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Hypersynchrony of neuronal activity is associatedwith several neurological disorders, including
essential tremor and Parkinson’s disease (PD). Chronic high-frequency deep brain stimulation
(HF DBS) is the standard of care for medically refractory PD. Symptoms may effectively be
suppressed by HF DBS, but return shortly after cessation of stimulation. Coordinated reset
(CR) stimulation is a theory-based stimulation technique that was designed to specifically
counteract neuronal synchrony by desynchronization. During CR, phase-shifted stimuli are
delivered to multiple neuronal subpopulations. Computational studies on CR stimulation of
plastic neuronal networks revealed long-lasting desynchronization effects obtained by down-
regulating abnormal synaptic connectivity. This way, networks are moved into attractors of
stable desynchronized states such that stimulation-induced desynchronization persists after
cessation of stimulation. Preclinical and clinical studies confirmed corresponding long-lasting
therapeutic and desynchronizing effects in PD. As PD symptoms are associated with different
pathological synchronous rhythms, stimulation-induced long-lasting desynchronization effects
should favorably be robust to variations of the stimulation frequency. Recent computational
studies suggested that this robustness can be improved by randomizing the timings of
stimulus deliveries. We study the long-lasting effects of CR stimulation with randomized
stimulus amplitudes and/or randomized stimulus timing in networks of leaky integrate-and-fire
(LIF) neurons with spike-timing-dependent plasticity. Performing computer simulations and
analytical calculations, we study long-lasting desynchronization effects of CR with and without
randomization of stimulus amplitudes alone, randomization of stimulus times alone as well as
the combination of both. Varying theCR stimulation frequency (with respect to the frequency of
abnormal target rhythm) and the number of separately stimulated neuronal subpopulations,
we reveal parameter regions and related mechanisms where the two qualitatively different
randomization mechanisms improve the robustness of long-lasting desynchronization effects
of CR. In particular, for clinically relevant parameter ranges double-random CR stimulation,
i.e., CR stimulation with the specific combination of stimulus amplitude randomization and
stimulus time randomization, may outperform regular CR stimulation with respect to long-
lasting desynchronization. In addition, our results provide the first evidence that an effective
reduction of the overall stimulation current by stimulus amplitude randomization may improve
the frequency robustness of long-lasting therapeutic effects of brain stimulation.
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1 INTRODUCTION

The human body can be viewed as a complex network with
various interacting physiological systems. Stimulation of one
system might have a strong and potentially even delayed
impact on others (Bashan et al., 2012; Ivanov et al., 2016). A
deeper understanding of the complex interactions between
physiological systems through various signaling pathways and
how they lead to the emergence of new physiological states might
lead to the development of novel treatments for several diseases
(Bartsch et al., 2015; Ivanov et al., 2016). For instance, a recent
study on vibrotactile fingertip coordinated reset (CR) stimulation
for the therapy of Parkinson’s disease (PD) revealed clinically and
statistically significant improvement of motor control along with
a significant decrease of abnormal, PD-related high-beta power in
the sensorimotor cortex after 3 months of treatment (Pfeifer et al.,
2021). Notably, sensory stimuli delivered to only a small part of
the body were able to cause pronounced bilateral motor
improvement of the entire body (Pfeifer et al., 2021).

PD patients typically suffer from pronounced motor
symptoms, as well as several non-motor symptoms such as
sensory impairments (Conte et al., 2013), impairments of
sensorimotor integration (Abbruzzese and Berardelli, 2003),
mood disorder, sleep disorder, and cognitive decline (Weiner
et al., 2001; Reich et al., 2022). A network of strongly
interconnected brain areas is involved, including the basal
ganglia, the thalamus, and the sensorimotor cortex (McGregor
and Nelson, 2019). Individual symptoms are associated with
abnormally strong neuronal synchrony in these brain areas
(Nini et al., 1995; Hammond et al., 2007).

An established treatment for medically refractory PD is high-
frequency deep brain stimulation (HF DBS). Chronic delivery of
HF DBS to target regions such as the subthalamic nucleus (STN)
may suppress PD symptoms during stimulation (Krack et al.,
2003; Krauss et al., 2021), where symptoms return shortly after
cessation of stimulation (Temperli et al., 2003). Hence,
permanent stimulation is required for persistent symptom
relief, limiting battery life and, more importantly, increasing
the risk of unwanted side effects, e.g., caused by stimulation of
neighboring tissue due to current spread as well as stimulation of
the very target region (Krack et al., 2002).

To substantially reduce the integral stimulation current, based
on computational studies, it was suggested to develop DBS
approaches that aim at specifically counteracting pathological
synchrony by desynchronzation (Tass, 1999; Tass, 2000). Theory-
based desynchronization techniques harness the nonlinear
response of ensembles of coupled oscillators to external
stimuli. For instance, an ensemble of synchronized oscillators
can be desynchronized by delivering a single stimulus pulse at a
vulnerable phase of the collective rhythm (Mines, 1914; Winfree,
1977; Warman and Durand, 1989; Tass, 1999). To reliably
desynchronize an ensemble of coupled oscillators, it was
suggested to deliver such a desynchronizing pulse shortly after

a strong phase-resetting pulse (Tass, 2001; Tass, 2002; Zhai et al.,
2005). A stimulation technique that does not rely on delivering
stimuli at specific phases of the target rhythm is CR stimulation
(Tass, 2003a). During CR stimulation, desynchronization is
achieved by delivering phase-shifted stimuli to individual
neuronal subpopulations. Other studies analyzed
desynchronization by linear and nonlinear delayed feedback
stimulation (Rosenblum M. and Pikovsky A., 2004; Rosenblum
M. G. and Pikovsky A. S., 2004; Hauptmann et al., 2005a;
Hauptmann et al., 2005b; Hauptmann et al., 2005c; Popovych
et al., 2005; Popovych et al., 2006a; Popovych et al., 2006b;
Pyragas et al., 2007; Popovych and Tass, 2010). Periodic
stimulation at a suitable frequency may counteract neuronal
synchrony by chaotic desynchronization (Wilson et al., 2011).
Another study suggested closed-loop phasic burst stimulation
during which burst stimuli are delivered at certain phases of the
synchronous targeted rhythm (Holt et al., 2016). These phases
were calculated based on online estimations of the phase response
curve of the collective rhythm (Holt et al., 2016).

