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Sudden unexpected death in epilepsy (SUDEP) is the leading seizure-related cause of
death in epilepsy patients. There are no validated biomarkers of SUDEP risk. Here, we
explored peri-ictal differences in topological brain network properties from scalp EEG
recordings of SUDEP victims. Functional connectivity networks were constructed and
examined as directed graphs derived from undirected delta and high frequency oscillation
(HFO) EEG coherence networks in eight SUDEP and 14 non-SUDEP epileptic patients.
These networks were proxies for information flow at different spatiotemporal scales, where
low frequency oscillations coordinate large-scale activity driving local HFOs. The clustering
coefficient and global efficiency of the network were higher in the SUDEP group pre-ictally,
ictally and post-ictally (p < 0.0001 to p < 0.001), with features characteristic of small-world
networks. These results suggest that cross-frequency functional connectivity network
topology may be a non-invasive biomarker of SUDEP risk.

Keywords: epilepsy, SUDEP (sudden unexpected death in epilepsy), electroencephalography, brain dynamics,
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INTRODUCTION

Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related mortality,
however, the etiology remains poorly understood (Thurman et al., 2014; Devinsky et al., 2016;
Sveinsson et al., 2017). Fear of SUDEP can decrease quality of life for patients and family members.
There are no validated SUDEP risk biomarkers, which are needed to develop and assess interventions
and prevention strategies for individuals and more broadly (Devinsky et al., 2016; Odom and
Bateman 2018).

Several clinical factors correlate with SUDEP risk. A few of these, such as occurrence and
frequency of generalized tonic-clonic and other types of seizures over the preceding year, duration of
epilepsy, and use of multiple anti-seizure medications, among others (Novak et al., 2015), have been
combined to form the SUDEP Risk Inventory (SUDEP-7), which provides a total score suggestive of
overall SUDEP risk (Hesdorffer et al., 2011). Studies of SUDEP biomarkers have focused mainly on
predicting SUDEP risk through findings correlating with SUDEP-7, other clinical risk factor
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algorithms or heart rate variability (Jha et al., 2021; Sivathamboo
et al., 2021). Many of these biomarkers only have an indirect
association with SUDEP (Odom and Bateman 2018; Ryvlin et al.,
2019). Few studies prospectively assessed their predictive power
(Novak et al., 2015; Ryvlin et al., 2019). SUDEP biomarkers with a
more direct association may include peri-ictal cardiorespiratory
dysfunction and prolonged post-ictal generalized
electroencephalography (EEG) suppression (PGES), although
findings are contradictory (Kang et al., 2017; Odom and
Bateman 2018; Ryvlin et al., 2019). EEG based biomarkers,
including prolonged electroclinical tonic phase and dynamics
of seizure termination are correlated with PGES duration but
have not been tested in a SUDEP patient cohort (Tao et al., 2013;
Alexandre et al., 2015; Bauer et al., 2017; Grigorovsky et al., 2020).
Delta-gamma cross-frequency interactions are a potential
surrogate of PGES (Grigorovsky et al., 2020) and were found
to persist during the peri-ictal period of a SUDEP patient. To
date, studies exploring EEG SUDEP biomarkers have neglected
measures targeting functionally aberrant connections in brain
networks, which are characteristic of the epileptic brain.

Functional brain networks reflect the complex interactions
in the brain and may distinguish pathology from normal
functioning brain. These rhythms are important in
information processing in the brain, with low frequencies
being more spatially distributed and responsible in
coordinating local high frequency activity. In this study,
we aim to compare peri-ictal network differences in
SUDEP patients using graph theory measures of directed
functional connectivity. Specifically, we construct novel
directed graphs combined from delta - HFO functional
connectivity to capture the cross-frequency interactions

between different brain regions. We use these directed
graphs and their topologies to discern between SUDEP and
non-SUDEP epileptic patients.

