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We study synchronization phenomena in a multiplex network composed of two rings with
identical Leaky Integrate-and-Fire (LIF) oscillators located on the nodes of the rings. Within
each ring the LIF oscillators interact nonlocally, while between rings there are one-to-one
inter-ring interactions. This structure is motivated by the observed connectivity between
the two hemispheres of the brain: within each hemisphere the various brain regions interact
with neighboring regions, while across hemispheres each region interacts, primarily, with
the functionally homologous region. We consider both positive (excitatory) and negative
(inhibitory) linking. We identify numerically various parameter regimes where the multiplex
network develops coexistence of active and subthreshold domains, chimera states,
solitary states, full coherence or incoherence. In particular, for weak inter-ring coupling
(weak multiplexing) different synchronization patterns on the two rings are supported.
These are stable and are obtained when the intra-ring coupling values are near the critical
points separating qualitatively distinct synchronization regimes, e.g., between the travelling
fronts regime and the chimera state one.

Keywords: chimera states, subthreshold oscillations, multilayer networks, excitatory coupling, inhibitory coupling,
kuramoto order parameter, correlation function, weak multiplexing

1 INTRODUCTION

Recent studies in networks of coupled nonlinear oscillators have revealed intriguing synchronization
phenomena, which emerge as cooperative effects and can not be predicted by the dynamics of the
single oscillators. Common synchronization phenomena in the natural sciences include the rhythmic
activity or brainwaves in the central nervous system, the coordinated synchrony in orchestra music,
the coordination of simultaneous threads or processes to complete a task (parallel processing) in
computer science and, at the opposite end, the dangerous failures of synchrony in
telecommunications, in electricity networks and in many other domains of modern technology
(Pikovski et al., 2001; Strogatz, 2003; Boccaletti et al., 2018). One notable synchronization example is
the partial, local synchronization or chimera state. Chimera states are stable states in oscillator
networks, which are composed by coexisting domains of coherent and incoherent oscillators and find
various applications, in particular, in the synchronization of neuronal networks (Panaggio and
Abrams, 2015; Schöll, 2016; Boccaletti et al., 2018; Omel’Chenko, 2018).

Previous studies of networks composed by Leaky Integrate-and-Fire (LIF) neuronal oscillators
with different connectivity schemes have revealed the presence of chimera states with multiple
patterns. Luccioli and Politi have studied chimera states in all-to-all coupled networks of
nonidentical LIF oscillators (Luccioli and Politi, 2010). Olmi et al., have reported chimera
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states in two populations of coupled LIF neurons, which contain
all-to-all links within each population and one-to-one links
between populations (Olmi et al., 2010). Along similar lines,
Olmi and Torcini report breathing chimeras and generalized
chimera states, where both populations are in partial synchrony,
but with different levels of synchronization (Olmi et al., 2019).
In the same reference, the authors also study the persistence of
chimera states under the influence of disorders, such as random
link removal or noise addition to the system. Bolotov et al., also
study two populations of all-to-all coupled LIF networks
(Bolotov et al., 2016). In their case, the oscillators are
identical within each population, but the two populations
have different internal frequencies and other parameters.
They report phase locking of the mean fields due to the
mutual coupling and marginal chimera states in the
synchronous population (Bolotov et al., 2016). Rothkegel and
Lehnertz identify chimera states in integrate-and-fire
populations with small-world connectivity on the torus,
considering also refractory period and delays (Rothkegel and
Lehnertz, 2014). Considering spatial dimensionality, Tsigkri-
DeSmedt et al., have demonstrated chimera states in single (1D)
rings, in 2D square (torus) and 3D cubic (hypertorus) lattices of
LIF oscillators with nonlocal coupling (Tsigkri-DeSmedt et al.,
2016; Schmidt et al., 2017; Tsigkri-DeSmedt et al., 2017;
Kasimatis et al., 2018).

In the present study, we complexify the LIF network
structure using a multiplex network consisting of two inter-
connected rings with nonlocal connectivity within rings and
symmetrical one-to-one coupling across rings. We address
questions on how synchronization in one ring affects the
other, if chimera states are realizable in coupled LIF
multiplex networks, what the role of the inter- and intra-
coupling strengths is, etc. This multiplex network
construction is motivated by recent advances in Magnetic
Resonance Imaging (MRI) and in parcellation studies of the
human brain. MRI imaging has, up to now, depicted different
functional regions and axons bundles at a resolution of the order
of 0.1 mm (Finn et al., 2015). In addition, the various human
brain parcellation projects have identified a number of
functional or structural regions in each hemisphere, with
complementary inter-hemispheric connections (Rolls et al.,
2015; Arslan et al., 2018; Albers et al., 2021; Chouzouris
et al., 2021). In the present multiplex network approach, each
hemisphere is roughly represented by one ring (denoted as
L-ring for the left ring and R-ring for the right one), while
the inter-connections between the L- and R-rings correspond to
the neuron axons bundles connecting the left and right
hemispheres (Finn et al., 2015). These are severe
simplifications with respect to the realistic brain structure
and connectivity, however the present study only draws
motivation from the brain structure and not exact analogies.
All assumptions and simplifications considered in the multiplex
network topology and dynamics are discussed in detail in the
next sections.

Historically, the domain of partial synchronization and
chimera states was initiated by the seminal works of
(Kuramoto and Battogtokh, 2002) and by (Abrams and

Strogatz, 2004). In both works, the Kuramoto phase oscillator
was used to describe the node dynamics. Later on, similar
phenomena were reported for other nonlinear oscillators
including the FitzHugh-Nagumo oscillator (Omelchenko et al.,
2011; Omelchenko et al., 2013; Omelchenko et al., 2015a; Isele
et al., 2016; Semenova et al., 2016; Ruzzene et al., 2020; Rybalova
et al., 2021; Sawicki et al., 2021), the Hindmarsh-Rose model
(Hizanidis et al., 2014), the lattice Limit Cycle model (Hizanidis
et al., 2015), the Van der Pol oscillator (Omelchenko et al., 2015b;
Omelchenko et al., 2016) and others.

Experimentally, chimera states were reported during the past
decade in the domains of mechanics with networks of coupled
metronomes (Martens et al., 2013), in catalytic chemical reactions
(Tinsley et al., 2012; Nkomo et al., 2016; Kiss, 2018; Totz et al.,
2018) and in optical laser lattices (Hagerstrom et al., 2012; Uy
et al., 2019). In nature, chimera states have been associated with
the uni-hemispheric sleep in sea mammals and migratory birds
(Rattenborg et al., 2000; Rattenborg, 2006) and with the settings
of epileptic seizures (Mormann et al., 2000; Mormann et al., 2003;
Andrzejak et al., 2016).