These stimulation techniques were originally developed for
networks with fixed synaptic connections. The brain, however, is
subject to synaptic plasticity and reorganizes network
connectivity continuously (Liu et al., 2015; Van Ooyen and
Butz-Ostendorf, 2017). One of these plasticity mechanisms is
spike-timing-dependent plasticity (STDP), where the synaptic
strengths are modulated according to the relative timings of post-
and presynaptic spikes (Markram et al., 1997; Abbott and Nelson,
2000; Caporale and Dan, 2008). In many brain regions, STDP
leads to a strengthening of synapses if the postsynaptic spike
follows the presynaptic one and to a weakening of synapses if the
presynaptic spike follows the postsynaptic one (Markram et al.,
1997; Bi and Poo, 1998). STDP may enable the formation of
neuronal assemblies (Litwin-Kumar and Doiron, 2014) and other
network motifs (Ocker et al., 2015; Madadi Asl et al., 2018). It
may also stabilize neuronal activity patterns, such as synchronous
activity (Karbowski and Ermentrout, 2002), and lead to the
coexistence of different stable states characterized by different
activity patterns, such as desynchronized, synchronized, or
cluster states (Seliger et al., 2002; Zanette and Mikhailov, 2004;
Tass and Majtanik, 2006; Maistrenko et al., 2007; Masuda and
Kori, 2007; Aoki and Aoyagi, 2009; Berner et al., 2020; Yanchuk
et al., 2020).

Computational studies in plastic neuronal networks found
that CR stimulation may induce not only acute
desynchronization during stimulation but also long-lasting
desynchronization that outlasts stimulation (Tass and
Majtanik, 2006). The authors found that plastic synapses
weakened during stimulation, which drove the network from a
stable synchronous state, with strong synaptic connections, into
the attractor of a stable desynchronized state, with weak synaptic
connections. Based on these computational findings, CR
stimulation was suggested as a possible therapy for inducing
long-lasting therapeutic effects in movement disorders and
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epilepsies (Tass and Majtanik, 2006). In PD, corresponding long-
lasting desynchronization and therapeutic effects were later
confirmed by preclinical studies (Tass et al., 2009; Tass et al.,
2012b;Wang et al., 2016;Wang et al., 2022) and clinical studies in
PD patients delivering CR to the STN (Adamchic et al., 2014) or
using vibrotactile fingertip CR stimulation (Tass, 2017; Syrkin-
Nikolau et al., 2018; Pfeifer et al., 2021; Tass, 2022).

A deeper understanding of the parameter dependence of long-
lasting desynchronization effects is critical for future clinical
applications. In an earlier computational study, the long-
lasting desynchronization effects of CR stimulation were
studied in networks of Hodgkin-Huxley neurons with STDP
(Manos et al., 2018). CR stimulation with two spatio-temporal
stimulus patterns was delivered: CR with rapidly varying
sequence (CR RVS) and CR with slowly varying sequence (CR
SVS). For CR RVS the stimulus pattern is varied after each
subpopulation received one stimulus, whereas the pattern
remains fixed for longer time intervals during CR SVS. The
authors reported that long-lasting desynchronization effects of
strong CR RVS and CR SVS stimulation were sensitive to the ratio
between the stimulation frequency and the frequency of the
pathological synchronous rhythm. In contrast, for weak
stimulation amplitudes, long-lasting desynchronization effects
became more robust with respect to changes of the
stimulation frequency, especially for CR RVS, whereas CR SVS
did not induce long-lasting desynchronization for certain
unfavorable frequency ratios. A similar observation was made
in a later computational study analyzing long-lasting effects of CR
RVS stimulation in networks of leaky integrate-and-fire (LIF)
neurons with STDP (Kromer and Tass, 2020). There, it was
hypothesized that certain unfavorable stimulation frequencies
might lead to resonances and stabilize synchronous neuronal
activity. Another computational study using networks of LIF
neurons with STDP found that the stimulation frequency also
needs to be adjusted to the time scales of synaptic long-term
depression (LTD) and long-term potentiation (LTP) (Kromer
et al., 2020). From a theoretical standpoint, these frequency
dependences might limit clinical applicability as different PD
symptoms have been associated with excessive neuronal
synchrony in different frequency bands. Specifically, dyskinesia
and tremor have been associated with synchronous neuronal
activity in the theta band (3–10 Hz) (Brown, 2003; Steigerwald
et al., 2008; Tass et al., 2010; Contarino et al., 2012). In contrast,
rigidity and bradykinesia have been associated with synchronized
beta-band activity (13–30 Hz) (Kühn et al., 2006; Weinberger
et al., 2006). Furthermore, multiple central oscillators were found
to underlie the generation of tremor (Raethjen et al., 2000).

To improve the robustness of long-lasting desynchronization
effects with respect to changes of the stimulation frequency,
recent computational studies suggested temporal
randomization of the CR stimulus pattern. Typically CR
stimulation is delivered with a fixed cycle period, such that
each stimulation site is activated exactly once per cycle (Tass,
2003a). A recent series of computational and theoretical studies
found that the frequency robustness of long-lasting
desynchronization effects increased if stimulus delivery times
were randomized. In particular, stimulus deliveries according

to a Poisson pulse train (Kromer and Tass, 2020; Khaledi-Nasab
et al., 2021a) and the addition of random jitters to the individual
stimulus delivery times within individual CR cycles were
considered (Khaledi-Nasab et al., 2021b).

In the present study, we suggest CR stimulation with
randomized stimulus amplitudes to increase the robustness of
long-lasting desynchronization effects of CR stimulation with
respect to the stimulation frequency. We perform computer
simulations of networks of LIF neurons with STDP and study
long-lasting effects of regular CR (Popovych and Tass, 2012;
Zeitler and Tass, 2015) and temporally uncorrelated CR (referred
to as uncorrelated multichannel noisy stimulation in Zeitler and
Tass (2018)). Based on results from previous studies, we expect
long-lasting effects of regular CR to show a pronounced
frequency dependence (Manos et al., 2018; Kromer et al.,
2020) and long-lasting effects of temporally uncorrelated CR
to be more robust with respect to changes of the stimulation
frequency (Kromer et al., 2020; Kromer and Tass, 2020; Khaledi-
Nasab et al., 2021a; Khaledi-Nasab et al., 2021b). We compare
long-lasting desynchronization effects for both patterns with and
without randomized stimulus amplitudes. Remarkably, double-
random CR stimulation, i.e., CR stimulation with randomization
of stimulus amplitudes as well as temporally uncorrelated
stimulus times, substantially improves the long-term
desynchronization outcome for high CR stimulation
frequencies (compared to the intrinsic frequency of the
abnormal target rhythm) and large numbers of separately
stimulated subpopulations.

