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During normal childhood development, functional brain networks evolve over time in
parallel with changes in neuronal oscillations. Previous studies have demonstrated
differences in network topology with age, particularly in neonates and in cohorts
spanning from birth to early adulthood. Here, we evaluate the developmental changes
in EEG functional connectivity with a specific focus on the first 2 years of life. Functional
connectivity networks (FCNs) were calculated from the EEGs of 240 healthy infants aged
0–2 years during wakefulness and sleep using a cross-correlation-based measure and the
weighted phase lag index. Topological features were assessed via network strength,
global clustering coefficient, characteristic path length, and small world measures. We
found that cross-correlation FCNs maintained a consistent small-world structure, and the
connection strengths increased after the first 3 months of infancy. The strongest
connections in these networks were consistently located in the frontal and occipital
regions across age groups. In the delta and theta bands, weighted phase lag index
networks decreased in strength after the first 3 months in both wakefulness and sleep, and
a similar result was found in the alpha and beta bands during wakefulness. However, in the
alpha band during sleep, FCNs exhibited a significant increase in strength with age,
particularly in the 21–24months age group. During this period, a majority of the strongest
connections in the networks were located in frontocentral regions, and a qualitatively
similar distribution was seen in the beta band during sleep for subjects older than
3months. Graph theory analysis suggested a small world structure for weighted phase
lag index networks, but to a lesser degree than those calculated using cross-correlation. In
general, graph theory metrics showed little change over time, with no significant
differences between age groups for the clustering coefficient (wakefulness and sleep),
characteristics path length (sleep), and small world measure (sleep). These results suggest
that infant FCNs evolve during the first 2 years with more significant changes to network
strength than features of the network structure. This study quantifies normal brain
networks during infant development and can serve as a baseline for future
investigations in health and neurological disease.
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1 INTRODUCTION

The development of the infant brain (0–2 years old) is
characterized by the evolution of neuronal oscillations in
various frequency bands, which can be measured non-
invasively using electroencephalography (EEG). Such cortical
rhythms can be mapped as functional connectivity networks
(FCNs) based on the statistical relationships between these
neuronal oscillations across spatially distinct regions. Prior
studies have reported strong EEG functional connections
predominantly in the frontal and parieto-occipital regions in
newborn infants (Omidvarnia et al., 2014; Tóth et al., 2017), with
a subsequent shift in network topology from a randomized
structure towards a more efficient and organized network
during infancy (Xie et al., 2019) and childhood (Boersma
et al., 2011). These FCNs also have properties that are specific
to certain EEG frequency bands. Newborn infants exhibit
clustered, fronto-parietal connections in the theta and alpha
bands (Tóth et al., 2017). From infancy to age 18, healthy
subjects show an increase in broadband connectivity strength,
decrease in high gamma connectivity strength, decreases in delta
and theta band clustering, and increase in gamma band clustering
(Chu et al., 2014). Such frequency band-specific FCNs can
indicate different neural mechanisms, as delta and theta
networks integrate long-range neuronal assemblies, while
gamma and higher frequencies reflect more localized networks
(Fries, 2005; Buzsáki and Watson, 2012; Fries, 2015; Bastos and
Schoffelen, 2016).

While studies have examined EEG FCNs around the time of
birth (Omidvarnia et al., 2014; Tokariev et al., 2016; Tóth et al.,
2017), within a span of several months during infancy (Xie et al.,
2019), or during early childhood (Boersma et al., 2011; Bathelt
et al., 2013), there has yet to be a study that focuses exclusively on
the evolution of connectivity during the first 2 years of life. Chu
et al. (2014) analyzed EEG connectivity in this age range, but
primarily focused on developmental changes across a wider age
range of 0–18 years. Moreover, no consensus has been reached on
the typical developmental changes in FCNs. Small-world
topological features have been reported to disappear around
10 months of age (Xie et al., 2019), despite reports of small
world networks in older children (Boersma et al., 2011; Bathelt
et al., 2013). Graph theory (GT) measures in FCNs such as path
length have also produced mixed results, with both decreases
(Miskovic et al., 2015) and increases (Boersma et al., 2011) in
alpha band path length with age during childhood. Increases in
clustering coefficient and path length from childhood to
adolescence have been reported (Smit et al., 2012), while other
studies found no correlations between subject age and GT
measures in childhood (Bathelt et al., 2013). These differing
results may be attributed to several factors, including the
variance across EEG datasets and the choice of functional
connectivity technique, e.g., linear versus nonlinear, bivariate
versus multivariate, and phase-based versus amplitude-based
measures (Olejarczyk et al., 2017; Siems and Siegel, 2020).

