
Detecting the relationships
among multivariate time series
using reduced auto-regressive
modeling

Toshihiro Tanizawa1* and Tomomichi Nakamura2

1Data Analysis Group, InfoTech, Connected Advanced Development Division, Toyota Motor
Corporation, Tokyo, Japan, 2Graduate School of Information Science, University of Hyogo, Kobe,
Japan

An information theoretic reduction of auto-regressive modeling called the

Reduced Auto-Regressive (RAR) modeling is applied to several multivariate

time series as a method to detect the relationships among the components in

the time series. The results are compared with the results of the transfer

entropy, one of the common techniques for detecting causal relationships.

These common techniques are pairwise by definition and could be

inappropriate in detecting the relationships in highly complicated dynamical

systems. When the relationships between the dynamics of the components are

linear and the time scales in the fluctuations of each component are in the same

order of magnitude, the results of the RAR model and the transfer entropy are

consistent. When the time series contain components that have large

differences in the amplitude and the time scales of fluctuation, however, the

transfer entropy fails to detect the correct relationships between the

components, while the results of the RAR modeling are still correct. For a

highly complicated dynamics such as human brain activity observed by

electroencephalography measurements, the results of the transfer entropy

are drastically different from those of the RAR modeling.
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1 Introduction

To understand the dynamical properties of any complicated systems including those in

physiology, we have to analyze a set of signals generated by the system under consideration,

varying in time and interrelated with each other, which is referred to as multivariate time

series. Though it is surely important to understand the time dependence of each component of

the time series separately, it is also crucial to detect the directed relationships among the

components, in which the structure and functionality of the system are partially embodied. In

many cases including those in physiology, however, the system is so complicated that we have

no theoretical argument to identify the relationships from the first principle and we have to

detect them only from observed data.
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There are several common techniques for such detection.

Among them, the Granger causality is probably the most classical

and well-known [Granger (1969)]. This technique tries to detect

causal relationship between two components from the

improvement of prediction errors of the one of the two

components by including the signals of the other component.

Other techniques, such as the Directed Transfer Function

[Kamiński and Blinowska (1991); Kamiński et al. (2001)] or

Partial Directed Coherence [Baccalá and Sameshima (2001)] are

based on the Vector Auto-Regressive (VAR) model with the

coefficients transformed into the frequency domain to investigate

the spectral properties. Schreiber (2000) has introduced another

measure to detect the relationships called transfer entropy by an

extension of the concept of mutual information.

An important feature of these techniques is that they are

pairwise measures. In other words, these measures are calculated

by taking all pairwise combinations out of a set of the

components contained in the time series. It is not obvious,

however, whether the relationships among components more

than three can always be broken into pairwise relationships. For

instance, let us consider the case in which two pairs of

components, (A, B) and (A, C), are directly related within

each pair. Despite that there is no direct relationship between

B and C, the pairwise measure would detect a non-zero value of

indirect relationship via A and we need an appropriately chosen

threshold to determine the acceptance of this

relationship. Though there are several procedures such as the

surrogate data method (Theiler et al. 1992) in choice of the

threshold value, it would be preferable if we have a method that

enables us to extract the direct relationships from an entire set of

components without pairwise break-up and threshold.

When the number of components are large (~ 100), it is clear
that using pairwise measures is impractical. Relating to this point,

Papana et al. (2021) have recently published a comparative study

of various causality measures in the time domain aiming at

detecting direct causality in multivariate time series. The main

focus of the authors is the detectability of the causality measures

of direct relationships among multivariate time series of

components as many as 100. The authors thus compare

causality measures with various dimension reduction

techniques, such as subset regression (Breiman 1995; Yang

and Wu 2016), model reduction (Brüggemann 2003; Shojaie

and Michailidis 2010; Siggiridou and Kugiumtzis 2016), and

non-uniform embedding (Vlachos and Kugiumtzis 2010; Faes

et al. 2011; Kugiumtzis 2013).

In this article, we investigate multivariate time series of a

moderate number of components up to 10 and show that

pairwise measures such as transfer entropy might fail in

detecting relationships among components even for time

series of this relatively small number of components. As a

technique that enables us to extract relationships from an

entire set of components without pairwise break-up and

threshold, we take the Reduced Auto-Regressive (RAR)

modeling firstly proposed by Judd and Mees (1995) and

compare the results to those of the transfer entropy proposed

by Schreiber (2000), which is one of the commonest pairwise

measures in the time domain.