This present paper is organized as follows: In section 2, we
present details on the plastic neuronal network model used
throughout the paper. Then, the different stimulation patterns
and stimulus randomizations are introduced. We also present
the detailed derivation of our theoretical approximations for the
synaptic weight dynamics during ongoing stimulation. In
section 3, we compare results for CR stimulation patterns
with constant stimulus amplitudes and with randomized
stimulus amplitudes. In particular, we consider uniformly
distributed stimulus amplitudes and binarily distributed
stimulus amplitudes. For the latter, a random fraction of
stimuli is removed from the pattern (by setting its
amplitudes to zero) while the remaining stimuli possess a
constant amplitude. Finally, in section 4, we discuss our
results in the context of the current literature and point out
possible consequences for clinical studies.

2 MODEL AND METHOD

Simulations were performed for networks of N = 103 excitatory
LIF neurons with STDP. All parameters were chosen according to
Kromer et al. (2020), Khaledi-Nasab et al. (2021a), and Khaledi-
Nasab et al. (2021b) such that a stable desynchronized state, with
weak synaptic connections, and a stable synchronized state, with
strong synaptic connections, coexist. All equations and
parameters are given in Kromer et al. (2020), Khaledi-Nasab
et al. (2021a), and Khaledi-Nasab et al. (2021b) and are presented
in Supplementary Material for the reader’s convenience.
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2.1 Network Connectivity
We considered a spatial network of LIF neurons with distance-
dependent connection probability. The LIF neurons were
equidistantly spaced in the interval xi ∈ [0, L]. L sets the
length scale over which neurons are distributed in space. The
probability for a synaptic connection between neurons was
distance dependent and proportional to exp((|xj − xi|)/0.1L)
(Ebert et al., 2014). Synapses were implemented such that each
neuron had 0.07N outgoing synapses. If not stated otherwise,
simulation results were averaged over three network realizations
that differed in the realization of random synaptic connectivity, of
initial synaptic weights, and neuron parameters (Supplementary
Material).

We considered a fixed synaptic transmission delay of τ = 3 ms
(Kromer et al., 2020).

2.2 Spike-Timing-Dependent Plasticity
The dynamics of synaptic weights, wij(t), was determined by
STDP. We considered a nearest-neighbor STDP scheme in which
weight updates are performed at postsynaptic spike times and
presynaptic spike arrival times (Morrison et al., 2008).
Corresponding weight updates, wij → wij + W(tj − (ti + td)),
are given by the STDP function (Song et al., 2000; Kromer and
Tass, 2020)

W Δt( ) � η

e−|Δt|/τ+ , Δt> 0
0, Δt � 0

− β

τR
e−|Δt|/τ− , Δt< 0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
. (1)

Δt = tj − (ti + td) is the time lag between the postsynaptic spike
time, tj, and the latest presynaptic spike arrival time, ti + td, (when
the update is triggered by a postsynaptic spike), and the time lag
between the presynaptic spike arrival time, ti + td, and the latest
postsynaptic spike time, tj, (when the update is triggered by a
presynaptic spike arrival). η = 0.02 scales the weight update per
spike, τR = 4 yields asymmetry in STDP decay times τ+ = 10 ms
and τ- = τ+τR. β = 1.4 scales the ratio of overall LTD to LTP. In
addition to this dynamics, individual synaptic weights are
restricted to the interval wij ∈ [0, 1] by hard bounds (Song
et al., 2000; Rubin et al., 2001).

For these parameters a stable synchronized state and a stable
desynchronized state coexist, see Kromer and Tass (2020); Kromer
et al. (2020) and Khaledi-Nasab et al. (2021a) for details. In these
states, individual synaptic weights approach the hard bounds. The
mean synaptic weight in the desynchronized state approaches
small values as most individual synaptic weights approach the
lower hard bound. In contrast, the value of the mean synaptic
weight in the synchronized state is approximately 0.38, indicating
that about 38% of the synapses approach the upper hard bound.
Snapshots of the distributions of the individual synaptic weights in
a similar network model in either state can be found in Figures
8C,D in Kromer and Tass (2020).

2.3 Stimulation
In the present paper, we studied the network’s response to
randomized spatio-temporal stimulus patterns. Individual

stimuli were modeled as charge-balanced electrical pulses,
consisting of an excitatory rectangular pulse of duration ]e =
0.5 ms and an inhibitory rectangular pulses of duration ]i = 3 ms.
This asymmetry was motivated by preclinical and clinical studies
on CR stimulation (Tass et al., 2012b; Adamchic et al., 2014;
Wang et al., 2016). The stimulation amplitude was scaled by the
dimensionless parameter Astim such that the excitatory pulse had
the amplitude Astimμ/]e and the inhibitory one the amplitude −
Astimμ/]i with μ = (Vth,spike − Vreset)/〈Ci〉 (see appendix for more
details). Throughout the present paper, we considered different
stimulus patterns that were motivated by the original CR
stimulation pattern (Tass, 2003a; Tass, 2003b) and recently
studied randomized versions of this pattern (Zeitler and Tass,
2018; Khaledi-Nasab et al., 2021b). In particular, we applied CR
stimulation with randomized stimulation times (tCR), studied in
a previous computational study (Zeitler and Tass, 2018) (there it
was called uncorrelated multichannel noisy stimulation), and CR
stimulation with randomized stimulation amplitudes (CR).
Following, we present a detailed description of all stimulation
patterns considered throughout the present paper.

