the region with higher

excitatory weight (wE = 0.24 mS/cm2, black markers in

Figure 2A, panels h–j for raster plots and panels k–m for

burst triggered current averages), the resonance mechanism

for synchrony takes hold, and a spontaneous bursting pattern

starts to emerge for no oscillatory drive (Figure 2G) and 40 Hz

oscillatory drive (Figure 2I) conditions. In this case however, wE

is still relatively weak, and the burst triggered current traces

indicate that inhibitory current contribution to network

dynamics is still smaller than the contribution of excitatory

current. This indicates that synchrony emerges via intrinsic cell

mechanisms rather than interacting excitation and inhibition

(i.e. a PING-like effect). With 5 Hz oscillatory drive, spiking

patterns of individual cells remain phase-locked to the

oscillation, and network dynamics are still dominated by

excitatory activity. These spiking patterns did not change

qualitatively for different values of inhibitory synaptic

FIGURE 2
Network dynamics in the resonance regime (colored). (A) E/I ratio trajectories as wE is increased under no oscillatory drive (plain curve),
oscillatory drive at neuron natural frequency of 5 Hz (dot marker), and oscillatory drive at 40 Hz (cross marker). The color indicates the network
synchrony measure. (B–M) Representative raster plots and burst-triggered averaged current traces for the data points labeled on the curves in panel
(A). Blue represents excitatory cells/currents, while red represents the inhibitory ones. Two representative data points are chosen for each
driving condition, with a weaker wE = 0.08 mS/cm2 and a stronger wE = 0.24 mS/cm2 (B,E) No oscillatory driving with weaker wE (pink star marker)
(C,F) Oscillatory driving at resonant 5 Hz frequency with weaker wE (pink dot marker) (D,G) Oscillatory driving at 40 Hz with weaker wE (pink cross
marker) (H,K) No oscillatory driving with stronger wE (black star marker) (I,L) Oscillatory driving at 5 Hz with stronger wE (black dot marker) (J,M)
Oscillatory driving at 40 Hz with stronger wE (black cross marker). Note that (E) and (G) are direct (i.e. not burst triggered) plots of the excitatory/
inhibitory currents as there is no bursting activity. Yellow curves in (C), (D), (I) and (J) represent the external oscillatory driving current at 5 Hz in (C)
and (I), and at 40 Hz in (D) and (J).
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strengths (see Supplementary Figures S2 and S3 in

supplemental data).

Highly synchronized dynamics generated
by interaction of network excitation and
inhibition mechanisms