This article is organized as follows. In Section 2, we

describe the RAR modeling technique and the transfer

entropy after setting the mathematical notations. In Section

3, we apply the RAR modeling technique to two artificial

systems, both of which are three-component time series

defined by linear equations. The results are compared to

the values of transfer entropy and it is shown that the

transfer entropy cannot detect correct relationships when

the time series contains different time scales in fluctuation,

even when the signals are generated by linear equations. In

Section 4, we apply the RAR modeling technique to a set of

electroencephalography (EEG) data composed of 10 channels

and compare the results with those of the transfer entropy.

Discussion and Summary are in Section 5.

2 Theoretical backgrounds

2.1 Multivariate time series

We consider a set of multivariate time series,

X � x(t){ }N−1
t�0 � x(0), x(1), . . . , x(N − 1){ }, where x(t) �

(x0(t), x1(t), . . . , xM−1(t))T is a column vector composed

from M signals generated from a system under consideration

at discrete time t with equal intervals. The superscript T stands

for taking the transpose. Throughout this article, we consider

multivariate time series observed at an equal time interval and the

source that generates the i-th signal is referred to as the i-th

component in this article. In time series, the signals at the present

time are related to the signals of at some previous time called

“lag”. In this article, we are also interested in the relationships

among the components. For example, if the present signal of

component i is determined by previous values of other

components, say, 1, 3, 6, at lag 2, 1, 5, respectively, we expect

that there might be a mathematical expression

xi t( ) � f x1 t − 2( ), x3 t − 1( ), x6 t − 5( )( ), (1)

where f is a function that determines the relationship, which

might be potentially non-linear. It should be emphasized that, in

this article, the term “relationship” is used only in this meaning

and we do not discriminate whether the relationship is “causal”

or “correlational”.

2.2 Reduced auto-regressive model

The time series modeling for multivariate time series,

x(t){ }N−1
t�0 , attempts to represent the present state of the time

series x(t) by functions of the past states, x(t − 1), x(t − 2), . . .{ },

Frontiers in Network Physiology frontiersin.org02

Tanizawa and Nakamura 10.3389/fnetp.2022.943239

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2022.943239


xi t( ) � fi x t − 1( ), x t − 2( ), . . . , x t − L( )( ) i � 0, 1, . . . ,M − 1( ),
(2)

for each i-th component, where we denote the maximum time

delay (lag) as L. When the underlying dynamics of the system

generating the multivariate time series is unknown, choosing an

appropriate function form, fi, for each component and an

appropriate value of the maximum lag, L, in practice are no

trivial tasks and necessarily become heuristic. In this article, we

limit ourselves to the function form in Eq. 2 to be linear with

respect to their arguments. This limitation might be considered

as a drawback, since quite a few time series data generated by

real-world systems are potentially non-linear. Tanizawa et al.

(2018) have shown, however, that, even for the case in which the

time series data are non-linearly distorted, the linear modeling

technique can identify the built-in periodicities correctly. We

thus believe that linear modeling has a rather wide range of

applicability if the non-linearity is not so strong as to induce the

FIGURE 1
Three-component time series data generated by Eqs. 16–18 and the relationships among the components. The plotted data are a part of results
from 1,000 to 2000 iterations. In System 1, the time scales of the fluctuations of each component are in the same order of magnitude.

FIGURE 2
The values of transfer entropy of each component from other components for time delay (lag) up to 20. We plot the values for k= l= 1 in the left
column and the values for k = l = 2 in the right column for comparison. A large value of transfer entropy indicates that a large amount of information
gain exists at the lag from the corresponding components.
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dynamics to be chaotic and if the relationships and periodicities

built in the time series are sufficiently retained. In linear

modeling, the value of the i-th component at time t is

represented as

xi t( ) � ai,0 +∑
j,k

ai,j,k xj t − li,j,k( ) + εi t( ) i � 0, 1, . . . ,M − 1( ),

(3)
where ai,0 is the constant term in the modeling of the i-th

component, which is allowed to vanish and εi(t) is a dynamic

noise, which is an independently and identically distributed

Gaussian random variable with mean zero and finite variance

at t. Apart from the constant term, the value of the i-th

component at present time is represented by a linear

combination of the values of other components, xj(t − li,j,k),

at previous time with lag li,j,k and parameter ai,j,k. The

subscripts of the lags and the parameters, i, j, k{ }, indicate
that they appear in the modeling of the i-th components with

the term of the j-th component at the k-th lag. If we take all the

terms xj(t − l) (j � 0, 1, . . . , M − 1; l � 1, 2, . . . , L) up to the

maximum lag L, this model is identical to the Vector Auto-

Regressive (VAR) model.