Most of the works reported above present simulations in
networks composed of one ring or of multidimensional tori.
Recently, with the expansion of the domain of complex
networks the research interest turns toward multiplex
networks or even to networks-of-networks. These are
networks composed by many layers and are also called
multilayer or multidimensional networks. Each layer has
independent intra-connectivity and dynamics, but the layers
also connect with each other via inter-layer connections (De
Domenico et al., 2015; Battiston et al., 2017). Multiplex
networks are versatile because they can host many types of
interconnected dynamics at different levels. In particular,
synchronization phenomena and chimera states on
multiplex networks have been reported in the past for the
FitzHugh-Nagumo oscillator (Ruzzene et al., 2020; Rybalova
et al., 2021; Sawicki et al., 2021) where, by modifying the
dynamics or the connectivity in one of the layers, one may
influence the activity in the other layers. Similar studies have
also been reported for synchronization phenomena in
multiplex networks of van der Pol oscillators (Bukh et al.,
2020; Shepelev et al., 2021) and the phase and Hindmarsh-
Rose models (Maksimenko et al., 2016).

In previous studies on networks of coupled LIF oscillators,
one of the present authors (AP) and collaborators have focused
on single ring networks with different types of connectivity.
Namely, they discussed nonlocal, hierarchical (fractal),
reflecting and diagonal connectivities and reported the
variations in the synchronization patterns due to structural
complexity (Tsigkri-DeSmedt et al., 2016; Tsigkri-DeSmedt
et al., 2017; Tsigkri-DeSmedt et al., 2018). Among other
findings, they report the emergence of hierarchical chimeras
when the connectivity is fractal (Cantor-like), and the
coexistence of subthreshold oscillations and chimera states
for reflecting connectivity. The present work is in line with
these previous studies, focusing on the division of the network
in two equivalent subnetworks mimicking the composition of
the brain in two hemispheres. In fact, a 2015 studyMRI study of
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the human brain by Finn et al., (Finn et al., 2015), has
demonstrated that there are two main types of connectivity
between the hemispheres: 1) connectivity between homologous
regions (e.g., left parietal lobe to right parietal lobe) and this is
called “reflecting connectivity” because the connecting axons
link the left with the right hemispheres crossing
perpendicularly the plane separating them and 2) scattered/
mixed connectivity between various non-homologous brain
regions in the two hemispheres (e.g., left parietal lobe with
right frontal lobe). In the study by Finn et al., the authors
showed that the former connectivity is common to all healthy
subjects in the study, while the latter one is unique for each
individual and can be used as a person’s MRI fingerprints (see
(Finn et al., 2015)). And while the reflecting connectivity
accounts for the most basic brain functions common to all,
the scattered connectivity accounts for the particular cognitive
abilities of each person.

In view of the above, the multiplex connectivity between two
layers (rings) can be used as a rough analogue of the reflecting
connectivity of the brain, as described in Ref. (Finn et al., 2015).
An earlier study used a network structure composed of a single
ring divided into two semirings (Tsigkri-DeSmedt et al., 2017). As
a result, the connectivity in the junctions between the semirings
was mixed, because the nodes near the junctions were linked to
both semirings, while nodes away from the junctions were only
linked to the opposite semiring. With the present multiplex
construction all nodes have common connectivity properties:
each node in ring L is linked nonlocally within ring L and has
a one-to-one linking with the nodes of ring R and similarly for the
nodes of ring R (see Section 2.2).

Using the two-ring multiplex connectivity together with LIF
nodal dynamics, we explore numerically the synchrony in the
system for excitatory and inhibitory values of inter- and intra-
ring connectivities. Various regimes are identified such as
coexistence of active and subthreshold domains, chimera
states, solitary states, full coherence or incoherence and even
different synchronization patterns coexisting on the two rings. In
particular, for chimera states the numerical results indicate that
the coherent (incoherent) domains are located at identical
positions on the two rings when the coupling strengths are
high and at opposite positions when the coupling strengths
are low. At critical coupling values, which separate the
travelling fronts and the chimera domains, it is possible to
find simultaneous coexistence of a chimera state in one ring
and travelling fronts in the other.

In the next section we present the model, the multiplex
coupling scheme and the quantitative synchronization
measures to be used in this study. In Section 3 we present the
different dynamics regimes when the inter-ring coupling is
positive (excitatory interactions). More specifically, active
domains mediated by subthreshold elements are recorded
when the intra-ring couplings are positive and chimera states
emerge when the intra-ring couplings are negative. Similarly, in
Section 4 we present the parameter values which support the
subthreshold/active coexistence, the travelling fronts and the
chimera states, when the inter-ring coupling is negative
(inhibitory interactions). In both cases, the Kuramoto order

parameter is used as a quantitative measure of synchronization
in the network, while the correlation function is used to quantify
synchronization between the rings. In Section 5, we discuss the
interesting coexistence of travelling fronts in one ring and
chimera states in the other, which take place for weak inter-
ring coupling strengths. In the Conclusions, we recapitulate our
main results and present open problems for future studies.

2 THE MODEL

The LIF model describing the dynamics of isolated neurons was
first proposed in 1907 by Louis Lapicque (Brunel and van
Rossum, 2007; Abbott, 1999). It describes how the isolated
neuron reacts under the influence of an external, time-
dependent or constant, electrical stimulus.

In the next subsections, first the uncoupled LIFmodel is briefly
recapitulated and then the coupling scheme and the coupled LIF
model on multiplex network are introduced. In subsection 2.3 the
different measures quantifying the network synchronization are
presented.

2.1 Brief Recapitulation of the Single LIF
Model
Consider the time-dependent membrane potential u(t) of a
nervous cell. Under the influence of an external stimulus I(t)
the membrane potential increases until a specific threshold uth is
reached. At that time the nervous cell spikes and the potential is
reset to its rest state denoted by urest. In addition, a leakage term,
− λu(t), is added to the dynamics to avoid divergence of the
membrane potential in the absence of resetting. Overall, the
dynamics of the single LIF model is described by the following
Eq. 1a and condition (1b):

du t( )
dt

� μ − λu t( ) + I t( ) (1a)
lim
δt→0+

u t + δt( ) � urest,when u t( )≥ uth. (1b)

Eq. 1a represents the integration of the membrane potential,
while influx I(t) may originate from external stimuli or from the
collective contributions of the neighboring neurons. Condition
(1b) represents the resetting of the potential after reaching the
threshold uth. Namely, the potential u(t) is reset at urest
immediately after (δt → 0+) its value surpasses the value of
uth. The parameter μ in Eq. 1a corresponds to the limiting
value of the potential if resetting is not considered. Eq. 1a can
be analytically solved, when I(t) is constant or zero. Then, the
constant is incorporated in the parameter μ and the solution is:
u(t) = μ − (μ − urest)e

−t, for urest ≤ u(t) ≤ uth. The period Ts of
oscillations of the single LIF is calculated as Ts �
ln[(μ − urest)/(μ − uth)].