MATERIALS AND METHODS

Data Acquisition
Scalp EEG recordings for 14 non-SUDEP (with 77 peri-ictal
segments) and 8 SUDEP (with 25 peri-ictal segments) patients
were provided through a consortium formed by the Toronto
Western Hospital, the NYU Comprehensive Epilepsy Center,
and the Phramongkutklao Royal Army Hospital (Table 1).
Non-SUDEP patients had focal (temporal or extratemporal
lobe) epilepsy, were resistant to anti-seizure medications and
were undergoing presurgical evaluation. Ictal segments were
marked by board-certified neurologists and
electroencephalographers. The institutional review boards of
the consortium approved the study protocol and all patients
gave informed consent.

Patient data were originally filtered with a 0.1 Hz high pass
filter during acquisition and were later pre-processed by
removing power line interference using a finite impulse
response (FIR) notch filter at 50 Hz or 60 Hz (data centre
location dependent) and associated harmonics. Recordings
used an acquisition reference at FCz, grounded at Fpz.
Computations were performed on the Niagara supercomputer
at the SciNet HPC Consortium. SciNet is funded by: the Canada
Foundation for Innovation; the Government of Ontario; Ontario
Research Fund - Research Excellence; and the University of
Toronto (Loken et al., 2010; Ponce et al., 2019).

TABLE 1 | Patient characteristics.

Patient Classification Age Sex Sampling Rate
(Hz)

# of
ictal Recordings

Length of
ictal segments (s)

P1 non-SUDEP 28 M 500 2 75–128
P2 non-SUDEP 52 F 500 1 83
P3 non-SUDEP 56 - 512 1 135
P4 non-SUDEP 41 M 512 10 32–174
P5 non-SUDEP 19 M 512 4 113–138
P6 non-SUDEP 62 F 512 8 57–83
P7 non-SUDEP 42 F 512 2 19, 158
P8 non-SUDEP 40 F 512 7 30–129
P9 non-SUDEP 39 M 512 5 13–67
P10 non-SUDEP 28 M 512 8 54–109
P11 non-SUDEP 22 F 500 16 11–55
P12 non-SUDEP 30 F 500 4 76–182
P13 non-SUDEP 35 F 500 3 24–72
P14 non-SUDEP 31 F 500 6 5–27
P15 SUDEP — — 200 1 175
P16 SUDEP — — 256 3 81–92
P17 SUDEP 21 F 256 2 241, 744a

P18 SUDEP 26 F 512 1 63
P19 SUDEP 30 M 500 6 56–76
P20 SUDEP 43 F 512 6 45–283
P21 SUDEP 47 M 200 5 108–124
P22 SUDEP 30 M 256 1 38

aPart of the ictal duration during status epilepticus episode prior to medical intervention.
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Wavelet Phase Coherence
Wavelet phase coherence (WPC) was computed between pairs of
scalp EEG electrodes. The phase of different frequency bands was
extracted through the complex wavelet transform (Cotic et al.,
2015). The Morlet complex wavelet transform was used with a
mother wavelet of central frequency of 0.8125 Hz and bandwidth
of 5 Hz, as previously used on EEG data (Grigorovsky et al.,
2020). The relative phase difference was obtained using

Δϕ(s, τ) � tan−1(Wp
1(s, τ)W2(s, τ) −W1(s, τ)Wp

2(s, τ)
W1(s, τ)W2(s, τ) − Wp

1(s, τ)Wp
2(s, τ)

) (1)

where }W} is wavelet coefficient, }Wp} is the complex
conjugate, “s” is the scaling coefficient and }τ} is the time
shift. The phase coherence between two electrodes is
computed over a time window (N · Δt) expressed as an
integer multiple N of the sampling period Δt. The phase
coherence is defined as:

ρ(s, τ) � ∣∣∣∣〈ejΔϕ(s,τ)〉∣∣∣∣ � 1
N + 1

∑N/2

k�−N/2
ejΔϕ(s,τ+kΔt) (2)

WPC was applied to each wavelet central frequency in the
delta (0.5–2 Hz) and HFO (80–120 Hz) ranges, in increments on
a logarithmic base two scale. Wavelet frequency scales took the
form of 2k where }k} ranged from −2.0 to 1.0 for the delta range
and 6.3 to 6.9 for the HFO range in 0.1 incremental steps. The
WPC window size was proportional to 8 cycles for each
frequency.