Here we take another model, which is an information

theoretic reduction of linear models and referred to as the

Reduced Auto-Regressive (RAR) model [Judd and Mees

(1995; 1998)]. The RAR model extracts a subset of terms that

are most relevant for describing the behaviors of the multivariate

time series selected by a suitably chosen information criterion.

To be concrete, let us assume that we have a set of observed

values of four-component multivariate time series,

xi(0), xi(1), . . . , xi(N − 1){ } (i � 0, 1, 2, 3), to be fitted in the

linear form Eq. 3,

x̂i t( ) � ai,0 +∑
3

j�0
∑
k

ai,j,k xj t − li,j,k( ) i � 0, 1, 2, 3( ). (4)

Here, we represent the value of the model for the i-th

component at time t as x̂i(t), while the observed value as

xi(t). The terms xj(t − li,j,k) included in the model are selected

from a “pool of terms”, which is called a “dictionary”. For

example, if we take the maximum lag as L = 25, the

dictionary for the model of the i-th component contains

101 terms, which are

1, x0 t − 1( ), . . . , x0 t − 25( ),{ x1 t − 1( ), . . . , x1 t − 25( ),
x2 t − 1( ), . . . , x2 t − 25( ), x3 t − 1( ), . . . , x3 t − 25( )} (5)

with element 1 for the constant term. From this dictionary, we

extract the optimal subset of terms and determine the values of

parameters, ai0, ai,j,k corresponding to the extracted terms by

minimizing a suitably chosen information criterion.

Information criteria have a general form,

Number of data( ) × log Mean square prediction error( )
+ Penalty for the number of terms( ). (6)

The mean square prediction error is the average of the

squared norm of the prediction error vector,

e � (xi(0) − x̂i(0), xi(1) − x̂i(1), . . . , xi(N − 1) − x̂i(N − 1))T,
which represents the difference between the observed values and

the values calculated from the model, Eq. 4. Since the observed

values inevitably contain dynamical and observational noise,

minimizing only the mean square prediction error leads to

over-fitting and deteriorate the ability of the model in

prediction. Information criteria compensate this deficiency

with the penalty for the number of terms, which favors a

small number of terms in the model. Among several

FIGURE 3
Three-component time series data generated by Eqs. 22–24 and the relationships among the components. The plotted data are a part of results
from 1,000 to 2000 iterations. In this artificial system, the time scales in the fluctuations of each component are different: Component x0 fluctuates
slowly, component x1 fluctuates rapidly, and component x2 fluctuates intermediately.
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information criteria proposed in the literature, we take the

Description Length (DL) suitably modified by Judd and Mees

(1995) as the information criterion in this article. This DL has

proven to be effective even in modeling nonlinear dynamics and

has fewer approximations than other information criteria (Judd

and Mees (1998); Small and Judd (1999)). Assuming that the

dynamic noise, εi(t), in Eq. 2 is Gaussian, and the parameters, ai,0
and ai,j,l, are chosen to minimize the sum of squares of the

prediction errors, eT ·e, Judd and Mees have shown that the

description length is bounded by

DL K( ) � N

2
− 1( )ln eTe

N
+ K − 1( ) 1

2
+ ln γ( ) −∑

K

i�1
ln δi, (7)

where N is the length of the time series to be fitted, K is the

number of the parameters that take non-zero values (or the

model size), and the variables δi (i = 1, 2, . . ., k) can be interpreted

as the relative precision to which the parameters are specified. For

the details of the variables δi, see Judd and Mees (1995) and Judd

and Mees (1998). The number γ is a constant and typically fixed

to be γ = 32 for choosing a small model size K.

To extract the optimal subset to minimize DL(K) from the

dictionary of terms, we have to resort a practical selection

algorithm, since the exhaustive search is an NP-hard problem

when the dictionary contains over a dozen of terms. In this

article, we adopt an algorithm proposed by Nakamura et al.

FIGURE 4
The values of transfer entropy of each component from other components for various values of time delay (lag) up to 20. We plot the values for
k = l = 1 in the left column and the values for k = l = 2 in the right column for comparison. A large value of transfer entropy indicates that a large
amount of information gain exists at the lag from the corresponding components.