Therefore, the goal of this study was to characterize the
changes in functional connectivity networks over the course of
normal infant development using two complementary

computational methods. We measured EEG FCNs in a large
cohort of healthy infants (n = 240), ranging from 0 to 24 months
old. For each subject, networks were derived separately for
wakefulness and sleep in the delta, theta, alpha, beta, and
broadband frequency bands. Two complementary methods
were used to calculate the FCNs: cross-correlation and
weighted phase lag index. Differences between age groups
were quantified using connectivity strength and GT measures.
By focusing specifically on healthy infants and directly comparing
results across various connectivity techniques, this work further
elucidates the evolution of FCNs during normal brain ontogeny
and serves as a baseline for the study of early life neurological
diseases.

2 MATERIALS AND METHODS

2.1 Subject Information and
Electroencephalography Recordings
Approval for this retrospective observational study was obtained
from the Institutional Review Board of the Children’s Hospital of
Orange County (CHOC), with the requirement for informed
consent waived. A total of 240 subjects aged 0–24 months were
retrospectively identified from the clinical record at CHOC, with
visits between 1 January 2012 and 1 January 2019. Subjects were
included if they had 1) no known neurological disorders, 2)
routine EEG studies that were interpreted as normal by a board-
certified pediatric epileptologist (DS), 3) no use of neuroactive
medications, and 4) no premature birth (gestational age
>38 weeks). Subjects were divided into eight age groups (n =
30 for each group) in 3-month intervals (e.g., 0–3 months,
3–6 months, etc.) based on the subject’s age at the time of
EEG recording. Three subjects in the 0–3-months age group
were excluded from the analysis due to excessive artifactual noise
across multiple channels. The demographics of the study
population are summarized in Table 1.

2.2 Electroencephalography Acquisition
and Preprocessing
EEG data were recorded with a Nihon Kohden EEG acquisition
system, with nineteen scalp electrodes (Fp1, Fp2, F3, F4, C3, C4,
P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz, and Pz) placed
according to the international 10–20 system, at a sampling rate of
200 Hz. One subject’s EEG was recorded at 500 Hz and
downsampled prior to analysis. All EEG studies lasted from 20
to 70 min and contained a mixture of wakefulness and sleep.
Manual EEG sleep staging was performed for all subjects by
registered polysomnographic technologists (CG, AM, and NT) in
accordance with the American Academy of Sleep Medicine
(AASM) guidelines. EEG studies for subjects younger than
3 months were scored as wake, active sleep, or quiet sleep
according to standard criteria. For all subjects older than
3 months, EEG epochs were categorized as wake (W), rapid
eye movement (REM), non-REM stage 1 (N1), non-REM stage
2 (N2), and non-REM stage 3 (N3) sleep. However, only wake and
N2 sleep data were analyzed, as most subjects’ studies contained a
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sufficient quantity of these stages for the connectivity analysis. N2
sleep was also chosen due to its high inter-scorer reliability during
sleep staging and because of the stability of the FCN during this
sleep stage in individual subjects over time (Chu-Shore et al.,
2012; Rosenberg and Van Hout, 2013).

Time periods in the EEG containing artifact were identified
using an automatic extreme value detection algorithm similar to
prior studies (Durka et al., 2003; Moretti et al., 2003; Smith et al.,
2021). To identify artifacts, the raw data were filtered using a
broadband bandpass filter (1.5–40 Hz Butterworth filter), re-
referenced to the common average, and normalized in each
channel to have zero mean and unit variance. In each channel,
artifacts were identified as periods where the absolute value of the
voltage exceeded a threshold of 7.5 standard deviations above the
mean value, with a buffer of 0.9 s added to the beginning and end
of each period. Impedance checks and photic stimulation were
visually identified in the EEG and were also marked as artifact.
For all subjects, the mean duration of EEG recordings and time in
wakefulness and quiet/N2 sleep is provided in Supplementary
Table S1, and the percentage of artifactual data in the EEG
recordings is given in Supplementary Table S2.

For the connectivity analysis, the raw data were re-referenced
to the common average and filters were applied for each
connectivity technique as described in Section 2.3. Time
periods containing an artifact in at least one channel were
then removed from all channels. For each sleep stage, clean
EEG segments with no detected artifact were then separated
into two-s epochs for FCN analysis. All electronic data were
deidentified and analyzed offline using custom MATLAB
(Mathworks) scripts.