Biological neurons are also characterized by a refractory
period Tr. This is the period of time that the neurons remain
at the rest state after resetting. For the sake of simplicity, we will
not consider this additional parameter assuming that Tr = 0 and
we also set λ = 1 owing to time rescaling.
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2.2 The Coupled LIF Dynamics on Multiplex
Connectivity Scheme
Previous studies of the LIF dynamics on a single ring network
have demonstrated a variety of synchronization patterns
depending on the connectivity (nonlocal, hierarchical,
reflecting, small-world, etc), the coupling strength and the
coupling range (Luccioli and Politi, 2010; Olmi et al., 2010;
Politi and Rosenblum, 2015; Tsigkri-DeSmedt et al., 2016;
Tsigkri-DeSmedt et al., 2017; Politi et al., 2018; Tsigkri-
DeSmedt et al., 2018; Ullner et al., 2020; Tsigkri-DeSmedt
et al., 2021). To keep the system as simple as possible from
the point of view of connectivity, in the present study we consider
typical nonlocal connectivity within each ring and one-to-one
connectivity across rings, see Figure 1.

Let us denote by σLij the intra-ring connectivity between nodes
(i, j) in ring L and, similarly, for ring R. The links are depicted
collectively as σL and σR in Figure 1. For most of the simulations,
we assume common values in the intra-ring connectivities to
avoid having many different parameters, σLij � σRij � σ ij.
Moreover, when regarding the brain MRI structure, the two
hemispheres seem rather symmetrical and we do not have any
apriori information on the neuronal connectivity being different
in the two hemispheres. Overall, for both rings the general form
of the nonlocal intra-ring connectivity with coupling range K
around node i is:

σLij � σRij � σ ij � σ, ∀j: i − K≤ j≤ i + K[ ]
0, elsewhere.

{ (2)

Only for the calculations of the Kuramoto order parameter in
the next two sections we will consider the most general case of
different values of σ in the two rings and they will be denoted as σL

and σR, for the left and right rings, respectively.
The inter-ring connectivity between the i − th nodes of rings R

and L is denoted by σR→L
i and similarly for the opposite direction.

Here, there is also no apriori reason to differentiate between R→
L or L → R connectivities and we assume common values for all
nodes, σR→L

i = σL→R
i � s. The size of the rings (number of nodes)

is denoted by NL and NR for the left and the right rings,
respectively. Let uLi (t), i � 1, . . . , NL and uRi (t), i � 1, . . . , NR

represent the membrane potentials of the i − th neurons (nodes)
in the left and right rings. Then the coupled LIF scheme on the
multiplex network reads:

duL
i t( )
dt

� μ − uL
i t( ) + σL

2K
∑i+K

j�i−K
uL
j t( ) − uL

i t( )[ ]
+s uR

i t( ) − uL
i t( )[ ] (3a)

lim
δt→0+

uL
i t + δt( ) � urest, when uL

i t( )≥ uth (3b)
duR

i t( )
dt

� μ − uR
i t( ) + σ

R

2K
∑i+K

j�i−K
uR
j t( ) − uR

i t( )[ ]
+s uL

i t( ) − uR
i t( )[ ] (3c)

lim
δt→0+

uR
i t + δt( ) � urest, when uR

i t( )≥ uth. (3d)

In Eq. 3, we consider nonlocal intra-ring connectivity with a
coupling range K, common in both rings. Note that exchanges
between L- and R-rings are possible via the last terms in Eqs. 3a,
3c only, with coupling strength s. In the above expressions all the
indices in the L-ring (R-ring) are taken mod NL (mod NR). Other
common parameters of all nodes are the limiting membrane
potential value μ, the rest state potential urest and the threshold
potential uth.

In this study we use as working parameter set: μ = 1, urest = 0,
uth = 0.98, K = 120 and NL = NR = N = 500. For these parameters,
the single (uncoupled) rings present chimera states when the
coupling strengths take negative values and subthreshold
oscillations for positive ones. The σ − values in the multiplex
connectivity vary in the range −2 ≤ σij ≤ 2. All simulations start
from random initial conditions, while periodic boundary
conditions are considered for all indices.

2.3 Synchronization Measures
For quantifying the synchronization within each ring two
measures are employed here, the mean phase velocity ωi

(frequency of oscillations) of node i and the Kuramoto order
parameter Z. The mean phase velocity which counts the number
of complete cycles Qi performed by oscillator i during the time
interval ΔT divided by ΔT is used for quantifying the frequency
difference between nodes (Omel’Chenko, 2018; Omelchenko
et al., 2013; Omelchenko et al., 2015a). It is defined as:

FIGURE 1 | Schematic presentation of multiplex 2-ring connectivity, as
motivated by the brain hemispheres structure shown in the background. The
nodes in L- and R-rings are linked with inter-ring coupling strength s while the
nonlocal intra-ring couplings have strengths σR = σL. For clarity the
connectivity of nodes No. 2 in L- and R-rings are depicted.
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ωi � 2πQi

ΔT . (4)

The time interval ΔT in the present study is chosen between 300
and 500 cycles, depending on the parameter values. The terms
mean phase velocity ωi and frequency fi of oscillator i are
proportional, ωi = 2πfi, and thus they will be used
interchangeably in the text.

TheKuramoto order parameterZ is a synchronizationmeasure for
quantifying synchrony in an ensemble of oscillators (Omel’Chenko,
2018; Kuramoto and Battogtokh, 2002). In this case, it will be used for
quantifying synchrony within a single ring. For defining ZL

(Kuramoto index in L-ring) we first need to define the phase ϕLi
of oscillator i in ring L. For the LIF oscillator the instantaneous phase
ϕLi (t) is defined as (Argyropoulos and Provata, 2019):

ϕL
i t( ) � 2πuL

i t( )
uth

. (5)

Similarly, are defined the phases in the ring R. Then, the
instantaneous Kuramoto order parameter which defines
synchronization in ring L is defined as:

ZL t( ) � 1
NL

∑NL

k�1
eiϕ

L
k

t( )
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣, (6)

where |·| stands for the magnitude of the complex number in the
argument and the sum runs over the number of elements, NL.
Similarly, the Kuramoto order parameter ZR(t) is defined for ring
R. In general, the order parameter takes values in the range 0 ≤
Z(t) ≤ 1. When Z ≃ 0 then the ring elements are asynchronous
(full disorder) and when Z ≃ 1 they are synchronous (full
synchrony). Intermediate values of Z indicate partial network
synchronization (chimera state).