• Coordinated reset (CR) stimulation: The CR stimulation
pattern is characterized by the stimulation frequency, fCR,
which sets the CR cycle period, 1/fCR, and the number of
separately stimulated subpopulations, Ns. During each CR
cycle, each subpopulation receives exactly one stimulus.
Obeying this restriction, individual stimuli are delivered
at subsequent multiples of 1/NsfCR to random
subpopulations. A representative realization of a CR
pattern is illustrated in Figure 1A. The CR pattern was
previously introduced as CR with rapidly varying sequence
(Popovych and Tass, 2012; Zeitler and Tass, 2015) and was
used in preclinical and clinical studies (Tass et al., 2012b;
Adamchic et al., 2014; Wang et al., 2016). Here, we will use
the term “regular CR” to emphasize the difference to the
different randomized CR patterns used throughout the
paper and introduced in the following.

• Temporally uncorrelated CR (tCR): Same as CR
stimulation, however, each subpopulation receives exactly
one stimulus per cycle at a uniformly distributed time
between zero and 1/fCR. There is no correlation between
the stimulus times of different channels. A representative
realization of a tCR pattern is illustrated in Figure 1B. The
tCR pattern was originally introduced in Zeitler and Tass
(2018), where it was referred to as uncorrelated
multichannel noisy stimulation.

• CR with binarily (bCR) or uniformly distributed (uCR)
stimulus amplitudes: Same as regular CR stimulation but
the amplitude of each stimulus is randomly chosen
according to either a uniform (uCR) and a binary
distribution (bCR). For the former, stimulus amplitudes
were uniformly distributed between Astim = 0 and Astim = 1.
Corresponding stimulus patterns will be marked by a lower
case ‘u’, e.g., uCR for regular CR with uniformly distributed
stimulus amplitudes. One representative realization of a
uCR pattern is shown in Figure 1A. For binarily
distributed stimulus amplitudes, stimuli possess either the
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amplitude Astim = 1 or Astim = 0. This corresponds to the
random removal of a fraction 1 − p of stimuli from the
pattern. pwill be referred to as fraction of delivered stimuli in
the following. The probability p at which stimuli have
amplitude Astim = 1 is a free parameter. A lower case ‘b’
will mark corresponding stimulus patterns, e.g., bCR for
regular CR with binarily distributed stimulus amplitudes.

• Double random CR stimulation: Same as tCR stimulation
except that, in addition, stimulus amplitudes were
randomized using either one of the distributions
introduced above. Double random CR stimulation
combines randomized stimulus times and randomized
stimulus amplitudes. Double random CR with uniformly
distributed stimulus amplitudes will be referred to as utCR
stimulation and double random CR with binarily
distributed stimulus amplitudes as btCR stimulation.
Representative realizations of utCR and btCR stimulation
patterns are shown in Figures 1B,B9, respectively.

2.4 Measures of Synchronization and Data
Evaluation
To measure the degree of neuronal synchrony, we calculated the
time-averaged Kuramoto order parameter (Kuramoto, 1984) over
T-seconds intervals as

�ρ t( ) � 1
T

∫
t+T

2

t−T
2

dt′ 1
N

∑N−1

k�0
e2πIψk t′( )

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣. (2)

N is the number of neurons, T = 10 s the averaging time interval,
and ψk(t) is a phase function associated with the interspike
intervals of neuron k. ψk(t) attains subsequent integer values at
the spike times of neuron k and increases linearly in time during
interspike intervals (Rosenblum et al., 2001). Thus, �ρ(t)measures
the degree of in-phase synchronized spiking on the time scale T
with �ρ ≈ 0 indicating the lack of in-phase synchronized spiking
and �ρ � 1 indicating perfect in-phase synchronized spiking.

FIGURE 1 | Illustration of stimulation patterns. (A): Regular CR stimulation for Ns = 4 subpopulations where the stimuli are delivered at integer multiples of 1/NsfCR
(vertical dashed-dotted gray lines) with fixed stimulus amplitude Astim = 1. The vertical black dashed lines show the beginnings of new stimulation cycles. Colors indicate
stimuli delivered to the same subpopulation (rows). A’: A representative bCR stimulation pattern where only a fraction of p = 0.5 of the stimuli is delivered. Stimuli that were
removed (Astim = 0) are plotted translucently. A”: A uCR stimulation pattern. Stimulus amplitudes are uniformly distributed between Astim = 0 and Astim = 1 (see
colored stimuli in panel A″). (B): tCR stimulation where stimulus times are uniformly distributed within CR cycles. Panels B′ and B″ show the btCR and utCR stimulation
patterns with binarily distributed (B′) and uniformly distributed (B″) stimulus amplitudes, respectively. These patterns possess the same statistics of stimulus delivery
times as the tCR pattern; however, for the btCR pattern only a fraction p = 0.5 of stimuli is delivered (removed stimuli are plotted translucently). For the utCR pattern,
stimulus amplitudes are uniformly distributed in the interval Astim ∈ [0, 1].
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The focus of our analysis was to distinguish between long-
lasting desynchronization and long-lasting synchronization of
neuronal spiking activity. For this purpose, a quantification of the
degree of neuronal synchrony with the Kuramoto order
parameter, Eq. 2, is sufficient. During stimulation, more
complex spike patterns that require a more detailed analysis,
e.g., cluster states, may occur, see, for instance, Figure 3 in Kromer
and Tass (2020).

2.5 Preparation of Networks in a Stable
Synchronized State
Prior to stimulation, networks were prepared in a stable
synchronized state, which was studied in detail in Kromer
et al. (2020). The preparation was done by initializing the
weights of all synapses randomly such that an initial mean
synaptic weight of 〈w〉 = 0.8 was realized. We simulated the
networks for 500 s until the mean synaptic weight approached a

stationary value of 〈w〉 ≈ 0.38 corresponding to a stable
synchronized state (Kromer et al., 2020). In this state, the
Kuramoto order parameter, Eq. 2, was close to one, indicating
a strong degree of in-phase synchronization of neuronal spiking.
Synchronized neuronal spiking events occurred at a frequency
of ≈ 3.5 Hz, which will be considered as the frequency of the
synchronous rhythm that is targeted by the stimulation.