2.3 Functional Connectivity Network
Calculations
Two functional connectivity metrics were used in this study:
cross-correlation (CC) and weighted phase lag index (wPLI). CC
is a linear, time domain measure applied to broadband data, and
wPLI is a phase-based measure applied to individual frequency
bands that is sensitive to both linear and nonlinear interactions
(Vinck et al., 2011; He et al., 2019). For CC, broadband EEG data
were analyzed after zero-phase shift digital filtering from 0.5 to
55 Hz; wPLI was analyzed in the delta (2–4 Hz), theta
(4.5–7.5 Hz), alpha (8–12.5 Hz), and beta (13–30 Hz)
frequency bands. For the FCN calculation of each subject,

120 two-s epochs of clean EEG data were randomly selected
within each brain state (wakefulness and quiet/N2 sleep), and CC
and wPLI were calculated independently for each brain state. The
number of epochs was chosen based on an analysis of the stability
of the connectivity technique; if a subject had insufficient clean
data for a particular brain state, their data were excluded from
analysis. The number of subjects included in the FCN analysis for
wakefulness and quiet/N2 sleep is shown in Table 1.

2.3.1 Cross-Correlation
Cross-correlation is a linear measure of connectivity based on the
maximal cross-correlation between two EEG channels at non-
zero lags (Kramer et al., 2009; Chu-Shore et al., 2012). This
technique has been previously applied to both epileptic and
healthy infant EEG data (Shrey et al., 2018; Hu et al., 2020;
Smith et al., 2021). For each subject and brain state with sufficient
data, we began the connectivity analysis by subdividing the
120 two-s epochs into 240 one-s epochs. The choice of epoch
length for CC was based on prior work demonstrating the
stability of this measurement for as few as ~100 epochs of
one-s duration (Chu-Shore et al., 2012; Shrey et al., 2018;
Smith et al., 2021). The connectivity for each one-s epoch was
calculated as the maximal absolute value of the cross-correlation
with a maximum lag time of ±200 ms. Additional steps accounted
for the influence of volume conduction and the autocorrelation of
each signal, and permutation resampling was used for
significance testing; please see Hu et al. (2020) for details. The
CC connectivity for each subject was reported as an adjacency
matrix where each element represented the percentage of epochs
with significant connectivity values, with values ranging from
zero to one for each pair of channels.

2.3.2 Weighted Phase Lag Index
The wPLI is a measure of functional connectivity based on the
phase synchronization between channel pairs. For channels x and
y, the wPLI in a data segment with n time points is defined as:

wPLIxy � n−1∑n
t�1
∣∣∣∣∣imag(Sxyt)

∣∣∣∣∣sgn(imag(Sxyt))

n−1∑n
t�1
∣∣∣∣∣imag(Sxyt)

∣∣∣∣∣
(1)

The wPLI measures the average sign of the imaginary component
of the cross spectrum Sxy and weights the value by the magnitude
of the imaginary component to reduce the effect of cross-spectral
values near zero and pi. The wPLI was chosen because it is more

TABLE 1 | Participant demographics.

Group Age in mos.
M (SD)

Female n
(%)

Subjects n Wakefulness n
(%)

Sleep n
(%)

0–3 m 1.54 (0.94) 12 (40.00) 30 24 (80.00) 22 (73.33)
3–6 m 4.67 (0.93) 16 (53.33) 30 29 (96.67) 26 (86.67)
6–9 m 7.41 (0.83) 19 (63.33) 30 30 (100.00) 29 (96.67)
9–12 m 10.24 (0.74) 19 (63.33) 30 29 (96.67) 24 (80.00)
12–15 m 13.57 (0.87) 17 (56.67) 30 29 (96.67) 23 (76.67)
15–18 m 16.33 (0.97) 15 (50.00) 30 28 (93.33) 27 (90.00)
18–21 m 19.01 (0.73) 17 (56.67) 30 29 (96.67) 22 (73.33)
21–24 m 22.54 (0.92) 16 (53.33) 30 29 (96.67) 24 (80.00)

Frontiers in Network Physiology | www.frontiersin.org June 2022 | Volume 2 | Article 8938263

Hu et al. Functional Networks in Healthy Infants

https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles


sensitive to phase synchronization than PLI, while reducing the
influence of both noise sources and volume conduction (Vinck
et al., 2011).

For each subject, all 120 two-s epochs of clean EEG data were
used to calculate the wPLI FCN, as this amount of data ensures
the stability of the measure (Haartsen et al., 2020). In each
frequency band, the instantaneous phase was obtained via the
Hilbert transform of the filtered EEG signal for each channel. A
connectivity matrix was then calculated for each epoch using Eq.
1 for each channel pair. The significance of each epoch was
assessed by generating a null distribution of wPLI values for each
pair of EEG channels under the assumption of no temporal
relationship between the signals. This was done by calculating
the wPLI of two randomly selected epochs for 1,000 iterations.
The measured wPLI value for each channel pair in an epoch was
considered significant if it exceeded the 95th percentile of the null
distribution. Significant connections were assigned a value of one,
while non-significant connections were assigned a value of zero.
The FCN for each subject was then calculated by averaging the
binary matrices over all epochs. Therefore, analogous to the CC
measure, each element in the adjacency matrix represents the
percentage of epochs with significant connectivity values.