To quantify synchronization between the two rings the
Kuramoto order parameter can be considered over the entire
multiplex as:

ZL−R t( ) � 1
NL +NR

∑NL

k�1
eiϕ

L
k

t( ) +∑NR

k�1
eiϕ

R
k

t( )
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣. (7)

This is different from the difference of the two Kuramoto order
parameters |ZL − ZR| (see next two sections).

An alternative measure of inter-synchrony between rings R
and L is the linear Pearson’s correlation function CL−R, defined as
(Nicosia and Latora, 2015):

CL−R t( ) � 〈uL
i u

R
i 〉 − 〈uL

i 〉〈uR
i 〉																													

〈uL
i u

L
i 〉 − 〈uL

i 〉2( ) 〈uR
i u

R
i 〉 − 〈uR

i 〉2( )√ , (8)

where the averages 〈 · 〉 are defined over all i = 1, . . . , N elements
in each ring. The numerator in expression (8) represents the
covariance between L- and R-rings and the denominator is the
product of the variances of the two rings. For full synchronization
between the two rings the magnitude of the correlation function
|CL−R| → 1.

Regarding negative coupling strengths, where subthreshold
together with oscillatory domains are found, appropriate

measures are the activity factors, AL and AR, which count the
average number of elements that escape the threshold and
perform complete cycles for the L- and R-ring. In particular,
for the L-ring the average activity factor is defined as:

AL � 1
NLΔT ∑ΔT

t�0
∑NL

i�1
H uth − uL

i t( ) − ϵ( ). (9)

Here,H(n) is the Heaviside function defined asH(n) = 0 for n < 0
and H(n) = 1 if n ≥ 0 and ϵ is a tolerance factor that excludes the
counting of the subthreshold elements, facilitating the
calculations. In the present study, the tolerance value ϵ = 0.01
is used. To avoid temporal fluctuations the ring activities are also
averaged over a time period ΔT, after the system has reached the
steady state. Normally, ΔT comprises of 300–500 cycles
depending on the parameter values. Similarly, the activity
factor for the R-ring is defined.

The mean phase velocity distribution, the Kuramoto order
parameters, the correlation function, the system activities and the
other quantitative measures depend on the model parameters
(intra- and inter-ring coupling strengths in the present case).

3 SYNCHRONIZATION PATTERNS FOR
POSITIVE INTER-RING COUPLING

In computational neuroscience, both positive and negative
coupling strengths are considered, drawing from experimental
findings about excitatory (approx. 70%) and inhibitory (approx.
30%) coupling between brain neurons. In the present section, the
excitatory (positive) coupling is studied for the inter-ring
connectivity between the two rings, while the intra-ring
connectivity may take positive and negative values.

For the numerical studies, the number of nodes was chosen to
be NL = NR = 500 in each ring. This choice seems reasonable for
two main reasons.

1 The various human brain parcellation studies, which divide the
brain in structural or functional centers, have used a number of
brain parcels (nodes) varying from 70 to 360 (Rolls et al., 2015;
Arslan et al., 2018; Albers et al., 2021; Chouzouris et al., 2021).
Therefore, a number of nodes of the order of 500 for each ring
covers adequately the computational brain division.

2 From previous studies of the LIF and FitzHugh Nagumo
networks we have seen that a number of 500–1000 nodes is
good enough to avoid finite size effects which are dominant in
smaller sizes (Tsigkri-DeSmedt et al., 2020).

Using the above system size and the working parameter set
described at the end of Section 2.2, we performed numerical
simulations for different values of the coupling strengths σ and s.
Typical synchronization patterns are presented in Figure 2 for
σ > 0 and in Figure 3 for σ < 0.

In Figure 2, for σ > 0 and weak coupling s = 0.1 between the
two rings, we show the spacetime plots of the potentials to
demonstrate coherence between the two rings; left panels
correspond to L-ring and right panels to R-ring. In both rings,
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we note regions where the elements do not perform full
oscillations but remain subthreshold. These (yellow-coloured)
regions are separated by active regions. For large positive values, σ >
1.7, most of the elements remain subthreshold, while isolated
elements perform full oscillations, see Figure 2A. Note that
there is an overall motion to the left for both rings. For
intermediate coupling ranges, 0.7 < σ < 1.6, the system
separates into six distinct regions, which alternate between
active and subthreshold domains. The active regions move
erratically to the left and to the right. Regarding their positions
on the two rings, the active regions are located at the same positions
and their erratic motion has the same tendency (is in the same
direction) in both rings, see Figures 2B,C. This is a result of the
coupling s between the two rings which causes coherence. Note
that, in Figure 2A, for short times the rings also attempt to create

three active regions alternating with subthreshold regions, for times
t < 200 time units (TUs). For these large coupling strengths, the
division fails and we soon have the creation of single oscillating
elements with transportation of the activity around the ring.

For small positive coupling strengths, the active regions
stabilize in space in both rings, see Figure 2D. At the same
time, we note that the position of the active (subthreshold)
regions in one ring is covered by subthreshold (active) regions
in the other ring. In other words, at the positions where in the
L-ring we encounter active regions, in the R-ring these regions are
subthreshold. This is counter-intuitive since the elements are in a
one-to-one correspondence in the two rings and are directly
coupled with strength s. This behaviour is encountered for 0.2 ≤
σ ≤ 0.4, while for σ → 0, the motion in each ring becomes
incoherent. However, coherence is achieved between elements at

FIGURE 2 | Spacetime plots of the potentials for the L- and R-rings on the left and right panels, respectively. (A) σ = +1.9, (B) σ = +1.2, (C) σ = +0.7 and (D) σ = +0.4.
Other parameters are: NL = NR = N = 500, s = +0.1, K = 120, μ = 1, urest = 0, uth = 0.98. All simulations start from the same random initial conditions.
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equivalent positions on the two rings due to the non-vanishing
inter-ring coupling s (see Supplementary Figure S3).

The division of the network in coexisting domains of active
and subthreshold elements is not due to the multiplex structure of
the network. It has been observed earlier in single ring dynamics,
for positive coupling strengths (Tsigkri-DeSmedt et al., 2017).
What is new and unexpected in the multiplex connectivity is the
establishment of domains with different activity in connected
regions of the two rings, as in Figure 2D.

In all above cases we have considered a constant coupling
range, K = 120, in the system. In single ring networks the coupling
range defines the size of the active/subthreshold or coherent/
incoherent regions (Tsigkri-DeSmedt et al., 2017). The same
holds true here. For larger coupling ranges fewer active/

subthreshold domains are created (see Supplementary
Figure S4).