FIGURE 5
The placement of 10 electrodes in International
10–20 System for electroencephalography measurements. The
top (bottom) is the front (back) direction of the head. The digits
over the circles representing electrodes are the component
numbers used in the RAR modeling.
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(2004). Instead of the exhaustive search, this algorithm begins

from identifying the model of the shortest size, K = 1, then we

look for the term to be added to obtain a smaller value of DL. The

model size thus become larger one-by-one until DL ceases to

decrease, which is called the bottom-up method. To avoid to be

trapped in a local minimum, we proceed a little further to

increase the model size, K, and then go back to decrease the

model size one-by-one until DL ceases to decrease, which is

called the top-down method. We repeat these bottom-up and

top-down methods until the optimal models in two methods

coincide with each other. Nakamura et al. (2004) have proven

that this algorithm is able to obtain better models in most cases

than other algorithms with reasonable computation time.

A typical result of RAR modeling takes the form

x̂0 t( ) � 1.34 + 0.39x0 t − 1( ) − 0.20x0 t − 3( ) + 0.31x1 t − 4( )
+ 0.20x3 t − 7( ),

(8)

which includes only the terms, x0(t − 1), x0(t − 3), x1(t − 4), and

x3(t − 7), in the dictionary. The RARmodel thus includes only terms

of relevant components and lags, which is the most important

difference between the RARmodel and the VARmodel. Due to this

difference, we are able to identify the directed relationships among

components in multivariate time series. For instance, Eq. 8 implies

that component x0 is affected by x1 and x3 apart from x0 itself. It

should also be emphasized that there are strong information

theoretic arguments to support that the RAR model can detect

any periodicities built into given time series [Small and Judd (1999)].

2.3 Transfer entropy

Transfer entropy is an information theoretic measure for

quantifying the information flow between two univariate

time series, which we denote here as . . . , x(0),{
x(1), . . . , x(N − 1), . . . }and

FIGURE 6
The plots of the 10 channel electroencephalography signals analyzed in the present section. All plotted data are normalized and dimensionless.
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. . . , ~x(0), ~x(1), . . . , ~x(N − 1), . . .{ } . They are not necessarily

related to each other. Let us assume that the values x(t) and ~x(t)
at each time t are independent draws from two discrete stochastic

variables, X � (x0, . . . , xi, . . . , xI−1) and
~X � (~x0, . . . , ~xj, . . . , ~xJ−1), respectively, as the simplest

example. It is well known in information theory that the

average number of bits needed to optimally encode

independent draws from X is given by the Shannon entropy

HX � −∑I−1
i�0P(xi)log2P(xi), where P(xi) is the probability for

X = xi. The extra information gain of the state of X = xi by

obtaining the state of ~X is measured by the entropy decrease

ΔHX← ~X xi( ) � −P xi( )log2P xi( ) −∑
J−1

j�0
P ~xj( )P xi|~xj( )

−log2P xi|~xj( )( )
(9)

� ∑
J−1

j�0
P xi, ~xj( )log2

P xi|~xj( )
P xi( ) , (10)

where P(xi, ~xj) is the joint probability for (X, ~X) � (xi, ~xj) and
P(xi|~xj) � P(xi, ~xj)/P(~xj) is the conditional probability for X =

xi under the condition of ~X � ~xj. Finally the total information

gain of X by the knowledge of ~X is obtained by the summation

over xi, which is

ΔHX← ~X � ∑
I−1

i�0
ΔHX← ~X xi( ) � ∑

I−1

i�0
∑
J−1

j�0
P xi, ~xj( )log2

P xi|~xj( )
P xi( ) . (11)

Noticing that

P xi|~xj( )
P xi( ) � P xi, ~xj( )

P xi( )P ~xj( ), (12)

we see that the information gain in this simplest case is

symmetric with respect to X and ~X and measures the mutual

correlation between X and ~X.

Schreiber (2000) extended this concept to the directional

information flow between two time series. As time series data

have correlation in time direction, the joint probability of signals

between different times, P(x(t), x(t′)) cannot be separated as the

product, P(x(t)) · P(x(t′)). By taking this feature into

consideration, Schreiber defined the transfer entropy from ~X

FIGURE 7
The values of transfer entropy of component Fz from other components with respect to the lags up to 30. All values are in the same order of
magnitude and do not show distinct peaks.

FIGURE 8
Plot of the components and the maximum values of transfer entropy of component Fz for each lag up to 30 sorted in the descending order of
the values of transfer entropy. The red bars are the top five values of transfer entropy. For component Fz, all top five values come from
component C3.
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to X as the information gain of the time series X by obtaining the

values of ~X, which is

TX← ~X L, k, l( ) � ∑
N−1

t�0
P x t + L( ), x k( )

t , ~x l( )
t( ) log2

P x t + L( )|x k( )
t , ~x l( )

t( )
P x t + L( )|x k( )

t( ) ,

(13)
where

x k( )
t � x t − k + 1( ), x t − k + 2( ), . . . , x t( ){ }, (14)
~x l( )
t � ~x t − l + 1( ), ~x t − l + 2( ), . . . , ~x t( ){ }. (15)

Here we slightly extend the definition by Schreiber to include

the time difference L that can be a positive integer larger than one

to measure the effect of time delay in information flow.