With increasing wE, the network enters the second regime

in which network-driven synchrony is mediated via strong

bursts of inhibition. Here the role of the external oscillatory

drive in affecting E/I ratio diminishes, and the total current-vs-

E/I trajectory curves for different oscillatory drive frequencies

merge around the second turning point (Figure 3A). Network

dynamics are likewise similar with different drive frequencies

except for the phase locking of spiking activity with 5 Hz

oscillatory drive. This indicates that at high wE values,

resonance effects of individual neurons’ firing with

oscillatory input become less important, while intra-

network interactions dominate the dynamics. While the

degree of synchrony remains high in this regime, the

network-wide firing pattern changes. Representative raster

plots are shown on Figures 3B–D, and corresponding burst

triggered average current traces on Figures 3E–G. When

excitatory weight is wE = 0.66 mS/cm2 (yellow markers), the

system is around the second turning point and the magnitude

of inhibition during network oscillatory firing starts to

approach that of the excitation. While network excitation

allows persistence of wide, multi-spike bursts, one can

observe the emergence of a tight correlation between

inhibitory and excitatory currents. For the highest values of

excitatory coupling, (wE = 0.84 mS/cm2, blue markers, and

higher), the network moves into an inhibition-dominant

regime. Here, not only is the firing pattern highly

synchronous (Figures 3H–J), but each burst is composed of

multiple single bursts. This interaction between excitatory and

inhibitory currents, demonstrated in Figures 3K–M, explains

the mechanism underlying the synchronous dynamics. At the

beginning of each burst, excitatory current increases first. This

burst of excitation leads to a strong burst of inhibition (at the

peaks, the inhibitory current typically has a higher magnitude

than excitatory current) which momentarily hyperpolarizes

excitatory neurons. As the excitatory neurons recover, another

excitatory burst is generated which is again followed by

inhibitory neuron activation. Thus, here the synchrony is

mediated by inhibition bursts, i. e, a PING-like mechanism

(Traub et al., 1996; Buzsáki and Wang 2012), rather than by

individual neurons’ resonance. For different values of

inhibitory synaptic strength, the patterns remain highly

synchronous (see Supplementary Figures S2 and S3 in

supplemental data). However, the length of bursting periods

increases with higher inhibition levels. This is due to the fact

that inhibitory coupling also affects inhibitory neurons’ firing,

reducing the inhibition needed to terminate the bursts.

FIGURE 3
Network dynamics in the regime driven by PING-like mechanisms (colored). The panels correspond to those on Figure 2. (A) E/I ratio vs. total
synaptic current trajectories. Similarly, two representative data points are chosen for each oscillatory driving condition, with a weaker (wE = 0.66 mS/
cm2) and a stronger (wE = 0.84 mS/cm2) excitatory synaptic strength. Color reports level of synchronization. (B–M) Raster plots and burst triggered,
averaged current traces for: (B,E) No oscillatory driving with weaker wE (yellow star marker) (C,F) Oscillatory driving at 5 Hz with weaker wE

(yellow dot marker) (D,G) Oscillatory driving at 40 Hz with weaker wE (yellow cross marker) (H,K) No oscillatory driving with stronger wE (blue star
marker) (I,L) Oscillatory driving at 5 Hz with stronger wE (blue dot marker) (J,M) Oscillatory driving at 40 Hz with stronger wE (blue cross marker).
Yellow curves in (C), (D), (I) and (J) represent the external oscillatory driving current at 5 Hz in (C) and (I), and at 40 Hz in (D) and (J).
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Modulation of the temporal relationship
between excitatory and inhibitory currents
under oscillatory drive

Wenext focused on the changing temporal relationship between

the excitatory and inhibitory currents as wE increases (Figure 4), in

the presence and absence of oscillatory drive. We calculated the

cross-correlation between E and I currents within a 1-s window

(Figures 4A–C), then examined tight temporal locking within a 60-

ms window (Figures 4D–F). The y-axes of the correlation maps

depict changes in wE. From top to bottom of these maps, wE

monotonically increases, resulting in the different E/I ratios

within the network (y-axis tick labels). The horizontal lines on

the maps mark the corresponding locations on the E/I trajectory

curve, marked with star markers on Figures 4G–I moving counter-

clock wise. We note that Figures 4A–C also give information on the

frequency of network bursting activity, since the correlation peaks

occur during network bursts and the harmonics in the correlation

occur at multiples of the interburst interval.

For the weakest wE coupling strengths (i.e., above the first

horizontal separation line, corresponding to the initial part of

the E/I ratio trajectory), no correlation patterns between

excitatory and inhibitory currents are observed either when

no external oscillation is present (Figures 4A–D) or with

40 Hz oscillatory input (Figures 4C,F). The network instead

exhibits sparse random spiking. With 5 Hz input (Figures

4B,E), network burst activity is locked to the external

oscillation and periodic temporal correlations emerge

representing interburst intervals. As before, the external

currents applied to each neuron are subthreshold indicating

that, in this regime, the resonant drive effectively recruits

neuronal firing at each cycle of the sinusoidal wave. The

correlation peak is broad due to the temporal shift of firing

pattern of the cells having different DC input, as observed on

Figure 2C.

When wE is increased, the excitation is strong enough to

activate inhibition, thus decreasing the E/I ratio and causing

the E/I trajectory to pass through the first turning point

FIGURE 4
Temporal interdependencies between the excitatory and inhibitory currents (A,B,C) Cross correlation of network’s E and I currents for: no
oscillatory drive (A), 5 Hz (resonant) (B), and 40 Hz (C) external oscillatory drive within time windows of 1s width (D–F)Cross correlation of network’s
E and I currents for: no oscillatory drive (D), 5 Hz (E), 40 Hz driving (F)within time window of 60 mswidth. X-axis denotes the time delay between the
two currents; negative values denote excitation leading inhibition. Excitatory synaptic strength wE increases from top to bottom (arrow in (A)
and (D)), with the E/I ratio indicated on Y-axis. Horizontal lines correspond to star markers on the E/I vs total current curves in (G–I), respectively.
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(Figures 4G–I). Between the first and second horizonal line