2.4 Graph Theory Metrics
Graph theory has been successfully used to analyze networks in a
broad range of human neuroscience studies (Sporns, 2018), with
applications to data modalities ranging from structural and
functional brain measurements (Hallquist and Hillary, 2018;
Bellantuono et al., 2021) to genetics (Monaco et al., 2019).
Here, differences in FCNs between groups were quantified
using four different GT measures: 1) network strength, 2)
normalized global clustering coefficient (nGCC), 3) normalized
characteristic path length (nCPL), and 4) small-world measure
(SW). These measures were found to be relevant in prior studies
of neonatal (Omidvarnia et al., 2014; Tóth et al., 2017), infantile
(Fan et al., 2011; Gao et al., 2011; Xie et al., 2019), and childhood
development (Boersma et al., 2011; Bathelt et al., 2013). All
metrics were calculated using functions from the Brain
Connectivity Toolbox (Rubinov and Sporns, 2010) and custom
MATLAB (Mathworks) scripts.

The network strength was defined as the mean of the strongest
ten percent of connections and was calculated for each subject,
connectivity technique, and brain state (Garrison et al., 2015;
Smith et al., 2021). Topological changes in the network structure
were quantified using GCC and CPL. A network with a high GCC
indicates the presence of strongly connected electrode triplets,
and a low CPL value indicates that the network can efficiently
transfer information between nodes (Watts and Strogatz, 1998).
To reduce the effects of weak connections, the weighted
connectivity matrices were thresholded at an edge density of
0.25. This threshold was chosen by testing edge densities from
0.05 to 0.80 (Supplementary Figures S1–S5). We found that edge
densities under 0.1 had high variability and often resulted in
unconnected graphs, while edge densities over 0.4 could produce
fully connected graphs with nGCC and SW values near one. An
edge density of 0.25 was chosen here, as it exhibited low
variability between subjects while forming a connected graph.

In addition, prior studies found that edge densities of 0.1–0.4
were appropriate for GCC, CPL, and SW measures (Mehraram
et al., 2020; Carpels et al., 2021). The thresholded weighted matrix
was then normalized by dividing each element by the maximum
connectivity value to avoid the influence of network strength on
the GT measures (Onnela et al., 2005; Antoniou and Tsompa,
2008; Mehraram et al., 2020; Carpels et al., 2021). This
normalized matrix was used to calculate GCC, and it was also
converted into a distance matrix to calculate CPL. The GCC and
CPLmeasures were then reported as normalized values relative to
100 surrogate networks generated using an Erdős–Rényi random
graph:

nGCC � GCC

GCCrand
(2)

nCPL � CPL

CPLrand
(3)

An nGCC value greater than one suggests that the network is
more clustered than a randomized network, while an nCPL
greater than one suggests that the network is configured to
transfer information less efficiently than a randomized network.

The small-world characteristics of the FCNs were measured as
the ratio of the normalized GCC and normalized CPL measures
(Humphries and Gurney, 2008):

SW � nGCC

nCPL
(4)

Small-world networks are typically characterized by high values
of GCC and low values of CPL. Compared to a randomized
network with low clustering and short path length, a small-world
FCN should then have an SW > 1.

2.5 Statistical Tests
Statistical analyses of the GT measures were conducted using
one-way ANOVA tests across the eight age groups. Results were
calculated independently for each connectivity method,
frequency band, and sleep stage. The Bonferroni method was
used to correct for multiple comparisons, accounting for 28
different age-group comparisons. The SW comparisons
between CC and wPLI were measured in each age group using
a one-tailed Wilcoxon signed-rank test, corrected using the
Bonferroni method.

3 RESULTS

3.1 CC FCNs Increase in Strength in Early
Infancy
For the CC FCNs, both frontal connections (between electrodes
Fp1, Fp2, Fz, F3, F4, F7, and F8) and occipital connections
(between O1, O2, T5, and T6) were frequently among the top
10% strongest connections in the network; this was true across all
age groups, during wakefulness and sleep (Figure 1). However,
the mean network strength increased after the first 3 months of
infancy, as significant differences were found between subjects
0–3 months old and subjects 3–15 and 18–24-months old in
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wakefulness (p < 0.01, Figure 2A) and between 0–3 months old
and 3–6-months old in sleep (p < 0.05, Figure 2B). For subjects
older than 3 months, the only significant difference in network
strength was a lower strength in subjects 15–18 months old
relative to subjects 3–6 months old during sleep (p < 0.05,
Figure 2B).