The transfer entropy is non-negative and becomes zero when

X and ~X are statistically independent. For the values of k and l,

the value k = l = 1 is commonly used. In this article, we compare

two cases for k = l = 1 and k = l = 2 in Section 3. It should be noted

that the transfer entropy between two time series is asymmetric

in X and ~X, which enables us to determine the directional

relationship between these two time series. Another important

point to be mentioned is that the transfer entropy is a pairwise

quantity by definition. To investigate the directional

relationships among multivariate time series whose

components are more than three, we should calculate and

compare the values of transfer entropy of all pairs in the

components of the time series.

3 Experiments on artificial linear
systems

In this section, we apply the RAR modeling technique to

two artificial systems, both of which are represented by linear

combinations of the terms of three components with various

distinctive lags to investigate the directional relationship

among the components and compare the results to the

ones obtained from the calculated values of transfer

entropy. The difference between these two time series is the

time scales of fluctuations of each component. While the time

scales of fluctuations of all components in the first system

(System 1) are similar, the time scales in the second system

(System 2) differ from each other.

3.1 System 1: A case with fluctuations in
similar time scales

The time series of System 1 are generated by the following

linear equations:

x0 t( ) � 0.4x0 t − 1( ) − 0.2x0 t − 3( ) + 0.3x1 t − 4( )
+ 0.2x2 t − 7( ) + ε0 t( ), (16)

x1 t( ) � 0.2x0 t − 2( ) + 0.3x2 t − 9( ) + ε1 t( ), (17)
x2 t( ) � 0.2x0 t − 2( ) + 0.5x2 t − 1( ) − 0.3x2 t − 3( ) + ε2 t( ),

(18)
where εi(t) (i � 0, 1, 2) are the dynamic noise that are drawn

from independently and identically distributed (IID) Gaussian

random variables with mean zero and standard deviation 1.0.

This system generates non-divergent signals. The time scales in

the fluctuations of each component are in the same order of

magnitude, as it can be seen in Figure 1. It should also be noted

that component x1 are generated by other components, x0 and x2
and not related to the previous values of x1 itself. In Figure 1, the

relationships among the components are also depicted.

We generate 10000 data points for each component of

System 1 after sufficient number of iterations to erase initial

value dependence to build the RAR model. In the modeling, we

set the maximum time delay L = 25. The dictionary contains

therefore 76 terms, which are 25 terms for the three components

plus one constant term. Having in mind that we build RAR

models from electroencephalography data with

1,025 observations in Section 4, we divide these 10,000 data

points into 10 intervals each of which contains 1,000 data points

FIGURE 9
Pictorial summary of the results of the RAR model and the
transfer entropy for component Fz. The target component Fz is
represented by the red circle. The circles from which the arrows
emanate, which are Cz and F3, represent the components
contained in the RAR model with the width of the arrows being
proportional to the number of appearance of the component in
the RAR model. For the case of component Fz, component Cz
appears two times and component F3 appears three times. The
orange circles represent the components that give the top 5 values
of transfer entropy for each lag, which is only C3.
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and compare the results of RAR modeling corresponding to each

divided interval. The results are summarized as

x̂0 t( ) � 0.41 2( )x0 t − 1( ) − 0.21 2( )x0 t − 3( ) + 0.31 4( )x1 t − 4( )
+ 0.20 3( )x2 t − 7( ),

(19)
x̂1 t( ) � 0.20 3( )x0 t − 2( ) − 0.31 2( )x2 t − 9( ), (20)
x̂2 t( ) � 0.20 2( )x0 t − 2( ) + 0.49 2( )x2 t − 1( ) − 0.28 3( )x2 t − 3( ).

(21)
The notation for the values of the parameters such as 0.41(2)

represents that the mean value of the parameter of x0(t − 1) over

the models for 10 intervals is 0.41 with the standard deviation of

0.02. Notice that all terms included in the definitions, Eqs. 16–18,

are recovered with correct values of parameters within appropriate

statistical errors and contain no other unnecessary terms.

Figure 2 shows the values of transfer entropy calculated from

the same data as used in the RAR modeling summarized in Eqs.

19–21, though all 10,000 data points for each component are used

in this calculation. To see the effect of the values of k and l in the

definition of transfer entropy, Eq. 13, we calculate the values for k =

l = 1, which aremost commonly used, and k = l = 2 for comparison.