The undirected connectivity matrices were computed at 1 s
intervals by assigning each edge corresponding to a pair of scalp
electrodes to the WPC averaged over the frequency range (delta
or HFO) and over 1 s temporal windows. The edges between
electrodes are undirected, yielding to symmetrical connectivity
matrices.

eij(t) � eji(t) � 〈ρij(s, τ)〉
∣∣∣∣∣ eij ∈ E, (i, j) ∈ V2 (3)

where " eij(t)} and }ρij(s, τ)} is the edge andWPC between node
}i" and }j}, }E} and " V} is the set of all edges and the set of
vertices respectively in the graph.

Directed Low to High Frequency
Connectivity
The undirected connectivity matrices were derived from delta–HFO
WPC. The degree of each node was computed for both the delta and
HFOWPC connectivity adjacency matrices to construct the directed
delta-HFO network. Edges between pairs of nodes i and j were
computed from the product of the delta degree of node i and HFO
degree of node j. Thismeasure represents information flow across the
brain pertaining to the coexistence of simultaneous cohered delta and
cohered HFO regions, which are two frequency ranges associated
with seizure activity (Guirgis et al., 2015; Grigorovsky et al., 2020).
The nature of this simultaneous coexistence may or may not be
associated (Figure 2) with classical cross-frequency coupling (Tort
et al., 2008; Canolty and Knight 2010; Stankovski et al., 2017).

Additionally, this measure can identify phase-amplitude cross-
frequency coupling (Supplementary Figure S1), where low
frequency oscillations coordinate large scale activity driving
local HFOs.

Graph Theory Measures
Global coherence was computed as a measure for the undirected
delta and HFO connectivity networks. First the eigenvalues of the
connectivity matrix were computed and sorted. The global
coherence is a ratio between the largest eigenvalue to the sum
of all eigenvalues and has been previously used to analyze
spatiotemporal EEG dynamics (Cimenser et al., 2011).

CGlobal � λmax∑ λ
(4)

The temporal mean of the global coherence was used to assess
group differences.

Two network measures were computed: the clustering coefficient
and the global efficiency. Together, these measures provide a
description of the connection topology in the brain network.

The clustering coefficient for each node/electrode }C→ i} in
the directed graph is defined as the fraction of directed edges
between adjacent nodes of node i over the maximum amount of
directed edges

�Ci �
1
2∑j,h∈V(eij + eji)(eih + ehi)(ejh + ehj)

(kouti + kini )(kouti + kini − 1) − 2∑j∈Veijeji
(5)

where }ki} is the degree of node i (Watts and Strogatz 1998;
Fagiolo 2007; Liao et al., 2011). The clustering coefficient of the
network is the mean clustering coefficient of all nodes.

C � 1
n
∑
i∈V

�Ci (6)

The global efficiency of the network is a measure which quantifies
how information flows throughout the network. Graphs with a high
global efficiency have on average shorter paths connecting any two
nodes within the network. The global efficiency was used instead of
the characteristic path length as the shortest path length is not defined
when a network contains two nodes that are not connected by any
path. The global efficiency is the average efficiency, defined as the
inverse of the shortest path between two nodes, over all electrode
pairs (Latora and Marchiori 2001; Mitsis et al., 2020).

E � 1
n(n − 1) ∑

i,j∈N, i≠j

1
dij

(7)

where }dij} is the shortest path between nodes i and j in the directed
graph. Graph theory measures were computed using the Brain
Connectivity Toolbox in Python (Rubinov and Sporns 2010).
Graph visualization was created using the circular layout graph of
the MNE-Python software package (Gramfort et al., 2013).