2.6 Quantification of Acute Effects, Acute
After-Effects, and Long-Lasting
After-Effects of Stimulation
In the present paper, we focus on the effect of stimulation on
neuronal synchrony. To quantify this effect, we evaluated the
Kuramoto order parameter (Eq. (2)). We distinguish between
acute effects, observable during stimulation; acute after-effects,
observable shortly after cessation of stimulation; and long-lasting
after-effects, briefly denoted as long-lasting effects, observable in
the long-time limit after cessation of stimulation when the
neuronal network has relaxed to a stable state. The acute effect
of stimulation was quantified by time-averaging the Kuramoto
order parameter �ρac over a 10 seconds time interval at the end of
the stimulation duration. In addition, we recorded the mean
synaptic weight 〈w〉ac at the end of the stimulation duration to
quantify the effect of stimulation on the synaptic connectivity.
The acute after-effect of stimulation was quantified by time-
averaging the Kuramoto order parameter �ρaf over the first
10 seconds time interval after cessation of stimulation. Finally,
long-lasting effects were quantified by time-averaging the
Kuramoto order parameter �ρll over a 10 seconds time interval
1,000 s after cessation of stimulation.

2.7 Estimated Mean Rate of Synaptic
Weight Change
Previous studies presented theoretical approximations of the mean
rate of weight change during ongoing stimulation (Kromer and Tass,
2020). In particular, results for CR stimulation (Kromer et al., 2020)
and randomized versions of CR stimulation (Khaledi-Nasab et al.,
2021b) were derived for the limit of stimulation-controlled spiking. In
this limit, each spike is triggered by a stimulus and each stimulus
causes a spike; thus, neuronal spiking due to the intrinsic dynamics
or any input other than the stimulation, e.g., noise or synaptic input,
is neglected. We further assume that stimuli trigger spikes at a fixed
time lag,Δ, i.e., variability of the time delay between stimulus delivery
and the triggered neuronal spike can be neglected. This may be a
valid assumption, for instance, for strong direct stimulation of the
neuronal Soma and for antidromic stimulation of cortical neurons
during STN DBS. For the latter, high response fidelity was found by
experimental studies (Li et al., 2007). In the following, we set Δ = 0.
However, our results also apply to any constant nonzero Δ. Previous
studies on networks of LIF neurons using the nearest-neighbor
STDP scheme (Eq. 1) found that these assumptions are valid for
strong (Astim ≈ 1) and fast stimulation, i.e., if the stimulation
frequency is fast compared to that of the synchronous target
rhythm (Kromer et al., 2020; Kromer and Tass, 2020; Khaledi-
Nasab et al., 2021b). Then, the mean rate of weight change for

FIGURE 2 | Illustration of the stimulation-controlled spiking
approximation for tCR stimulation and time lags contributing to weight
updates according to the nearest-neighbor STDP scheme. For the derivation
of the theoretical approximation for the mean rate of weight change,Eq. 4,
we assume stimulation-controlled spiking, i.e., each spike (black bars) is caused
by a stimulus (red vertical and horizontal bars, illustrating biphasic pulses) and
each stimulus triggers a spike in neurons in the corresponding subpopulation
(sp). In the upper row, we show representative spike trains for pre- and
postsynaptic neurons for an intrapopulation synapse, i.e., both neurons are part
of subpopulation i. According to the nearest-neighbor STDP scheme, Eq. 1,
synaptic weight updates are triggered by two events: First, when a presynaptic
spike arrives at the postsynaptic neuron (gray bar), weight updates are based on
negative time lags between the presynaptic spike arrival and the latest
postsynaptic spike (green double-headed arrow). Second, when a postsynaptic
spike occurs, weight updates are based on positive time lags resulting from
pairings of the postsynaptic spike with the latest presynaptic spike arrival (blue
double-headed arrow). All time lags that involve the arrival time of the presynaptic
spike triggered by the red-marked stimulus are marked by horizontal double-
headed arrows. For tCR stimulation, a fraction of stimuli is removed from the
stimulus pattern and does not trigger spikes. This is illustrated by plotting
removed stimuli translucently. The bottom row shows representative pre- and
postsynaptic spike trains for an interpopulation synapse (inter), i.e., post- and
presynaptic neurons are part of different subpopulations. Here, post- and
presynaptic neurons typically receive stimuli at different times. Again, we illustrate
all time lags involving pairings with the arrival time of the presynaptic spike
triggered by the red-marked stimulus by horizontal arrows. Note that multiple
postsynaptic spikes may be paired with the same presynaptic spike arrival if no
further presynaptic spikes arrive between them (see the two blue horizontal
arrows). Vice versa, multiple presynaptic spike arrivals might be paired with the
same postsynaptic spike if no postsynaptic spikes occur between them.
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individual synapses results from the statistics of time lags between
subsequent stimuli to the post- and presynaptic neuron, respectively
(Kromer and Tass, 2020; Khaledi-Nasab et al., 2021b).

We apply the same approach to derive theoretical
approximations for the mean rate of weight change of synapses
during ongoing CR stimulation with randomized stimulus patterns
btCR and bCR for arbitrary fractions of delivered stimuli p. Note
that the CR and tCR patterns are covered by the results for bCR
and btCR patterns in the limit of p = 1, respectively.

For a given stimulation pattern X, the statistics of time lags
between subsequent stimuli delivered to the post- and the
presynaptic neuron, respectively, depends on the considered
type of synapse. Following previous studies (Kromer and Tass,
2020), we distinguish between intra- and interpopulation
synapses. Intrapopulation synapses connect neurons in the
same subpopulation, whereas interpopulation synapses connect
neurons in different subpopulations (Kromer and Tass, 2020). A
corresponding schematic is shown in Figure 2.

The mean rate of weight change is solely determined by the
statistics of time lags, s, between stimulus deliveries to the
presynaptic and postsynaptic neuron

pX
intra/inter s( ) � p+,X

intra/inter s( ) + p−,X
intra/inter s( ). (3)

p+,X
intra/inter(s) and p−,X

intra/inter(s) are the distributions of time lags, s,
that lead to positive (+) and negative (-) weight updates for intra-
and interpopulation synapses, respectively, for the considered
nearest-neighbor STDP scheme, see above. Negative weight
updates result from pairings of delayed presynaptic spike
arrivals with postsynaptic spikes triggered by the same
(intrapopulation synapses) or the latest stimulus delivered to
the subpopulation of the postsynaptic neuron (interpopulation
synapses). Positive weight updates result from pairings of
postsynaptic spikes with the latest delayed presynaptic spike

arrivals caused by the latest stimulus delivered to the
presynaptic neuron, see Figure 2.