(Figures 4A–F), corresponding to the first and second marker

(Figures 4G–I), periodic correlation patterns spontaneously

appear without external driving input (Figures 4A,D). In this

regime, we observe a dynamic interaction between resonance

and spontaneous oscillatory bursting. When the network is

driven by an oscillation at resonant frequency, the inter-

burst intervals are stabilized at 200 ms - corresponding to

the period of 5 Hz oscillation (Figure 4B). In the non-

resonant regime (i.e., no oscillatory drive or 40 Hz drive)

inter-burst intervals change their duration monotonically

with the increase of wE (Figures 4A,C). Furthermore, with

5 Hz stimulation the correlation between two oscillatory

cycles is higher, indicating more robust and systematic

network activation (compare Figures 4A–C). These two

features indicate that the external oscillatory drive at

natural neuronal firing frequency is able to stabilize

the firing pattern independently of changes of synaptic

strength.

With further increases of wE (to the range of values

corresponding to the regime around the third marker), the

system enters a network-driven PING-like regime and the

trajectory undergoes the second turning point (Figures 4G–I).

Here, while we continue to observe stabilization of inter-burst

frequency when the resonant drive is present, the detailed

temporal intra-burst pattern emerges with a cross-frequency

phase coupling between the theta band (about 5 Hz) and fast

gamma band (about 160 Hz) (illustrated by the emergence of

fingering just above horizontal line three in Figures 4D–F).

This indicates a large degree of synchrony within and between

the excitatory and inhibitory populations. These

network dynamics are now independent of external

oscillatory drive.

Resonance effects of oscillatory driving at
various balance states

Finally, to characterize E/I mediated spatio-temporal

patterning between the resonant regime and PING-like

synchronous regime, we quantified dynamic network

properties as a function of driving frequencies. We choose five

representative wE values at which we quantify the firing patterns

(Figure 5A). These points correspond to: 1) no excitatory

connections (blue), 2) a weak wE when the oscillatory drive

has significant impact on network firing (red), 3) around the first

turning point where inhibition gets activated (resonance regime,

yellow), 4) around the second turning point where the system

transitions from resonance to a PING-like regime (violet), and

finally, 6) the network is strongly connected (high wE, green).

Figures 5B,C depicts changes in the network firing rate and the

degree that spike time ordering within synchronous bursts is a

function of constant input IDC
i applied to a neuron (see

Methods). We observe that for weak coupling regimes (i.e.

small wE), when the network is driven by the oscillations

around the natural frequency (3–10 Hz) it displays not only

an increased firing rate (Figure 5B) but also highly ordered

neuronal recruitment within bursts, based on the intrinsic cell

excitability (i.e. IDC
i magnitude), (Figure 5C). This input-

dependent recruitment could possibly indicate the emergence

of a temporal code that carries network-wide information about

the relative magnitude of neuronal excitation. Such temporal

coding may subsequently drive structural network

reorganization if spike-timing dependent plasticity (STDP) is

present. For non-resonant frequencies (40 Hz, 60 Hz) we find

that this effect is absent.

The oscillation-ordered spiking is particularly prominent at

the weakest wE (blue line), indicating that this effect is gradually

FIGURE 5
Oscillatory drive frequency dependent effects on network dynamics. (A) E/I ratio vs. total current trajectory indicating the location of
representative data points on the curve (color dots). For every point the value of wE increases in the following order: blue (lowest), red, yellow, violet,
green (highest); (B) The network-wide firing rate as a function of oscillatory driving frequencies. (C) The index for cell recruitment ordering within
synchronous bursts, as a function of magnitude of external constant drive, IDC (see Methods). Note that for wE = 0–0.09 mS/cm2 at 40 and
60 Hz no bursting activity occurs.
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weakened by stronger network E/I interactions. Around the first

turning point (yellow), firing rates also display noticeable

resonance effects (Figure 5B), but the spike ordering is

diminished significantly (Figure 5C). For stronger magnitude

of wE, when PING-like bursting regime emerges (violet and

green), changing frequencies of external oscillatory drive do

not affect intra-burst spike dynamics (Figures 5B,C). The

much higher firing rate at wE around the second turning

point (Figure 5B violet) results from wide bursts which

contain random firing, in comparison to the lower firing rate

of single spike bursting (Figure 5B green).