As a final comment for the case σ > 0, we recall that if the
resetting condition is not considered the single elements have a
fixed point ufixed = μ = 1. When the coupling is introduced, the
fixed point can be displaced. When the displacement causes that
ufixed reaches values below uth (recall that uth = 0.98 in the present
study) then some elements are attracted by this fixed point and
create domains of subthreshold elements as in Figure 2.

Regarding the negative values of the coupling strengths, the
numerical results show that the subthreshold elements disappear
and all elements perform full oscillations. In Figure 3, typical
spacetime plots of the potentials are shown for different values of
σ, keeping s = +0.1. For small negative values of the intra-ring

FIGURE 3 | Spacetime plots of the potentials for the L- and R-rings on the left and right panels, respectively. (A) σ = −0.2, (B) σ = −0.9, (C) σ = −1.7 and (D) σ = −2.0.
Parameter s = +0.1 and other parameters are as in Figure 2.
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coupling strength, − 0.6 ≤ σ < 0, solitary states are formed, see
Figure 3A. These are isolated oscillators that deviate from an
otherwise coherent background. Note that they are formed at
identical positions in the two rings. As the modulus of σ increases
(σ becomes “more negative”), the isolated solitaries tend to
mobilize creating incoherent regions of increasing sizes (see
Supplementary Figure S5). This way, the isolated solitaries
give rise to typical chimera states. An attempt of the system to
create such a chimera state is shown in Figure 3B, where coherent
and incoherent domains appear randomly in the two rings. As the
modulus of σ increases further, typical chimera states emerge with
coherent and incoherent elements located at identical positions
on the two rings, see Figure 3C. For even higher moduli of
negative coupling strengths, shooting solitaries appear within the
coherent regions in the two rings and destabilize them
(Figure 3D), driving the system to full incoherence.

Quantitatively, the synchronization properties of the
multiplex network are evaluated via the Kuramoto order
parameter, the activity factors and the correlation function, as
described in Section 2.3. In Figure 4 we present the average
activity factors AL (black open circles) and AR (red stars) in the L-
and R-ring, respectively (see Eq. 9). For the activity calculations
temporal averages were taken over ΔT = 800 TUs after the system
has reached the steady state. In corroboration with Figures 2, 3,
for positive values of σL = σR = σ a number of elements stay
subthreshold (do not oscillate) and therefore, the activity factors
are less than unity. Our simulations show that the number of
elements that oscillate decreases with σ (while the rest remain
subthreshold). On the contrary, for negative values of σ, all
elements oscillate, independently of whether they belong to
the coherent or the incoherent part of the chimera state.
Therefore, for σ < 0, AL ~ AR ~ 1. We note that there can be
a deviation from unity in the case of σ < 0. This is attributed to the
counting of the subthreshold elements. In many cases, active
elements that perform full oscillations can be momentarily found
in the region [uth − ϵ, uth] and in this case they are mistakenly

counted as subthreshold elements, underestimating consistently
the percentage of active oscillators. We also note that the activity
is almost identical in both rings, as the coupling strength is the
same in both, σL = σR = σ.

In Figure 5, we present the absolute value of the correlation
function, |CL−R|, versus the intra-ring coupling strength σ, with
inter-ring coupling strength s = +0.1. Other parameters are set to
the working parameter set. For the calculation of |CL−R| in
Figure 5, except for the average over the elements on the L-
and R-ring, a time average is also considered to account for the
fluctuations during the simulation. For the time average in the
calculations of the correlations the first 1000 TUs were
disregarded (considered as transient) and the average was
taken over the subsequent 2000 TUs as a function of the
intra-ring coupling strength σ.

For positive, large values of σ, |CL−R| takes small values
indicating absence of correlations between the L- and R-ring.
Inspecting closely Figure 2A, the travelling waves show identical
traits in the two rings, but their positions are in different locations
on the rings. In addition, the subthreshold elements are located at
random positions below the threshold, uncorrelated between the
L- and R-ring. That is why the correlation function drops to zero.
As the value of σ decreases, keeping positive values, the
subthreshold and active regions acquire a certain degree of
common location in the two rings and this causes the |CL−R|
function to increase. This is more evident for values of, e.g., σ = 0.2
(see Supplementary Figure S6). Maximum value is attained for
intra-ring coupling equal to zero, where only inter-ring coupling
is present and causes a relatively high degree of correlation
between L- and R-ring.

As the σ values decrease entering negative values in Figure 5,
we note a certain decrease in the L-R correlations, although the
two rings are both almost synchronous, see Figure 3A. The small
inter-ring correlation is due to a phase difference that is
established between the two rings, due to the different initial
conditions. The small values of the inter-ring coupling are not

FIGURE 4 | The average activity factors, AL (circles), and AR (stars)
versus the intra-ring coupling strength σ. Temporal averages are taken over
ΔT = 800 TUs, after excluding the first 200 TUs as transients. Parameter s =
+0.1 and other parameters are as in Figure 2.

FIGURE 5 | The correlation function, |CL−R|, versus the intra-ring
coupling strength σ. Parameter s = +0.1 and other parameters are as in
Figure 2.
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sufficient to enforce full synchrony between the two rings, which
operate with a certain constant phase gap. This behaviour
dominates for −0.8 < σ < 0. For smaller values of σ < − 0.8,
chimera states are formed, as also Figures 3B–D demonstrate.
The correlation function drops toward 0, since in the incoherent
domains the phases are disordered in the two rings and also the

coherent domains often have a phase gap keeping the correlation
values low.

To quantify synchronization in the rings, the Kuramoto order
parameters are calculated and plotted in Figure 6. For intra-ring
couplings σ < − 0.6, where typical chimera states are formed, both
Z values are distinctly lower than 1, in accordance with the
chimera presence. In the small magnitude of the negative
couplings, 0.6 < σ < 0, where we note the presence of
solitaries, the Kuramoto order parameters tend to 1, indicating
almost full coherence. This is not unexpected, since the solitaries
are rare and only occasionally disturb full coherence, recall
Figure 3A. For positive σ values with relatively small
magnitudes, 0 < σ ≤ 1.0, again the Z values are small,
indicating incoherence in the system. We recall that in this σ-
range the system presents alternations of subthreshold
(homogeneous) regions and active (incoherent) domains. As σ
increases the width of the active, incoherent regions decreases.
This behaviour continues above σ > 1.0, where the incoherent
regions are as small as only isolated elements. This leads to Z→ 1,
as σ increases.

In Figure 6, it is interesting to note that the behaviour is very
similar in the two rings, except for the case σ = −0.5, where ZL =
0.36 and ZR = 0.98. This discrepancy takes place precisely at the
parameter σ values where there is a transition between chimera
states (Z < 1) and solitary states (Z → 1) and it is a typical
signature of qualitative change of behaviour in dynamical
systems.