An estimate of the mean rate of weight change is given by
(Kromer and Tass, 2020)

J X
intra/inter � pfCR ∫ ds pX

intra/inter s( )W s − τ( ). (4)

W(s) is the STDP function, Eq. 1, and τ the synaptic delay time.
The prefactor pfCR is the average number of spikes per second of a
single neuron during ongoing stimulation. On average, each spike
is paired with two other spikes, the latest and the next spike of the
presynaptic/postsynaptic neuron; thus, the integral over
pX
intra/inter(s) yields a value of two. This is illustrated in Figure 2.
Following, we derive expressions for the distributions of

interstimulus intervals leading to positive weight updates
(p+,X

intra/inter(s)) and to negative (p−,X
intra/inter(s)) weight updates

for both btCR and bCR stimulation.

2.7.1 Temporally Uncorrelated CR With Binary
Amplitude Randomization
For btCR stimulation, individual stimuli are delivered at uniformly
distributed times during CR cycles of period 1/fCR. The resulting
distribution of interstimulus intervals between two stimuli is given by

q s, s0( ) � f2
CR

1
fCR

− |s − s0|, |s − s0|≤ 1
fCR

0, otherwise

⎧⎪⎪⎨⎪⎪⎩ . (5)

Here, s0 is the mean interstimulus interval. s0 = k/fCR, if the
postsynaptic neuron receives the stimulus kCR cycles after (k > 0)
or before (k < 0) the presynaptic neuron, or if both neurons
receive stimuli in the same CR cycle (k = 0).

We introduce the probabilities

FIGURE 3 | Acute and long-lasting effects of CR and tCR stimulation as a function of the stimulation frequency fCR and the number of subpopulationsNs. (A, B): The
mean synaptic weight, 〈w〉ac, at the end of a 1,000 s stimulation duration for both CR (A) and tCR (B) stimulation. The orange curves show the zero-contour line of J inter,
Eq. 4, taken from Kromer et al. (2020). The white dashed curves in panel Amark the curves 1/NsfCR = τ and 2/NsfCR = τ. The former onemarks the limit of the zeroth order
approximation used for the calculation of J CR

inter and the latter one the limit of the first correction term. The vertical red dashed line marks the frequency of the
underlying synchronous rhythm (≈3.5 Hz). The pink horizontal line marks the region of clinically relevant values of Ns)8, based on currently used DBS lead technology
(Krauss et al., 2021). A′,B’: The acute after-effect on synchronization as quantified by the Kuramoto order parameter, �ρaf , time-averaged over a 10-s interval after
cessation of the stimulation. A″,B”: The long-lasting desynchronization effects quantified by the Kuramoto order parameter, �ρll , averaged over a 10-s interval 1,000 s after
cessation of stimulation. Here the stimulation duration was set to Tstim = 1,000 s and Astim = 1. Note that results for CR were previously published in Kromer et al. (2020).
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Pnbd � ∫τ
0

ds′q s′, 1
fCR

( ) (6)

that the next stimulus is delivered to the postsynaptic neuron
before the delayed presynaptic spike arrives, i.e., after the delay
time τ; and the probability

Pcbd � ∫τ
− 1
fCR

ds′q s′, 0( ) (7)

that during the current CR cycle the stimulus delivered to the
postsynaptic neuron is delivered before the presynaptic spike arrives
at the postsynaptic neuron. Here, the subscripts “nbd” and “cbd” stand
for “next before delay” and “current before delay”, respectively.

For intrapopulation synapses, positive weight updates only
result from time lags s > τ. Such time lags may result from
pairings of delayed presynaptic spike arrivals with postsynaptic
spikes triggered by subsequent stimuli. For the distribution of
corresponding interstimulus intervals, we find

p+,btCR
intra s( ) � p q s,

1
fCR

( ) + pPnbd ∑∞
m�2

1 − p( )m−2q s,
m

fCR
( )⎡⎣ ⎤⎦

+ 1 − p( )p ∑∞
m�2

1 − p( )m−2q s,
m

fCR
( ), s≥ τ.

(8)
Negative weight updates result from time lags s < τ. Thus, we set
p+,btCR
intra (s) � 0 for s < τ. Negative time lags result from pairings of

delayed presynaptic spike arrivals with the latest postsynaptic spike.
The distribution of corresponding interstimulus intervals is given by

p−,btCR
intra s( ) � p q s,

1
fCR

( ) + 1 − Pnbd( )δ s( )[ ]
+ 1 − p( )δ s( ), s< τ. (9)

Accordingly, we set p−,btCR
intra (s) � 0 for s ≥ τ. The first and second

terms account for the cases where a stimulus occurs in the next
CR cycle and no stimulus occurs in the next CR cycle,
respectively. Here, δ(s) is the Dirac delta distribution.

For interpopulation synapses, positive weight updates result
from pairings of delayed presynaptic spike arrivals with
postsynaptic spikes triggered by stimuli that either occur in
the same cycle (but after the presynaptic spike arrives at the
postsynaptic neuron) or by subsequent stimuli. We find

p+,btCR
inter s( ) � p⎛⎝q s, 0( ) + Pcbd⎡⎣p⎛⎝q s,

1
fCR

( )
+pPnbd ∑∞

m�2
1 − p( )m−2q s,

m

fCR
( )⎞⎠

+ 1 − p( )p ∑∞
m�2

1 − p( )m−2q s,
m

fCR
( )⎤⎦⎞⎠

+ 1 − p( )p q s,
1

fCR
( ) + pPnbd ∑∞

m�2
1 − p( )m−2q s,

m

fCR
( )⎛⎝ ⎞⎠

+p ∑∞
m�2

1 − p( )mq s,
m

fCR
( ), s≥ τ. (10)

We set p+,btCR
inter (s) � 0 for s < τ. The first three rows account for

the case where the postsynaptic neuron receives a stimulus in the
same CR cycle as the presynaptic neuron, and considers the
probabilities for parings of the presynaptic spike arrival with the
postsynaptic spike resulting from that stimulus or with
postsynaptic spikes resulting from subsequent stimuli. The
term in the fourth row accounts for the case where the
postsynaptic neuron does not receive a stimulus during the
same cycle as the presynaptic neuron. Thus, the presynaptic
spike arrival is paired with postsynaptic spikes resulting from
subsequent stimuli. The term in the last row considers the case
where the postsynaptic neuron neither receives a stimulus in the
current nor in the next cycle.