Discussion

Here we use a biophysical model network of recurrently

connected excitatory and inhibitory neurons with type

2 excitability to investigate co-dependence of different

network synchrony mechanisms and E/I balance in the

network. By systematically varying synaptic strength, the

network E/I level forms a non-monotonic trajectory in the

total current-vs-E/I ratio relationship. In previous work, we

have shown that similar loop trajectories in the total current-

vs-E/I ratio as excitatory synaptic strength is increased occur in

networks consisting of model neurons with type 1

(i.e., integrator) excitability (Wu et al., 2020). In those

networks, the qualitative shape of the trajectory loop did not

depend on the ratio of E and I cells, the network connectivity

density or the network connectivity topology. The present results

further show this non-monotonic pattern of E/I regulation does

not depend on cellular excitability.

In networks of cells with type 2 excitability, and thus resonant

firing responses, for weak excitatory coupling, the E/I trajectory

loop was strongly modulated by external oscillatory drive when

the drive frequency was in the cellular resonance frequency

range. We observed that, with increasing strength of

excitatory synaptic coupling strength wE, the system gradually

transitions between distinct dynamical regimes (listed in order of

increasing wE): 1) ordered, input dependent spiking resonantly

driven by external oscillatory drive, 2) synchronous phase locked

network firing modulated via resonant external oscillatory drive,

3) PING-like mediated gamma/theta cross frequency coupling,

and 4) highly-synchronous single bursting oscillation. The first

two regimes are driven and/or mediated by oscillatory resonance

of neuronal subthreshold oscillations and external oscillatory

drive, and occur for weak wE. In these regimes, even though the

excitatory connectivity is weak, synchronization is dominated by

excitation. Synchrony in regimes three and 4 with high wE is

mediated by PING-like mechanisms dominated by the periodic

shunting effect of inhibition. These results indicate that the

network synchronization mechanisms gradually switch from

resonance regimes to PING regimes. These regimes are

reflected in the total current-vs-E/I ratio trajectory curve with

the second turning point defining the transition between the two

synchronization regimes. The first turning point in the trajectory

curve indicates the initiation of a more dominant effect of

inhibition in network dynamics.

We find that in the resonance regimes (1 and 2) an external

oscillatory drive near resonant frequency coupled to

subthreshold voltage oscillations provides a global temporal

readout mechanism for network states represented by the level

of the external drive to individual cells. Specifically, within

synchronous bursts the excitability of neurons receiving

different magnitudes of input is mapped onto their relative

spike times. These differences in spike times then result in

different phases of firing relative to the external drive. In brain

activity, spontaneous ordered spiking during sleep or sequential

firing of place cells in hippocampus after spatial learning has

been observed experimentally (Foster and Wilson 2006;

Wikenheiser and Redish 2013). Moreover, a frequency

dependent change in firing frequency after NREM sleep

consolidation, which could potentially be a direct outcome

of such a dynamical spike organization, was also observed in

visual cortex (Clawson et al., 2018; Puentes-Mestril et al., 2019).

Our model results predict that weak synaptic coupling with

resonant activation is necessary for this firing pattern to emerge

(Figure 5).

As wE gets stronger, loose oscillatory firing starts to form

spontaneously in the network. Here, external oscillatory drive

stabilizes network synchronous oscillations by controlling inter-

burst intervals. This potentially provides a dependable

mechanism for temporal coding which is unaffected by

fluctuations in synaptic strengths or instantaneous E/I balance

(Figure 4). Generally, in this regime, the oscillatory drive recruits

excitation more effectively than inhibition due to the fact that

cells are hyperpolarized, leading to larger driving forces of

excitatory currents.