Let us examine the results of for k = l = 1 (the left column of

Figure 2). For component x0, the large values of transfer entropy

come from component x1 at lag 4 and component x3 at lag 7.

Compared to the generator of x0 defined by Eq. 16, these peaks

are consistent with the terms x1(t − 4) and x3(t − 7) in the

generator of x0. For component x1, peaks appear at lag 2 for

component x0 and at lag 9 for component x2, which are also

consistent with the terms x0(t − 2) and x2(t − 9) in the generator

of x1, Eq. 17. For component x2, the large value of transfer

entropy at lag 2 for component x0 is consistent with the term

x0(t − 2) in Eq. 18, though there is another small peak at lag 6 for

component x0, which does not have any corresponding term in

Eq. 18. The values for component x1 are almost zero, which is

reasonable, since component x2 is independent of x1. For the

results of k = l = 2 (the right column of Figure 2), the behaviors

are almost the same as those of k = l = 1 except that there appear

FIGURE 10
Summarized results for other components. Red circles represent the target components against which the RARmodels are built. The arrows are
the directed relationships indicated by the corresponding RAR models. The orange circles are the components that gives large values of transfer
entropy to the target nodes. See the caption of Figure 9 for the details. Since the RAR model of component F3 contains only terms of F3 itself, there
are no arrows in the picture for F3.
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two consecutive peaks, since the correlation of x(t + L) with x(t),

x(t − 1), x̂(t), and x̂(t − 1) are taken into account for k = l = 2. As

it is also seen later in the results of another artificial system,

Figure 4, taking k = l = 1 would be sufficient for the purpose of

identifying the directional relationships among components in

time series. For the case of System 1, in which the time scales of

the fluctuations of each components are in the same order of

magnitude, transfer entropy is able to detect the correct

relationships among components in multivariate time series as

well as the RAR modeling does.

3.2 System 2: A case with fluctuations with
different time scales

The time series of System 2 are generated by the following

linear equations:

x0 t( ) � 1.29x0 t − 1( ) − 0.3x0 t − 4( ) + 0.25x1 t − 3( ) + ε0 t( ),
(22)

x1 t( ) � 0.3x1 t − 1( ) + 0.2x1 t − 6( ) + ε1 t( ), (23)
x2 t( ) � 5.0x1 t − 3( ) + 0.9x2 t − 1( ) + ε2 t( ), (24)

where εi(t) (i � 0, 1, 2) are the dynamic noise drawn from IID

Gaussian random variables with mean zero and standard

deviation 1.0 as in System 1. Figure 3 plots the signals

generated by these equations and the relationships among the

components. The most prominent feature of this system is the

differences in the time scale of fluctuation of each component.

Component x0 fluctuates slowly over about 50 iterations,

component x1 fluctuates rapidly in almost every iteration, and

component x2 fluctuates intermediately in time scale between

those of x0 and x1. It should also be noticed that component x1,

which has the smallest amplitude and is independent of other

components, affects components x0 and x2. In this regard, System

2 has more complicated characteristics than System 1, even

though the dynamics is represented by linear equations.

As in the case of System 1, we generate 10,000 data points for

each component of System 2 to build the RAR model, then we

divide these 10,000 data points into 10 intervals each of which

contains 1,000 data points and compare the corresponding

results of RAR modeling. We set the maximum lag as L = 25

and use the same dictionary containing 76 terms as used for

System 1. The results are summarized as

x̂0 t( ) � 1.286 7( )x0 t − 1( ) − 0.296 8( )x0 t − 4( )
+ 0.25 2( )x1 t − 3( ), (25)

x̂1 t( ) � 0.30 3( )x1 t − 1( ) + 0.19 2( )x1 t − 6( ), (26)
x̂2 t( ) � 5.01 3( )x1 t − 3( ) + 0.900 1( )x2 t − 1( ). (27)

As in the case of System 1, all terms and parameters are

correctly recovered within reasonable statistical errors for System

2 in spite of the differences in the amplitude and the time scale of

fluctuation for each components.

Figure 4 shows the values of transfer entropy calculated using

all 10,000 data points of the same data as used in the RAR

modeling summarized in Eqs. 25–27. As in the case of Systems 1,

we calculate the values of transfer entropy for both k = l = 1 and

k = l = 2 for comparison. First of all, the values of the transfer

entropy of component x0 shows no distinctive peaks, which is

remarkably different from those of components x1 and x2.