3.2 wPLI FCNs in the Alpha Band Increase in
Strength With Age, Particularly in the
Frontocentral Region
The top 10% strongest wPLI connections for all age groups are
shown in Figure 3A (delta band), Figure 3B (theta band),
Figure 3C (alpha band), and Figure 3D (beta band). In the
delta frequency band, the 0–3-months age group had significantly
stronger connectivity than all other age groups, during both
wakefulness and sleep (p < 0.01, Figure 4A). Connectivity
strength in the theta band also decreased from the 0–3-

months group to the 3–6 months group during wakefulness
(p < 0.05), and to the 3–12 and 15–18 months groups during
sleep (p < 0.05, Figure 4B). The only significant increases in
connectivity strength in the delta and theta frequency bands were
found in the theta band during wakefulness, where the FCNs in
the 18–24 months group were stronger than in the 3–6 months
group, and the 21–24 months group was stronger that the
6–9 months group (p < 0.05, Figure 4B).

In the alpha band during wakefulness, the FCN strength
exhibited changes similar to those seen in the delta band, with
significantly lower mean connectivity for subjects 3–24 months
old compared to subjects 0–3 months old (p < 0.05, Figure 4C,
top). In contrast, during sleep, the alpha band connectivity
strength exhibited a significant increase during the first 2 years
of life. Specifically, subjects in the 18–21 months age group had
significantly stronger FCNs than subjects 3–9 months old (p <
0.05, Figure 4C bottom), and subjects 21–24 months old had
significantly stronger FCNs than subjects 3–12 months old (p <

FIGURE 1 | Average CC FCNs for healthy infants during (A)wakefulness and (B) sleep. The strongest 10% of connections in each age group are shown. The color
of each connection represents the connection strength, defined as the percentage of epochs with significant connectivity values.

FIGURE 2 |Mean network strength by age for healthy infants using CC connectivity during (A)wakefulness and (B) sleep. Here, mean network strength is defined
as the mean of the 10% highest connectivity values. Significance levels are *p < 0.05, **p < 0.01, and ***p < 0.001, with p-values modified using the Bonferroni method.
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0.01, Figure 4C, bottom). Qualitatively, this change appeared to
be driven by strong frontocentral connections (between
electrodes Fp1, Fp2, Fz, F3, F4, F7, F8, C3, Cz, and C4), as the
strongest 10% of connections for subjects 12–24 months old
tended to be clustered in this region (Figure 3C, bottom).

The strongest 10% of connections in the beta band during
sleep were also clustered in the frontocentral regions for subjects
3–24 months old, based on a qualitative visual analysis
(Figure 3D). However, unlike the alpha band, there were no
significant differences in connectivity strength between age
groups (Figure 4D, bottom). During wakefulness, the beta
band FCNs exhibited stronger connections for subjects
0–3 months old compared to most age groups from 12 to
24 months old, similar to the trends in the delta and alpha

bands during wakefulness (p < 0.05, Figure 4D, top). In the
beta band, the 3–6 months group also exhibited stronger
connections than the 21–24 months group (p < 0.05,
Figure 4D, top).

3.3 CC FCNs Exhibit Small-World Features
Across all Age Groups
The nGCC across all subjects indicates the presence of non-
random clusters within the network during wakefulness
[nGCCwake = 1.75 (0.38), reported as the median (IQR) for all
results] and sleep [nGCCsleep = 1.70 (0.39)] (Figure 5A). The
nCPL across all subjects was close to one during wakefulness
[nCPLwake = 1.05 (0.11)] and sleep [nCPLsleep = 1.06 (0.10)],

FIGURE 3 | Average wPLI FCNs for healthy infants in the (A) delta, (B) theta, (C) alpha, and (D) beta band during wakefulness (top) and sleep (bottom). The
strongest 10% of connections in each age group are shown. The color of each connection represents the connection strength, defined as the percentage of epochs with
significant connectivity values.
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suggesting that the efficiency of information transfer in the CC
network was high, similar to a random network (Figure 5B). CC
networks demonstrated a small-world structure across all age

groups in wakefulness [SWwake = 1.64 (0.49)] and sleep [SWsleep =
1.59 (0.34)] (Figure 5C). There were no significant differences
between age groups for nGCC (wakefulness and sleep), CPL

FIGURE 4 | Mean network strength by age using wPLI connectivity in the (A) delta, (B) theta, (C) alpha, and (D) beta band during wakefulness (top) and sleep
(bottom). Here, mean network strength is defined as the mean of the 10% highest connectivity values. Significance levels are *p < 0.05, **p < 0.01, and ***p < 0.001, with
p-values modified using the Bonferroni method.