Negative time lags may result from pairings of
presynaptic spike arrivals with the latest postsynaptic
spike. For the corresponding distribution of interstimulus
intervals, we find

p−,btCR
inter s( ) � p⎛⎝q s,

1
fCR

( ) + 1 − Pnbd( )⎡⎣
p q s, 0( ) + 1 − Pcbd( )p ∑∞

m�1
1 − p( )m−1q s,− m

fCR
( )⎛⎝ ⎞⎠

+ 1 − p( )p ∑∞
m�1

1 − p( )m−1q s,− m

fCR
( )⎤⎦⎞⎠

+ 1 − p( ) p q s, 0( ) + 1 − Pcbd( )p ∑∞
m�1

1 − p( )m−1q s,− m

fCR
( )⎛⎝ ⎞⎠⎛⎝

+ 1 − p( )p ∑∞
m�1

1 − p( )m−1q s,− m

fCR
( )⎞⎠, s< τ.

(11)

We set p−
inter(s) � 0 for s ≥ τ. Here, the first three rows account

for the case where the postsynaptic neuron receives a stimulus one
CR cycle after the presynaptic neuron, and the last two rows account
for the case where it does not receive a stimulus in that cycle.

2.7.2 CR With Binary Amplitude Randomization
Next, we consider the expectedmean rate of weight change for bCR
stimulation. Results for p = 1 were derived in Kromer et al. (2020).
There, using the stimulation-controlled spiking approximation,
results for the case fCR < 1/Nsτ were derived, i.e., when presynaptic
spikes arrive at the postsynaptic neuron before the next stimulus is
delivered. To incorporate stimulation with rather high stimulation
frequencies (1/Nsτ < fCR < 2/Nsτ), the authors derived correction
terms δpX

intra/inter(s). Following, we consider the case of p ≤ 1. We
follow a similar approach as in Kromer et al. (2020) and derive
results for pX

intra/inter(s) and the correction terms δpX
intra/inter(s).

Similar to the derivation for btCR, we assume that neurons spike
instantaneously when they receive a stimulus.

We first consider the case of stimulation with stimulation
frequencies that fulfill fCR < 1/Nsτ. Corresponding results are
marked by the index “0”. For such fCR, presynaptic spikes arrive at
the postsynaptic neuron before the next stimulus is delivered. We
derive results for pbCR

intra/inter,0(s) by considering all possible CR
patterns and the interstimulus intervals that lead to positive and
negative weight updates.

Frontiers in Network Physiology | www.frontiersin.org April 2022 | Volume 2 | Article 8648598

Khaledi-Nasab et al. Double-Random Coordinated Reset Stimulation

https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles


For intrapopulation synapses, negative weight updates can
only result from pairings of presynaptic spike arrivals with
postsynaptic spikes that were caused by the same stimulus,

p−,bCR
intra,0 s( ) � δ s( ). (12)

Positive weight updates may result from pairings of presynaptic
spike arrivals with the postsynaptic spikes resulting from the next
stimulus delivered to the postsynaptic neuron. For p = 1, this
stimulus always occurs in the next CR cycle. The corresponding
p+,CR
intra,0(s) was derived in Kromer et al. (2020). For p ≤ 1, the next

stimulus occurs after k cycles with probability p(1 − p)k. This yields,

p+,bCR
intra,0 s( ) � p∑∞

k�0
1 − p( )k ∑2Ns

m�1

Ns − |m −Ns|
N2

s

δ s − m +Nsk

NsfCR
( ), s≥ τ.

(13)
For s < τ, we set p+,bCR

intra,0(s) to zero.
For interpopulation synapses, the presynaptic and

postsynaptic neurons receive stimuli at different times that
are multiples of 1/NsfCR. Results for p = 1 were derived in
Kromer et al. (2020). For p ≤ 1, given a presynaptic stimulus, the
postsynaptic neuron receives a stimulus in the same CR cycle as
the presynaptic one with probability p. The latter stimulus can
occur either before or after the presynaptic spike arrival and,
thus, a pairing between these spikes either results in a negative
or positive weight update. The weight update with the opposite
sign occurs between the presynaptic spike arrival and a
postsynaptic spike triggered by a stimulus in a later CR cycle
(for a positive weight update) or in a previous cycle (for a
negative weight update), respectively. This stimulus occurs with
probability p(1 − p)k, k cycles after/before the current CR cycle.
For the resulting terms for p±,bCR

inter,0(s), we find

p±,bCR
inter,0 s( ) � p

Ns Ns − 1( ) ∑Ns−1

n�1
∑Ns−n

k�1
δ s ∓ k

NsfCR
( )⎡⎣

+ ∑Ns−1

n�1

n

Ns
p ∑Ns−1

k�0
∑∞
l�1

1 − p( )l−1δ s ∓ lNs − n + k

NsfCR
( )⎤⎦

+ p 1 − p( ) ∑2Ns

m�1
∑∞
l�0

1 − p( )lNs − |m −Ns|
N2

s

δ s ∓ m + lNs

NsfCR
( ).

(14)
The terms in the square brackets describe the case where the

postsynaptic neuron receives a stimulus in the same cycle as the
presynaptic stimulus. The term in the last row describes the case
where it does not receive a stimulus in the same cycle.

Next, we derive the correction terms δpbCR
intra/inter necessary to

incorporate fast stimulation (1/Nsτ ≤ fCR < 2/Nsτ) (Kromer et al.,
2020). For such stimulation frequencies, exactly one stimulus is
delivered before the delayed presynaptic spike arrives at the
postsynaptic neuron. This results in a change of the sequence
of time lags, considered for weight updates, relative to the case
fCR < 1/Nsτ. The difference in time lags will be incorporated in
the correction functions δpbCR

intra/inter which have norm zero. The
full distribution of time lags contributing to weight updates is
then given by

pbCR
intra/inter �

pbCR
intra/inter,0, for fCR <

1
Nsτ

pbCR
intra/inter,0 + δpbCR

intra/inter, for
1

Nsτ
≤fCR <

2
Nsτ

0, otherwise

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
.