In regimes three and four characterized by higher wE values, a

PING-like mechanism emerges with inhibition fully dominating

the generation of network synchronization (Figure 3). The

random firing within bursts turns into synchronous spiking

on a much faster time scale, generating nested, phase-coupled

theta and fast gamma oscillatory activity (Figure 4). In the brain,

such coordinated oscillations are proposed to be essential in

precise neuronal communication (Fries 2005). In particular,

gamma rhythmic firing has been well studied as a facilitator

of inter-regional communication (Buzsáki and Watson 2012;

Akam and Kullmann 2014; Bastos et al., 2015), as fast gamma

band activity may be able to carry local information that is

propagated sequentially via different cycles of the global theta

oscillation (Sirota et al., 2008; Tort et al., 2009) (Li et al., 2012).

With even stronger excitatory coupling, highly synchronous,

seizure-like bursting appears due to extreme levels of coordinated

inhibition in tight temporal correlation with excitation. Thus

abnormally potentiated excitatory synapses may result in

abnormal neural states, which in the neocortex is
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demonstrated to result from phase coherent currents (Breton

et al., 2019).

These last two regimes are independent of neural resonance

properties but only depend on structural network properties,

coinciding with previous results observed in similar networks

consisting of type 1 neurons (Wu et al., 2020).

Here, we considered generic, small, randomly connected,

directed networks that represent local circuits within larger

cortical or hippocampal areas. The networks contained equal

numbers of E and I cells so that the relative contributions of

excitatory and inhibitory signaling in the network could be

directly compared and controlled by the relative values of the

synaptic strengths, wE and wI. In most brain networks, E cells

outnumber I cells with a ratio of about 10:1, and we have

previously shown that qualitatively similar E/I regulation

occurs in networks with more physiologically accurate

fractions of cell types (Wu, Aton et al., 2020). Additionally,

the networks considered here had a fixed connectivity density

(3%) that is within the range of reported estimates for local

connectivity in hippocampal brain areas, but higher than the

reported median (Tecuatl et al., 2021).

Regarding the robustness of our results to varying

connectivity densities, we note that our results focus on

synchronization in networks of neurons with type

2 excitability and resonance properties, that show high

susceptibility for synchronization with sufficient excitatory

synaptic signaling. Previous modeling work has shown that

with respect to the generation of synchrony in these types of

networks, connectivity density and synaptic weight can

compensate for each other, particularly for excitatory density

and synaptic weight (Bogaard et al., 2009; Rich et al., 2017). For

the results reported here, we expect that, for networks with lower

connectivity density, dynamics similar to regime 1, characterized

by large effects of external resonant drive, would persist for larger

ranges of wE values. However, regime four dynamics, which

exhibit the tightest synchrony across the entire network, may not

be achieved even for the highest wE values. This is because a

sufficient level of inhibitory shunting (which is driven by

sufficiently synchronized excitatory drive) required to generate

PING-like synchrony may not be achieved. Further, the extent of

wE intervals displaying dynamics of regimes 2 and three would be

sensitive to the wI value and inhibitory connectivity density.

Specifically, sufficiently high inhibitory signaling would be

needed to achieve PING-like synchrony. With lower

inhibitory connectivity density, we further expect that

modulation of network dynamics by external resonant drive

may be more dominant in all dynamical regimes.

On the other hand, for networks with higher connectivity

density we expect that regime 1 dynamics would transition to

regime 2 dynamics for lower wE/wI values, as synchronization

through excitatory signaling would be promoted. Likewise,

regimes three and four dynamics may be achieved for lower

wE values, depending on the wI value. Modulation of network

activity by external resonant drive may be reduced in networks

with higher connectivity density, as synaptic signaling would

more strongly influence cell responses.

Finally, while the specific values of network parameters

considered here may not be representative of all brain

networks, the network dynamics we explore occur between

regimes where excitatory and inhibitory signaling is equal,

namely between the two crossings of the E/I trajectory loop

through the point (E/I ratio = 1, total synaptic current = 0 μA).

Thus, our results pertain to physiologically reasonable

regimes.

Our modeling results provide insight into possible network

transitions through regulation of E/I balance and oscillatory

tone. It provides a basis for coexistence of multiple

communication schemes in the hierarchical organization of

the brain (Hahn et al., 2019). We conclude that changing E/I

levels in the network mediate these diverse communication

schemes. Our findings provide clear predictions for continued

experimental studies of E/I balance regulation and network

dynamic transitions.
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