Moreover, the values from component x2 are always larger

than those of component x1, though the generator of x0
defined by Eq. 22 is independent of component x2. This

deceptive result might be caused by the fact that the

amplitudes of components x0 and x2 are in the same order.

For x1, the values are very small around 0.0075 and the large

values come from x2 at lags 2 and 3, though there are no such

terms in the generator of x1, Eq. 23. The small values might be

related to the fact that component x1 is independent of other

components, though for decisive conclusion for the

independence we need to estimate the effect of dynamical

and/or observational noise using a method like surrogate

generation based approach. For component x2, the large

values of transfer entropy come from x1 at lags 3 and 4 that

might corresponds to the term x1(t − 3) in Eq. 24, though the

values of transfer entropy show a long tail after the peak, which

might be incompatible with Eq. 24. For the results of k = l = 2 (the

right column of Figure 2), the behaviors are almost the same as

those of k = l = 1. Even if the dynamics is represented by linear

equations and the signals contain a small amount of Gaussian

noise, the transfer entropy begins to fail in capturing the correct

relationships among components for System 2 containing

different time scales in fluctuation of each component.

4 Results on electroencephalography
data

In this section, we apply the RAR modeling to

electroencephalography (EEG) data and compare the results

to the values of transfer entropy. The EEG signals used here

were recorded from a healthy human adult during resting state

with eyes closed in an electrically shielded room and have been

analyzed by other methods in Rapp et al. (2005). The data were

simultaneously obtained from 10 channels of the unipolar

10–20 Jasper registration scheme and digitized at 1,024 Hz

using a twelve-bit digitizer. In Figure 5, we show the

placement of 10 electrodes in International 10–20 System.

Artifact corrupted records were removed from the analyses.

The EEG impedances were less than 5 kΩ. The data were

amplified by gain equal to 18,000, and amplifier frequency

cut-off settings of 0.03 Hz and 200 Hz were used.

The 10 channel electroencephalography signals analyzed

here are plotted in Figure 6. It should be noted that the plotted

data are all normalized and dimensionless. The activities of

human brain are, undoubtedly, highly complicated and non-

Frontiers in Network Physiology frontiersin.org10

Tanizawa and Nakamura 10.3389/fnetp.2022.943239

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2022.943239


linear by nature. We should therefore be careful whether there

might be suitable interval and duration of time for the

dynamics to be approximated in linear forms. Tanizawa

et al. (2018) have shown that the RAR modeling is able to

detect correct relationships among components even for

dynamical systems represented by non-linear differential

equations such as the Rössler system. Since there is no

explicit description of the results of RAR modeling of the

EEG data in Tanizawa et al. (2018), we rebuild the RAR

models for these 10 EEG time series, expecting the models

contain correct information about the relationships among

the components. We use 1,025 data points (1 s) for each

component (channel) to build multivariate RAR models.

We set the maximum lag as L = 25 and the dictionary

contains therefore 251 terms, which are 25 terms for the

10 components with one constant term. We show the result

for the component Fz explicitly, which is

x̂Fz t( ) � 0.96xFz t − 1( ) + 0.46xCz t − 1( ) − 0.43xCz t − 2( )
− 0.091xF3 t − 5( ) + 0.17xF3 t − 13( )
− 0.095xF3 t − 20( ). (28)

From this model, component Fz is influenced by component

Cz at lag 1 and 2 and component F3 at lag 5, 13, and 20. In Figures

11, 12 of Appendix, we show the behaviors of simulated signals

generated from the RARmodels and their power spectral densities.

For the transfer entropy, we use the same data points as those

used in RAR model building and calculate the information gain

from the correlation in the signals between all pairs of component

Fz and each of other channels up to the maximum lag 30.

According to the analysis described in Section 3, we set k = l =

1 in calculating transfer entropy. The results of the calculation is

plotted in Figure 7. From this plot, we see that all values of transfer

entropy are in the same order of magnitude and show no distinct

peaks that suggest important components and lags. We also plot in

Figure 8 the components and the maximum values of transfer

entropy of component Fz for each lag up to 30 sorted in the

descending order of the values of transfer entropy. According to

the calculations of transfer entropy for component Fz, the

information gain from component C3 is the largest. The

component C3, however, does not appear in the RAR model of

component Fz in Eq. 28. The values of transfer entropy for other

components show similar behaviors.