FIGURE 5 | Graph theory measures by age for healthy infants using CC connectivity for the (A) normalized global clustering coefficient, (B) normalized
characteristic path length, and (C) small-world measure during wakefulness (top) and sleep (bottom). For each subfigure, the solid gray line represents the median value
using randomly rewired networks and the dashed gray lines represent the 25th and 75th percentiles. Significance levels are *p < 0.05, **p < 0.01, and ***p < 0.001, with
p-values modified using the Bonferroni method.
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(sleep), or SW (sleep). The nCPL during wakefulness was
significantly larger in subjects 6–9 months old compared to
9–12 months old (p < 0.05, Figure 5B, top), and SW during
wakefulness was significantly larger in subjects 9–12 months old
compared to subjects 0–3 months old (p < 0.01, Figure 5C, top).

3.4wPLI FCNsHave LessClustering and are
Less Small-World Than CC Networks
WPLI networks generally followed the same trend as CC
networks, with nGCC values greater than one and nCPL

values of approximately one in all frequency bands. The SW
measures for all frequency bands are shown in Figure 6; see
Supplementary Figures S6, S7 for the nGCC and nCPL results,
respectively. The wPLI FCNs were small-world, with SW values
greater than one in the delta [SWdelta, wake = 1.18 (0.32), SWdelta,

sleep = 1.12 (0.28)], theta [SWtheta, wake = 1.17 (0.27), SWtheta, sleep =
1.12 (0.30)], alpha [SWalpha, wake = 1.15 (0.33), SWalpha, sleep = 1.16
(0.33)], and beta [SWbeta, wake = 1.32 (0.46), SWbeta, sleep = 1.24
(0.52)] bands. The wPLI FCNs in the delta band had a
significantly higher nGCC and SW during sleep at 0–3 months
compared to 6–9 months and 18–21 months (p < 0.05, Figure 6A
bottom and Supplementary Figure S6A bottom). No significant
differences in nGCC, nCPL, or SW were seen between age groups
in the theta and alpha bands (Figures 6B,C and Supplementary
Figures S6B,C, S7B,C). The wPLI networks in the beta band were
typically less SW with age, with significantly smaller SW at
21–24 months compared to 0–3 months during wakefulness
(p < 0.05) and smaller SW at 15–18 and 21–24 months
compared to 6–9 months (p < 0.05) during sleep (Figure 6D).

The CC networks had significantly higher SW values
compared to wPLI networks for all groups aged 3–24 months
in the delta, theta, and alpha bands during wakefulness and sleep
(Table 2; Wilcoxon sign-rank test, Bonferroni corrected). In the
beta band, CC networks were more small-world than wPLI
networks across most age groups older than 3 months during
wakefulness and 12 months during sleep (Table 2).

4 DISCUSSION

In this study, we measured age-related changes in functional
connectivity in a large cohort of healthy infants (n = 240) using
CC and wPLI. CC FCNs maintained a consistent small-world
structure (SW > 1), with connections that increased in strength

FIGURE 6 | Small-world measure by age for healthy infants using wPLI connectivity in the (A) delta, (B) theta, (C) alpha, and (D) beta band during wakefulness (top)
and sleep (bottom). For each subfigure, the solid gray line represents the median value using randomly rewired networks and the dashed gray lines represent the 25th
and 75th percentiles. Significance levels are *p < 0.05, **p < 0.1, and ***p < 0.001, with p-values modified using the Bonferroni method.

TABLE 2 | p-values for the statistical comparisons of the small-world measure
between CC and wPLI FCNs in individual subjects. Significant p-values are
bolded and corrected for FDR using Bonferroni correction (n = 8).

State SW comparison

Age group CC > Delta CC > Theta CC > Alpha CC > Beta

Wake 0–3 m 0.21 0.027 0.063 0.57
3–6 m 4.65e−6 3.10e−6 6.92e−6 4.34e−4

6–9 m 1.99e−5 1.35e−6 1.85e−6 0.0034
9–12 m 1.24e−5 4.21e−6 1.35e−6 2.12e−4

12–15 m 6.92e−6 6.27e−6 7.64e−6 0.0022
15–18 m 8.99e−5 1.47e−5 4.26e−6 5.87e−4

18–21 m 2.06e−6 1.24e−5 4.65e−6 3.16e−5

21–24 m 9.17e−5 3.47e−5 2.40e−5 1.18e−4

Sleep 0–3 m 0.077 0.012 0.0010 0.21
3–6 m 2.42e−5 9.91e−6 6.96e−5 0.025
6–9 m 2.06e−6 6.92e−6 1.24e−5 0.17
9–12 m 7.66e−5 1.83e−5 7.97e−4 0.050
12–15 m 3.17e−5 3.17e−5 3.17e−5 2.48e−4