FIGURE 6 | The Kuramoto order parameters, ZL (circles) and ZR (stars),
versus the intra-ring coupling strength σ for positive inter-ring coupling s and
equal intra-ring couplings σL = σR = σ. Parameter s = +0.1 and other
parameters are as in Figure 2.

FIGURE 7 | The Kuramoto order parameters ZL and ZR represented on the color scale for different values of the intra-ring coupling constant in ring R, σR, and the
inter-ring coupling constant, s. (A) ZL, (B) ZR and (C) |ZL − ZR|. The white dashed lines represent equal intra-ring couplings σL = σR = 0.4 and variable s ∈ [0, 1]. The “X”
symbol marks coupling strengths σL = σR = 0.4 and s = 0.1, discussed in Figure 2D. Parameter σL = +0.4 and other parameters are as in Figure 2.
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Taking a different perspective, we now consider the synchrony
in the system when the two rings have different coupling
strengths, σL ≠ σR. We, then, address questions such as, When
do the rings synchronize? Does one ring lead the other? Are the
synchrony patterns symmetric in both rings? To answer these
questions, we perform numerical simulations of the network
keeping constant σL = 0.4 and we vary σR in the range [0,1]
and inter-ring coupling s in the range [0,1]. This way all couplings
are positive in the system. Other parameters are taken as in the
working parameter set. To quantify the synchrony in the system,
we compute the Kuramoto order parameters ZL and ZR, and the
absolute value of the difference |ZL − ZR|, as discussed in Section
2.3. The last one accounts for the difference in synchronization
between the two rings. In the plots of Figure 7, the values of the
Kuramoto order parameter are represented by the color scale. The
coupling strength σR varies along the x-axis and the inter-ring
coupling s varies along the y-axis. σL = 0.4 remains constant in all
simulations. The “X”mark in the three panels corresponds to the
position σR = 0.4, s = 0.1, for which σL = σR = 0.4 and corresponds
to Figure 2D.

Since all coupling strengths are positive, only subthreshold
oscillations and coexisting active regions are recorded in the
system, similar to Figure 2. Chimera states are not observed
when σL, σR, s > 0. We first note that synchronization in both
rings takes similar values when σL ~ σR, around the position σR =
σL = 0.4 and for all values of s (see dashed line). To the left of the
dashed line, we note moderate synchronization in the left ring
since the intra-ring coupling strength remains to moderate
values, σL = 0.4, while in the right ring the synchronization is
facilitated, as σR increases toward 1. To the left of the dashed
line, for small values of σR, the synchrony is high on the L-ring
(recall that σL = 0.4 is always kept constant) and is low in the
R-ring, where the small values of σR prevent high
synchronization. It is remarkable that the value of s plays a
minor role in the degree of synchronization, except in the cases
of fairly small σR values. Regarding the values of |ZL − ZR| in
Figure 7C, the results are in accordance with the ones in panels
A) and B). Namely, at σR = σL = 0.4, which corresponds to the
dashed white line, the measure |ZL − ZR| indicates values close
to zero, and the two rings show high coherence. For σR → 1 the
two rings present small difference in coherence, independent of
the s-value. High values of the |ZL − ZR|measure are recorded at
low σR values when σR ≪ σL = 0.4, where the L-ring attains
coherence while the L-ring is less coherent due to small coupling
strength σR between the nodes.

4 SYNCHRONIZATION PATTERNS FOR
NEGATIVE INTER-RING COUPLING

Although the inter-ring connectivity is now negative, the main
features of synchronization do not change with respect to the
previous section. Namely, for positive, large values of the intra-ring
coupling strength, most of the elements perform subthreshold
fluctuations, while single elements deviate from the subthreshold
region and perform full oscillations, see Figure 8A. The full
oscillations are not local but travel with constant velocity to the

left or to the right, depending on the initial conditions. The motion
is in the same direction in both rings.

In Figure 8A, before attaining the above described final state,
the elements on each ring organize into four incoherent regions
separated by four subthreshold regions. This is transient
organization and for long times only single elements escape
from the subthreshold potential values. In fact, the duration of
the transient organization depends inversely on σ. For large
positive values of the intra-ring coupling strength, e.g., for σ =
2, the transition time tends to zero and the steady state with
isolated oscillations travelling around the ring settles immediately
(see Supplementary Figure S7). For lower values in this range,
such as in Figure 8A, the transition period is finite.

As σ decreases in the range 0.8 ≤ σ ≤ 1.2, the transient time
diverges and the incoherent active regions drift to the left and to
the right on each ring for the duration of the simulations (5000
TUs), see Figure 8B. The size and drift velocity of the active
regions change randomly with time. We recall that the rest of the
elements of the rings do not perform full oscillations, but
demonstrate small fluctuations of their potentials just below
the threshold uth.

As the coupling strength decreases further, a certain
organization settles in the network. The size and transport
velocity of the active regions become constant and for σ =
+0.7 the size of the active regions does not change with time
after transient, see Figure 8C. Decreasing further the σ values
leads to smaller sizes of the active travelling regions, e.g., for σ =
+0.5 the travelling active regions consist of only two nodes (see
Figure 8D).

Overall comparison between Figures 2, 8 shows that, when the
intra-ring coupling takes large or intermediate positive values,
similar behaviour is recorded in the two rings, independently of
whether the inter-ring values are positive or negative. On the
contrary, when the intra-ring couplings are small, positive inter-
ring couplings s > 0 lead to the formation of well defined, static
and wide active regions, while for s < 0 the size of the active
regions shrinks and their positions change, travelling with
constant velocity around the rings.

Turning now to negative intra-ring couplings, at the same time
where s = −0.1 inter-ring coupling is considered, we note that the
presence of typical chimeras is facilitated. For negative values of σ
with small modulus, e.g., σ = −0.2 in Figure 9A, we note the
presence of chimera states with two large coherent and two small
incoherent groups, almost identical in both rings. For even
smaller moduli (magnitudes) of σ the incoherent regions are
typical solitary states (see Supplementary Figure S8). As the
magnitude of σ increases, the size of the two incoherent regions
increases in expense of the coherent ones, see Figure 9B.
Increasing the absolute value of σ further, e.g., for σ = −0.6,
the size of the incoherent regions in both rings increases. As a
result, in each ring the two incoherent regions merge
simultaneously forming a large one, bordered by a small
coherent region, see Figure 9C. For even larger magnitudes of
σ, the size of the incoherent region increases further and full
incoherence is recorded in both rings of the network, see
Figure 9D. As |σ|> 1 an attempt of organization takes place in
both rings as shown in Figure 9E and for very large values of |σ|
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both rings develop clear chimera states with three coherent and
incoherent domains situated at the same positions on the two
rings, see Figure 9F.