Statistical Analysis
DABEST Python toolbox was used for two group comparisons
of graph measures generating Gardner-Altman estimation
plots for independent group mean differences (Ho et al.,
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FIGURE 1 | (A) Scalp EEG recording of a seizure from a non-SUDEP patient (P2) and (B) the corresponding delta (0.5–2 Hz) and HFO (80–120 Hz) wavelet
phase coherence of electrodes C3 and Cz. (C) Scalp EEG recording of a seizure from SUDEP patient (P19) and (D) the corresponding wavelet phase coherence
of electrodes T5 and Fz. For (A) and (C) the two electrodes are shown in referential montage while zoomed in regions of the seizure show all electrodes in a
bipolar montage. Low-frequency filter 0.5 Hz; high-frequency filter 120 Hz.
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2019). Bootstrapping was used to obtain distribution and
confidence intervals for difference in groups. The Wilcoxon
rank sum test was also used to test for significance between the
two groups, as a separate test from the bootstrapping
confidence intervals.

RESULTS

Abnormalities of brain networks have been implicated in different
brain disorders including epilepsy (Liao et al., 2010). In this study, we
explore network properties as a biomarker of SUDEP. 1) We
constructed functional connectivity networks from delta and HFO
WPC. 2) These networks were combined to create cross-frequency
directed graphs as a proxy for information flow in different
spatiotemporal scales of the brain. The directed graphs were
validated using simulated data and seizure examples from a
SUDEP and non-SUDEP epileptic patient. 3) We compared the

topological differences in the directed networks between the two
groups, yielding in a biomarker for SUDEP.

Functional Connectivity Network
FCN gives insight into disease induced changes in synaptic
plasticity and efficiency of communication within neural
networks in the brain (Bettus et al., 2008). WPC has
previously been used as a measure for FCN in the brain,
depicting coupling of different brain regions by way of specific
brain rhythms (Cotic et al., 2015). Figure 1 shows scalp EEG
traces of representative seizures in a non-SUDEP (P2) and
SUDEP patient (P19), and examples of the corresponding
WPC between two electrodes. The chosen electrodes showed
the highest closeness centrality during seizure. Differences in the
WPC distributions reaffirmed the choice of the two frequency
ranges. The analysis was repeated for each pair of nodes and
averaged over the frequency range and temporal windows to
provide the connectivity strength between the two nodes.

A

B

C D E

FIGURE 2 | Validation of the directed graph measure using simulated EEG rhythms (A) Simulated delta rhythms with different frequencies are added to electrodes
O1 and P3 with the combined rhythm added to P7. Simulated HFO rhythms with different frequencies are added to electrodes Fp2 and C4 with the combined rhythm
added to F8. The design of the simulated network sets the P7 electrode as the strongest source of low frequency activity and the F8 electrode as the strongest source of
high frequency activity. (B) Simulated EEG traces by adding the rhythms in (A) to the appropriate channels and adding Gaussian white noise to every trace. (C–D)
Functional connectivity graphs with adjacency matrices computed by averaging the wavelet phase coherence between pairs of electrodes over the entire traces and over
delta and HFO frequency ranges respectively. (E) Directed connectivity graph computed from connectivity graphs in C and D. Edges between pairs of electrodes i and j
(nodes) are computed from the product of the delta degree of electrode i and HFO degree of electrode j. The directed graph accurately represents the connection
between the low frequency hub to the high frequency hub and the direction of information flow.
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FIGURE 3 | (A–B) Functional connectivity adjacency matrices computed by averaging the wavelet phase coherence between pairs of electrodes over the
electrographic seizure and over delta and HFO frequency ranges respectively in non-SUDEP patient. (C) Directed connectivity adjacency matrix computed from
connectivity matrices in A and B. Edges between pairs of electrodes i and j (nodes) are computed from the product of the delta degree of electrode i and HFO degree of
electrode j. This measure represents information flow across the brain pertaining to delta-HFO coupling, where low frequency oscillations are important in
coordination of large-scale activity driving more local high frequency oscillations. (D–F)Graph diagrams corresponding to connectivity matrices in A-C highlighting edges
having the highest strength. Graph nodes are colored based on their ranking of delta and HFO degree. Similarly, (G–I) shows the functional connectivity matrices in a
SUDEP patient, (I) the directed connectivity matrix, and (J–L) corresponding graph visualizations. Mean delta (M) and HFO (N) global coherence during the ictal period is
unable to distinguish SUDEP from non-SUDEP (Wilcoxon rank sum test, p > 0.05).
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Validation of the Cross-Frequency Directed
Graph Connecting Low and High Frequency
Hubs
Complex information flow involves multi-frequency large-scale
organization in the brain (Buzsaki 2006; Jirsa and Müller 2013).
We used directed networks to provide information about the
coupling directionality between low and high frequency
rhythms. The directed graph is constructed using the low
frequency and high frequency with edge weights
corresponding to the product of the low frequency graph