We summarize these results for component Fz in Figure 9. In

this figure, the target component against which the RAR model and

the transfer entropy are calculated (in this case, Fz), is represented by

a red slightly large circle. The circles fromwhich the arrows emanate

(in this case, Cz and F3), represent the components contained in the

RAR model with the width of the arrows being proportional to the

number of appearance of the component in the RAR model. In this

case, component Cz appears two times and component F3 appears

three times. The orange circles represent the components that give

the top 5 values of transfer entropy for each lag. In this case, all top

5 values only come from component C3 (See Figure 8). From this

figure, we also see the spatial information of the components

included in the RAR model and the components that gives large

values of transfer entropy.

As for the other nine components, we show only the

summarized results in Figure 10. Generally speaking, the

components that give large values of transfer entropy are not

related to the components included in the RAR models. It is also

to be noticed that the component Oz, which is placed at the back

of the head, appears frequently as the component of large transfer

entropy values, though it is not likely the outcome of direct

influence of this component on the target components.

5 Discussion and summary

For two artificial linear systems described in Section 3, the

results of the transfer entropy are consistent with those of the

RAR modeling, if the values and the time scales in fluctuation of

the signals are in the same order of magnitude (System 1). In this

case the dynamics of the components are well separated and

pairwise methods such as the transfer entropy work well. If the

time series contain components whose values and time scale of

fluctuation are significantly different from each other (System 2),

however, the transfer entropy begins to fail in detecting correct

relationships among components, while the RARmodeling is still

able to give the correct relationships.

For the application to EEG data in Section 4, the relationships

indicated by the results of transfer entropy are drastically different

from those indicated by the RAR modeling. Though, within our

knowledge, there are no decisive research work in the literature in

this regard, we think it is partially because of the insufficiency of

pairwise measures for detecting relationships among components

that potentially contain various time scales in dynamics for those

seen in brain activity. In contrast, it is known that the RAR

modeling can detect correct relationships even when the

underlying system is non-linear (Tanizawa et al. (2018)). We

understand that it would be a controversial issue whether EEG

data can be representable by linear models or not. Even in a case in

which that the dynamics is represented by a linear system,

however, transfer entropy might fail in detecting the correct

relationships among the components in multivariate time series,

if they contain several time scales in different orders of magnitude.

Thoughwe do not claim that the relationships detected by the RAR

modeling technique are always correct, detecting the relationships

among components in multivariate time series by RAR modeling

could be a promising technique with a wide range of applicability.

In summary, we have applied the RARmodeling technique to

several multivariate time series as a method to detect the

relationships among the components in the time series and

compared the results with those of a pairwise measure,

transfer entropy in this article. When the relationships

between the dynamics of the components are linear and the
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time scales in the fluctuation of each component are in the same

order of magnitude, the results of the RARmodel and the transfer

entropy are consistent. When the time series contain

components that have large differences in the amplitude and

the time scales of fluctuation, however, the transfer entropy fails

to capture the correct relationships between the components,

while the results of the RAR modeling are still correct. For a

highly complicated dynamics such as human brain activity

observed by electroencephalography measurements, the results

of the transfer entropy are drastically different from those of the

RAR modeling.
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Appendix

In this Appendix, we show the behaviors of simulated EEG

signals generated by the RAR models and their power spectral

densities in the frequency domain. Here the RAR models are

constructed from the first 769 observations of each EEG channels

to compare the simulated signals to the last 256 observations.

Figure 11 are the plots of simulated signals generated by the

RAR models with the last 281 observed EEG signals for

comparison. The RAR signals are generated with 25 observed

signals prior to the last 256 signals as initial values and contain

Gaussian random numbers with mean 0 and standard deviations

determined from the fitting errors of each channels in RAR

modeling as dynamic noise. Though the observed signals and the

simulated ones are not identical because of the dynamic noise,

the behaviors seem to be quite similar.

Figure 12 are the plots of the power spectral densities of

simulated signals from the RAR models. Plotted values are the

averages of the power spectral densities over 100 independent

runs of simulation. Significant contributions come from

frequencies up to about 20 Hz that correspond to the region

of α waves.
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FIGURE 11
Comparative plots of the observed EEG signals and the signals generated by the RAR models, which are constructed from the first
769 observations of each channel. The observed EEG signals are the last 281 (= 25 + 256) signals of each channel and the RAR signals are generated
by the corresponding RAR models with 25 observed signals prior to the last 256 signals as initial values. Simulated signals also contain Gaussian
random numbers with mean 0 and standard deviations determined from the fitting errors of each channels in RAR modeling as dynamic noise.
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FIGURE 12
Plots of the power spectral densities of simulated signals from
the RAR models. Plotted values are the averages of the power
spectral densities over 100 independent runs of simulation.
Significant contributions come from frequencies up to about
20 Hz.
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