Overall comparison of Figures 3, 9 shows that for negative
intra-ring couplings, when the absolute value |σ| is small,
qualitatively we have the formation of solitary states,
independently of whether the inter-ring values are positive or
negative. In both cases, the system passes from an altogether
incoherent state in both rings, while for high values of |σ| chimera
states are produced. The chimera states are better pronounced in
the case of all (inter- and intra-ring) negative couplings.

To compare the presence of active and inactive regions in the
case of negative inter-ring coupling s, we also present in Figure 10
the activity factors AL and AR as a function of the common intra-
ring coupling σ. Similarly, to the case of s > 0 described in the

previous section, here also the activity is extended over all
elements for negative σ, while it is restricted for σ > 0 due to
the presence of the subthreshold elements. For σ > 0, the activity
reduces inversely with the intra-ring coupling strength following
the same scenario as for the case of s < 0 (see Section 3).

Quantitative results on the L-R correlation function for s =
−0.1 are presented in Figure 11. Starting with large, positive
values of the intra-ring coupling σ, we note a high degree of
correlation between the two rings. This can be confirmed from
Figure 8, where the subthreshold and active regions appear in
identical locations on the two rings. At σ = 0 the correlations
decrease but do not drop to zero, since the inter-ring coupling s ≠
0 imposes a certain synchrony between L- and R-rings. For
inhibitory σ values with small amplitudes, solitary states are
developed in both rings at the same positions, and we note

FIGURE 8 | Spacetime plots of the potentials for the L- and R-rings on the left and right panels, respectively. (A) σ = +1.4, (B) σ = +1.0, (C) σ = +0.7 and (D) σ = +0.5.
Parameter s = −0.1 and other parameters are as in Figure 2.
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from Figure 9 that the coherent domains have the same phase in
the L- and R-rings. This causes increased values of the correlation
function as confirmed in Figure 11 for −0.6 < σ < 0. For
intermediate negative intra-ring coupling values, − 1.6 < σ < −
0.6, the system demonstrates full incoherence in both rings,
before giving rise to chimera states which appear for −2.0 < σ

< − 1.6, as shown in Figures 9C–F. These behaviours are
mirrored in the correlation function, Figure 11: for −1.6< σ < −
0.6 |CL−R| drops to zero, while for −2.0 < σ < − 1.6 the coherent
and incoherent parts of the chimera states appear in identical
positions on the two rings and this leads to a certain, finite degree
of correlations.

To quantify the degree of synchronization within each ring,
the Kuramoto order parameters ZL (circles) and ZR (stars) are
plotted in Figure 12 as a function of the intra-ring coupling range
σL = σR = σ for negative inter-ring coupling s. The Z-curve in both
rings is almost identical to each other and very similar to the case
of s > 0, shown in Figure 6. Namely, for σ < − 0.5 the rings are in
the chimera realm with ZL ≃ ZR < 1, for −0.5 < σ < 0 the rings are
characterised by rare solitaries with ZL ≃ ZR → 1, for 0 < σ < 1
both rings are composed by alternation of subthreshold and

FIGURE 9 | Spacetime plots of the potentials for the L- and R-rings on
the left and right panels, respectively. (A) σ = −0.2, (B) σ = −0.4, (C) σ = −0.6,
(D) σ = −0.8, (E) σ = −1.4 and (F) σ = −1.9. Parameter s = −0.1 and other
parameters are as in Figure 2.

FIGURE 10 | The average activity factors, AL (circles), and AR (stars)
versus the intra-ring coupling strength σ. Temporal averages are taken over
ΔT = 800 TUs, after disregarding the first 200 TUs as transients. Parameter s =
−0.1 and other parameters are as in Figure 2.

FIGURE 11 | The correlation function, |CL−R|, versus the intra-ring
coupling strength σ. Parameter s = −0.1 and other parameters are as in
Figure 2.

Frontiers in Network Physiology | www.frontiersin.org June 2022 | Volume 2 | Article 91086212

Anesiadis and Provata Multiplex Leaky Integrate-and-Fire Networks

https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles


active regions with ZL ≃ ZR < 1 and for σ > 1 the size of the active
regions tend to zero reducing to single active elements travelling
around the rings and the Z order parameters tend to 1 as σ
increases above unity. As in the case of inter-ring coupling s > 0,
the two transitions (qualitative change of behaviour) between
chimeras and solitaries (at σ ~ − 0.5) and between solitary states

and subthreshold/active regions (at σ ~ 0) are abrupt reminding
some phase transitions in physical systems.

Following a similar reasoning as in Section 3, we study the
network synchrony when the two rings have different coupling
strengths, σL ≠ σR < 0. To this purpose, we perform numerical
simulations of the network keeping constant σL = −0.4 and we
vary σR and the inter-ring coupling s in the range [−1, 0]. This
way all couplings are negative in both rings. To quantify the
synchrony in the system, we present in Figure 13 the maps of the
Kuramoto order parameters. For these parameter values, chimera
states are recorded and the results refer to the images in Figure 9,
where all coupling strengths are also negative. Following the
notation of the previous section, in all Kuramoto maps the
coupling strength σR varies along the x-axis, the inter-ring
coupling s varies along the y-axis and σL = −0.4 remains
constant in all simulations. The Z values for σL = σR = −0.4
and s = −0.1 are marked by the symbol “X” in Figure 13 and
correspond precisely to the state represented in Figure 9B.

As Figure 13 demonstrates, for negative coupling strengths
the variations of the Kuramoto order parameter show a more
chaotic pattern than for positive strengths, owing to the creation
and destruction of chimera states. In many cases low Z values are
recorded in both rings indicating a low degree of coherence, as for
σR ≃ − 1 and −0.5 < s < − 0.4. For other coupling values, e.g., σR ≃
− 1 and −0.8 < s < − 0.5 high values of Z are recorded in both rings
indicating either chimera states with large, synchronous coherent
domains or solitary states with synchronous coherent regions.

FIGURE 12 | The Kuramoto order parameters, ZL (circles) and ZR (stars),
versus the intra-ring coupling strength σ, for negative inter-ring coupling s and
equal intra-ring couplings σL = σR = σ. Parameter s = −0.1 and other
parameters are as in Figure 2.