degree of one electrode to the high frequency graph degree
of another electrode. To validate our cross-frequency directed
network, we simulated EEG rhythms and low/high frequency
hubs. Starting with an empty set of EEG signals, we began
populating specific channels with chosen delta and HFO
rhythms. All channels contained Gaussian white noise. We
aimed to create one low frequency hub and one high
frequency hub and confirm that the directed connectivity
network showed a directed edge between them. The low
frequency hub was chosen to be electrode P7. This hub was

FIGURE 4 | Dynamic changes in the ictal delta-HFO network not found in SUDEP patients. (A,B) Undirected functional connectivity computed from average wavelet phase
coherence between each pair of electrodes using a 10 s sliding window throughout a seizure event in a non-SUDEP patient. (C)Directed graph computed using the delta and HFO
graphs, connecting nodeswith strong low-frequency degrees to nodeswith strong high-frequency degrees. (E,F)Undirected functional connectivity computed fromaveragewavelet
phase coherence between eachpair of electrodes using a 10 s slidingwindow throughout a seizure event in a SUDEPpatient. (G)Directed graph computed using the delta and
HFO graphs. Note the difference in seizure network dynamics of the directed graphs in the non-SUDEP patient in (C) compared to the SUDEP patient in (G).
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designed to contain two different delta rhythms which then
would each spread to another electrode (P3 and O1). The high
frequency hub was chosen to be electrode F8. This hub was
designed to contain two different HFO rhythms which then
would each spread to a nearby electrode (Fp2 and C4). As
expected, the low and high frequency networks shown in
Figures 2C,D showed the desired connections. The directed
connectivity network correctly identified the connection
between the low and high frequency hubs as per our network
design. Furthermore, the network analysis proved to be
consistent when applied to recorded EEG data from a
SUDEP (P19) and non-SUDEP patient (P1) (Figure 3).
Taken together, these results validate and demonstrate how
the directed graph captures cross-frequency interactions within
the brain.

Temporal Changes of the Delta-HFO
Directed Network During Seizure
We constructed the delta-HFO directed network for consecutive
10-s duration time windows during peri-ictal regions in
representative SUDEP (P19) and non-SUDEP (P1) patients
(Figure 4). The graph visualizations indicated differences in
network seizure dynamics in a non-SUDEP patient that were
not observed in a SUDEP patient (Figure 4). The directed

graphs (Figures 4D–G) further highlighted the seemingly
unchanging network of the non-SUDEP patient during the
ictus. Topological measurements of the directed graphs were
used to compare the networks between the two patients. The
pre-ictal, ictal, and post-ictal mean clustering coefficient and
global efficiency were higher in the SUDEP than in the non-
SUDEP patient (Figure 4D).