15–18 m 6.49e−6 2.10e−5 1.00e−5 2.10e−5

18–21 m 1.38e−4 0.0014 5.21e−4 9.14e−4

21–24 m 1.42e−5 1.42e−5 4.27e−5 2.34e−5

Significant p-values are bolded and corrected for FDR using Bonferroni Correction
(n = 8).
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after the first 3 months of life. The wPLI FCNs in the delta and
theta bands (wakefulness and sleep), alpha band (wakefulness),
and beta band (wakefulness) exhibited significantly decreased
strength after 3 months of age. However, in the alpha band during
sleep, wPLI connectivity significantly increased in strength in
infants older than 21 months. The wPLI networks also exhibited a
small world structure, but the locations of the strongest
connections differed from the CC networks. For both CC and
wPLI, the graph theory metrics showed few significant differences
between age groups, suggesting that these features of the network
structure stay relatively consistent during infancy.

4.1 Connectivity Changes in CC Networks
During Infant Development
The CC network structure in the present study was qualitatively
similar to that found for healthy infant controls in our prior work,
with the strongest connections located in the frontal and posterior
head regions (Shrey et al., 2018; Smith et al., 2021). Our prior study
also reported stronger FCNs during sleep compared to wakefulness
in a cohort of infants with a mean age of 6.3 ± 3.1 months old
(Smith et al., 2021), and we saw similar results here in subjects
0–9 months old (Figure 2). Consistent with our results, Gao et al.
(2011) found a significant increase in fMRI connectivity strength
and global efficiency in the first year of infancy and a stable
network strength during the second year. An EEG study using
the same CC connectivity method on healthy subjects 0–18 years
old during N2 sleep also reported low network strength during
infancy that began to significantly increase after 5 years of age (Chu
et al., 2014). Our results are generally consistent with prior studies
suggesting that FCNs based on broadband EEG strengthen with
age, presumably continuing into adulthood. This increase in
connectivity strength may also reflect the myelination of white
matter tracts during the first year of infancy, which correlates with
increased fractional anisotropy on MRI diffusion tensor imaging
(Hermoye et al., 2006). While we found significant changes that
occur during the first 2 years of development, these changes appear
to be subtle relative to those reported later in life.

4.2 Connectivity Changes in wPLI Networks
During Infant Development
In the delta and theta frequency bands, the 10% strongest
connections in the wPLI FCNs appeared highly variable across
age groups, likely due to the application of thresholding to
relatively weak networks (note the overall low strength for
delta and theta in Figure 4). However, wPLI connectivity
strength in delta, alpha, and beta frequencies during
wakefulness, as well as delta and theta frequencies during
sleep, were significantly higher in subjects 0–3 months than
other age groups, consistent with prior work describing a
decrease in density of FCNs based on EEG coherence during
the first 6 months of infancy in the delta, theta, and alpha bands
(Chu et al., 2014). The increase in wPLI strength in the alpha
band during sleep, with the 10% strongest connections located
primarily in frontocentral regions, is complementary to prior
wPLI studies of different age groups. For example, stronger alpha

and theta band frontoparietal connections were seen in full-term
infants relative to preterm newborns, suggesting developmental
changes in these frequency bands (Omidvarnia et al., 2014; Tóth
et al., 2017). Furthermore, the strongest wPLI functional
connections were found in the alpha band in children
5–11 years old (Ortiz et al., 2012; Choi et al., 2019). The
increase in alpha band connectivity during N2 sleep at around
21 months may also be related to the fact that sleep spindles are
asynchronous in early infancy and become mostly synchronous
by age two (Gruber andWise, 2016; Louis et al., 2016; Goetz et al.,
2021). While adult sleep spindles primarily have peak frequencies
in the beta band (12–15 Hz), the strong networks we reported in
both the alpha and beta bands during N2 sleep are consistent with
reports of two types of spindles in children: slow spindles (peak
frequency 11–12.75 Hz) occurring in frontal channels (Fz, F3,
and F4), and fast spindles (12.5–14.5 Hz) localized to
centroparietal channels (Cz and Pz) (Shinomiya et al., 1999).
The presence of these two spindle types continues into adulthood,
with the peak frequency of both spindle types increasing linearly
with age (Shinomiya et al., 1999; Schabus et al., 2007; Mölle et al.,
2011).