FIGURE 13 | The Kuramoto order parameters ZL and ZR represented on the color scale for different values of the intra-ring coupling constant in R-ring, σR, and the
inter-ring coupling constant, s. (A) ZL, (B) ZR and (C) |ZL − ZR|. The white dashed line represents equal intra-ring couplings σL = σR = −0.4 and variable s ∈ [−1, 0]. The “X”
symbol marks coupling strengths σL = σR = −0.4 and s = −0.1, discussed in Figure 9B. Parameter σL = −0.4 and other parameters are as in Figure 2.
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Regarding the values of |ZL − ZR| in Figure 13C, the black
colors indicate that the two rings operate in coherence for these
parameter regions, because the terms corresponding to a certain
oscillator i in the two rings cancel out. Alternatively, the red-
yellow regions show decoherence between the two rings.
Decoherence is mostly visible for small values of s, where
communication is minimal between the two rings and also
when σR → 0 while σL keeps a finite value equal to -0.4. In
particular, for the parameters marked by “X” in the plot, σL = σR =
−0.4 and s = −0.1, both rings have similar Z values which cancel
out and therefore, the corresponding point in panel C) has
dark color.

Interesting parameter regions from the point of view of brain-
related functions are the ones that allow different types of
coherence in the two rings, since during brain activity one
hemisphere may operate independently of the other as testified
by different synchronization patterns. A related discussion
follows in the next section, where additional simulations are
presented using smaller inter-ring coupling values, s = +0.01 and
s = −0.01.

5 WEAK MULTIPLEXING

In this final section, we include some intriguing results for very
small values of inter-ring couplings, namely s = +0.01 and s =
−0.01. Small coupling strengths prevail in the connectivity
between the two hemispheres of the brain, as compared to the
intra-hemisphere couplings and therefore, the study of weak
inter-ring connectivity in multiplex networks can be of interest
for medical brain applications. We only present here the cases
which deviate from the above discussion. In particular, we note
two cases where qualitatively different behaviour is reported in
the L- and R-ring.

In Section 4 we noted that, as we increase (or decrease) the
parameter σ, we have a qualitative transition in the behaviour
from one type of synchronization to another, e.g., transitions
from both rings being fully asynchronous to chimera states, as
in Figure 9. Due to the finite size of the inter-ring coupling,
each ring influences the other and they both attain the same
long time state. When the inter-ring coupling takes small
values, e.g., |σ| � 0.01, then the influence between rings is
weak and different synchronization patterns may appear in
the two rings.

The case of small positive s = +0.01 is plotted in Figure 14. For
negative values of σ ≥ −0.6 both rings synchronize and travelling
waves are recorded at long times, see Figure 14A. For σ ≤ −0.8
chimera states with one synchronous and one asynchronous
region are presented in both rings, see Figure 14C. Precisely
at the critical point of parameter σ where the behaviour changes
qualitatively, namely at σ = −0.7, one ring supports a chimera
state while the other develops travelling waves, see Figure 14B.
This takes place only in rings of finite size (here NL = NR = 500),
where the initial conditions favour one or the other behaviour,
when the coupling is not strong enough to impose one, common
synchronization pattern (either chimera state or travelling waves
in both rings).

A similar situation is also reported for s = −0.01 and σ = −0.6,
in Figure 15. For this value of the inter-coupling strength, s =
−0.01, the transition between chimera patterns and travelling
fronts takes place at a different value of σ = −0.6. For σ > − 0.6
travelling fronts are recorded in both rings, see Figure 15A and
for σ < − 0.6 chimera states develop, see Figure 14C. At the
critical point between the two regimes, σ = −0.6, one of the rings
develops the chimera state, while travelling fronts are developed
in the other, similarly to the case of s = +0.01. Note that here the
chimera motifs (for σ = −0.6 and -0.7) are better defined and
localized, since all coupling strengths in the system are negative.

6 CONCLUSION AND OPEN PROBLEMS

Motivated by the division of the brain into two distinct
hemispheres with intra- and inter-connections between them,
we study here the synchronization properties of a multiplex
network consisting of two semirings with nonlocal connectivity
between the nodes in each ring and with one-to-one connectivity
across rings. The nodes of the network are modelled as LIF
oscillators, while the connectivity values take both positive and
negative values, indicating excitatory and inhibitory connections,
respectively. Using the Kuramoto order parameter as an index of
synchronization within each ring and the correlation function as an
indicator of inter-ring synchrony, we explore the parameter
regions where different synchronization patterns prevail. Typical
such patterns range from full synchrony in both rings, to solitary
states, chimera states and full incoherence. The interesting
phenomenon of coexistence of different patterns in the two
rings for the case of weak multiplexing is also reported.

In the present study the inter-ring connectivity is taken as a
one-to-one linking. However, biological evidence indicates that
the local regions in one hemisphere may be connected with
multiple centers in the opposite hemisphere (Finn et al., 2015).
A step in this direction would be to consider reflecting
connectivity in the multiplex, where each node of the R-ring is
coupled to many nodes in the opposite ring in addition to the
intra-ring links (and similarly for the nodes of ring L).

Since it is hard to obtain the precise connectivity in most real-
world networks, many studies of coupled oscillators on simplex
and multiplex networks avoid to use deterministic nonlocal
connectivity but introduce stochasticity in the network, such
as addition of random long distance links (small-world
connectivity) or noise in the coupling strengths (Omelchenko
et al., 2015a; Argyropoulos and Provata, 2019; Olmi et al., 2019).
It would be interesting to test the effects of stochasticity on the
LIF multiplex network, by introducing randomness on the inter-
and/or intra-ring couplings.

In multiplex connectivity, it is often the case that one may
influence the dynamics of one ring by performing modifications
in the other (Ruzzene et al., 2020). This is a useful procedure
when one of the rings is not accessible to the user. It is interesting
to investigate this remote type of synchronization in the LIF
multiplex network, addressing questions such as, is it possible to
modify synchronization patterns in the L-ring by performing
connectivity changes in the R-ring, or is it possible to drive the
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FIGURE 15 | Spacetime plots of the potentials for the L- and R-rings on the left and right panels, respectively. (A) σ = −0.5, (B) σ = −0.6, and (C) σ = −0.7. Parameter
s = −0.01 and other parameters are as in Figure 2.

FIGURE 14 | Spacetime plots of the potentials for the L- and R-rings on the left and right panels, respectively. (A) σ = −0.6, (B) σ = −0.7, and (C) σ = −0.8. Parameter
s = +0.01 and other parameters are as in Figure 2.
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L-ring to full synchrony by applying a pacemaker with specific
frequency to the R-ring?

A last open problem relates to the dynamics of the single LIF
oscillator. As discussed in Section 2, biological neurons are
characterized by a refractory period. This is the period that
the neuron remains at the rest state after resetting and
corresponds roughly to half a period of the single neuron. The
addition of a refractory period in simple ring networks composed
of LIF elements causes transitions from single to multichimera
states. It would be interesting to investigate the influence of the
refractory period in multiplex networks and the corresponding
synchronization phenomena.
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