Peri-Ictal Topological Network Changes as
Biomarker for SUDEP
The clustering coefficient and global efficiency measures were
used to compare group differences between non-SUDEP and
SUDEP epileptic patients (Figure 5). The clustering coefficient is
an average measure of how node triples are connected within the
network and specifies the tendency for nodes to cluster together.
The clustering coefficient was significantly higher in the SUDEP
group during the pre-ictal, ictal, and post-ictal segments (pre-
ictal: p = 0.00100, ictal: p = 0.00001, post-ictal: p = 0.00100). The
global efficiency, which indicates how efficiently information is
transferred between nodes, was shown to be significantly higher
in the SUDEP group pre-ictally, ictally, and post-ictally (pre-ictal:
p = 0.00012, ictal: p = 0.00001, post-ictal: p = 0.00071). These
results show that network topology is a potential biomarker in
assessing SUDEP risk.

FIGURE5 |Group differences (A) in themean clustering coefficient, and (B) in themean global efficiency, between seizures of non-SUDEP and SUDEP groups pre-
ictally, ictally, and post-ictally (Wilcoxon rank sum test, *p < 0.05, **p < 0.01, ***p < 0.001,****p < 0.0001).
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DISCUSSION

We have found topological differences in the peri-ictal delta-HFO
directed networks of epileptic patients with SUDEP exhibiting
significantly higher pre-ictal, ictal, and post-ictal clustering
coefficient and global efficiency in the delta-HFO directed
networks. These data suggest a higher connectivity and more
efficient flow of information in seizure networks of SUDEP
patients. Both high clustering coefficient and high global
efficiency are features that resemble a small-world organized
network as first described by Watts and Strogatz (Watts and
Strogatz 1998). These networks are both locally and globally
efficient, combining high clustering and short characteristic path
length features (Latora and Marchiori 2001). The observed
network changes suggest that cross-frequency network
topology is a possible SUDEP biomarker.

The delta-HFO directed networks captured the complexity
of the seizure networks and differences between SUDEP and
non-SUDEP groups. The importance of these rhythms is
consistent with previous studies localizing seizure networks
(Cotic et al., 2015). A recent study from our group described
delta-gamma cross-frequency coupling as a biomarker of
PGES (Grigorovsky et al., 2020).

Proposed mechanisms of SUDEP involve ictal-related cardio-
respiratory dysfunction, which may be caused by epileptiform
activity spreading to the brainstem. A crucial element of SUDEP
is brainstem dysfunction, for which PGES might be a biomarker
(Lhatoo et al., 2010; Devinsky et al., 2016). The MORTEMUS
study, which examined SUDEP cases that occurred in epilepsy
monitoring units, found the cause of death to be due to postictal
respiratory impairment and bradycardia (Ryvlin et al., 2013). The
cross-frequency network differences that were observed in our
study may suggest that the network is more efficient in the spread
of seizure activity, reaching central autonomic structures more
easily. This may increase the likelihood of ictal associated
bradycardia and asystole. Spread to the brainstem may also
affect respiration centers, inducing hypoxia and hypercapnia.
This is consistent with findings where electrical stimulation of
the amygdala induced respiratory arrest (So 2008).

Further research needs to be done using intracranial EEG in
both patient groups to have a deeper understanding of how these
topological changes relate to seizure spread and brainstem
dysfunction. A limitation of this study is the low number of
patients in the SUDEP group. More patients need to be added to
the sample size to examine the predictive power of this
biomarker. Although the network dynamics throughout
representative seizures seemed to differ in SUDEP patients,
further exploration needs to be done in comparing group

differences. Regarding patient selection criteria, EEG
recordings in this study were obtained from patients
monitored in the EMU. While most patients were weaned off
anti-seizure medications in order to provoke seizures, changes in
their medication regimen were not annotated in the EEG
recordings. This should be taken into consideration for future
studies. Also, all non SUDEP patients were medically refractory
and this may limit the generalizability of this biomarker to the
broader epilepsy population. In conclusion, there is an unmet
need for non-invasive biomarkers to identify those patients at
high risk for developing seizure-associated SUDEP. Our study
describes such a biomarker for SUDEP using scalp EEG signals to
construct functional connectivity networks of the brain.
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