We found that infant FCNs were small-world across all ages,
frequency bands, and states of vigilance, concordant with prior
reports of small-world EEG networks immediately following
birth (Omidvarnia et al., 2014; Tóth et al., 2017) and during
childhood (Boersma et al., 2011). The presence of small-world
networks has also been reported in studies utilizing DTI (Yap
et al., 2011), volume-based MRI (Fan et al., 2011), and MEG
synchronization likelihood (Berchicci et al., 2015), where infant
brain networks were small-world at birth and increased in
clustering and efficiency with age. We saw a few significant
changes in nGCC, nCPL, and SW across different age groups
and frequency bands; however, these differences typically
involved only two to three age groups and did not suggest a
consistent trend related to development. This may be related to
the prior suggestion that the most dramatic changes in GT
measures occur later in life, from childhood to adulthood
(Chu et al., 2014; Berchicci et al., 2015).

4.3 Differences Between CC and wPLI
Connectivity
We chose to quantify and characterize the functional networks of
our subjects using two complementary computational
techniques: cross-correlation and weighted phase lag index.
Prior work has shown that the differences in networks
produced by each method cannot wholly be explained by the
differences in sensitivity to linear and nonlinear features of the
data, suggesting that the results may be affected by other
unknown elements as well (Siems and Siegel, 2020). The
differences in FCNs using different connectivity techniques
may be explained by the distinct neural mechanisms
underlying cortical phase- and amplitude-coupling, which are
also frequency specific (Tokariev et al., 2016; Siems and Siegel,
2020). Our results indicated several differences between CC and
wPLI FCNs, notably an increase in CC connectivity strength after
3 months of age contrasted with a decrease in wPLI strength in
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the same time frame. Using different connectivity techniques on
the same dataset highlighted distinct aspects of the infant
functional networks.

The use of bivariate connectivity methods such as CC and
wPLI may result in spurious connections in the FCNs due to the
presence of volume conduction. In particular, this can occur
when one source drives activity in multiple channels, resulting in
false connectivity between all secondary channels (Blinowska and
Kaminski, 2013). However, the results in the present study should
be minimally impacted by this for three reasons: 1) Our
application of CC for functional connectivity includes a step
to remove zero-lag connections, which has been shown to
counteract volume conduction (Chu-Shore et al., 2012). 2)
wPLI inherently reduces the impact of volume conduction by
minimizing connections with phase differences at zero and pi
(Vinck et al., 2011). 3) If we assume that any remaining effects of
volume conduction would impact each subject approximately
equally, then any differences we noted in FCNs between subject
groups (calculated with the same connectivity technique) should
not be spuriously arising from volume conducted sources. Future
studies could utilize multivariate connectivity methods to
minimize any such spurious connections (Blinowska, 2011).

4.4 Normalization and Thresholding in FCNs
While our report of a small-world network configuration is
consistent with prior literature, the result of SW > 1 is heavily
influenced by the choice of thresholding technique applied to the
adjacency matrix. Dividing each FCN by its strongest connection
addresses the influence of connectivity strength on the nGCC,
nCPL, and SW measures, but it may introduce bias to the GT
measures because it gives equal weight to all FCNs, even those
with very weak connections (van Wijk et al., 2010). Similarly,
using a fixed edge density for GCC, CPL, and SW measures can
potentially exclude strong edges or include weak edges in the
network, causing spurious results (van den Heuvel et al., 2017).
Here, we chose to preserve the weight of each connection to create
a pseudo-binary network, as a means of retaining the relative
strength in each connection and reducing the effect of weaker
edges on the GT measures.

4.5 Limitations
Our results are limited by several factors that should be addressed
in future investigations. The use of clinical infant EEG limits the
number of nodes in the FCN to nineteen (corresponding to the
number of electrodes), which restricts the topological
characterization of the FCNs; future studies may wish to
introduce higher density EEGs for more detailed topological
analysis. In addition, GT metrics cannot be used to draw
conclusion about the specific network structure; for example,
dramatically different networks can have similar values for
clustering or path length. This could be addressed by applying
statistical tests to individual network connections across age
groups. It is also worth noting that the EEGs obtained for the
study were recorded from infants referred for diagnostic
evaluation of suspected seizures. While they were found to be
neurologically normal with no abnormal EEG findings, future
studies should consider prospective collection of data from

healthy infants. Moreover, we did not directly identify and
correct for eye movements in the EEG data, which could
influence the connectivity results in the frontal brain regions.
However, we expect minimal eye movements during N2 sleep,
and the most relevant prior literature did not include this pre-
processing step (Chu et al., 2014; Shrey et al., 2018; Smith et al.,
2021), so the methods used here facilitate the most direct
comparison of results. Finally, the use of a cross-sectional
population made it impossible to assess developmental
changes in individual cases; future developmental studies
should aim to include longitudinally collected EEG data.

5 CONCLUSION

Studies of healthy brain networks in the infant brain are critical
for understanding both normal brain development and disease
states, such as epilepsy. This has the potential to lead to
identification of novel functional connectivity biomarkers to
aid clinical diagnosis and treatment, improving the care of
children with neurological diseases.
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