(15)
with p±,bCR

intra/inter � p±,bCR
intra/inter,0 + δp±,bCR

intra/inter. In the present study, we
do not consider the case fCR ≥ 2

Nsτ
and set p±,bCR

intra/inter to zero for
such parameter combinations.

First, we derive the correction term for p−,bCR
intra . For 1/Nsτ ≤ fCR

< 2/Nsτ, the sequence of time lags changes for all cases where the
time lag between stimuli delivered to the post- and presynaptic
neuron is 1/NsfCR. This applies to the case where the presynaptic
and postsynaptic neurons receive a stimulus at time (Ns − 1)/
NsfCR of CR cycle k and the next stimulus at the beginning of CR
cycle k + 1. The interstimulus intervals that lead to negative
weight updates are now of length 1/NsfCR rather than of length 0,
as for fCR < 1/Nsτ. As this case occurs with probability p/N2

s , the
corresponding correction function reads

δp−,bCR
intra s( ) � p

N2
s

δ s − 1
NsfCR

( ) − δ s( )( ). (16)

We proceed similarly for p+,bCR
intra (s) and find the correction

function

δp+,bCR
intra s( ) � p

N2
s

−δ s − 1
NsfCR

( ) +∑∞
l�0

p 1 − p( )l
Ns

∑Ns−1

k�0
δ s − Ns + 1 + k + lNs

NsfCR
( )⎛⎝ ⎞⎠.

(17)

The correction functions for interpopulation synapses
δp±,bCR

inter (s) are longer expressions and are given in the
Supplementary Material for the reader’s convenience.

The sign ofJ X
intra/inter determines whether synaptic weights are

expected to weaken (-) or strengthen (+) during ongoing
stimulation. Accordingly, we expect stimulation that weakens
synapses sufficiently to drive the network into an attractor of a
weakly connected stable desynchronized state, whereas we expect
stimulation that strengthens synapses to drive the network into a
strongly connected, synchronized state. Throughout the present
paper, zeros of J X

intra/inter, Eq. (4), were used to approximate the
boundary between stimulation parameters that lead to long-
lasting desynchronization (J X

intra/inter < 0) and parameters that
lead to long-lasting synchronization (J X

intra/inter > 0).

3 RESULTS

We study the consequence of randomized stimulus amplitudes
on the acute and long-lasting effects of CR and tCR
stimulation. To this end, we perform simulations of
networks of 103 LIF neurons with STDP (see Methods) and
compare the results to our theoretical predictions (see
Methods). Simulated networks were prepared in the
synchronized state (see Methods). If not stated otherwise,
stimulation was delivered for 1,000 s.
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Motivated by therapeutic brain stimulation in the context of
Parkinson’s disease, we focus on the effect of stimulation on
neuronal synchrony. We distinguish between acute effects and
long-lasting effects on synchronization (see Methods). Acute effects
were quantified by the acute Kuramoto order parameter, �ρac,
quantifying the degree of neuronal synchrony during stimulation.
Long-lasting effects were quantified by the long-lasting Kuramoto
order parameter, �ρll, quantifying the degree of neuronal synchrony
1,000 s after cessation of stimulation. Additionally, we analyze the
mean synaptic weight shortly before the cessation of stimulation
〈w〉ac. 〈w〉ac quantifies the effect of stimulation on the synaptic
connectivity. In particular, stimulation led to an overall weakening of
synaptic connections if 〈w〉ac < w0 and to an overall strengthening of
synaptic weights if 〈w〉ac >w0. w0 ≈ 0.38 is the mean synaptic state in
the stable synchronized state. In an earlier study, we found that 〈w〉ac
is highly predictive of the long-term outcome of stimulation. For
〈w〉ac)0.27, the network typically approached the stable
desynchronized state, whereas it approached the synchronized state
for larger 〈w〉ac (see Figure 3 in Kromer et al. (2020)). Furthermore,
the immediate after-effect on synchronization is quantified by the
Kuramoto order parameter �ρaf , evaluated shortly after cessation of
stimulation (see Methods for details). We are particularly interest in
stimulation techniques that cause long-lasting desynchronization,
i.e., desynchronization effects that persist after cessation of stimulation.

3.1 Temporally Uncorrelated Multi-Site CR
Stimulation Improves
Frequency-Robustness of Long-Lasting
Desynchronization Effects
First, we considered the case of constant stimulus amplitudes,
Astim = 1. Results for CR and tCR stimulation are shown in
Figure 3. Here, acute and long-lasting effects of either stimulation
pattern on neuronal synchrony are shown as a function of the
number of subpopulations, Ns, and the stimulation frequency,
fCR. For regular CR stimulation, the mean synaptic weight and
neuronal synchrony after cessation of stimulation, i.e., �ρaf and �ρll,
show a nonlinear dependence on Ns and fCR (Figure 3A). This is
in accordance with previous studies, which analyzed this
phenomenon in more detail (Kromer et al., 2020). In contrast,
corresponding measures show only a weak dependence on Ns for
tCR stimulation. This indicates that no such nonlinearities occur
for the tCR stimulation pattern (Figure 3B).

Long-lasting desynchronization (�ρll ≈ 0) by tCR stimulation
does occur in a broad frequency range (≈ 3 − 20 Hz) (Figure 3B).
The boundary of the parameter region in which stimulation entails
long-lasting desynchronization is well-described by the
theoretically predicted boundary of the parameter region in
which stimulation strenghtens interpopulation synapses,
i.e., synapses that connect neurons of different subpopulations
(Figure 3A, B). This indicates that the transition between long-
lasting desynchronization and long-lasting synchronization occurs
because stimulation-induced synaptic potentiation of
interpopulation synapses dominates over synaptic depression
at high stimulation frequencies. The particular frequency
value at which this transition occurs depends on the shape
of the STDP function, Eq. 1. For low stimulation frequencies

( < 4 Hz), long-lasting desynchronization effects of tCR
stimulation are less pronounced than for CR stimulation.
Furthermore, CR stimulation yields weaker acute
synchronization than tCR stimulation throughout the Ns-
fCR parameter plane (Figure 3A, B).

In the parameter region where our theoretical results predict a
strengthening of interpopulation synapses (right of orange curve in
Figure 3), we find a pronounced dependence of the mean synaptic
weight on the number of separately stimulated subpopulations, Ns.
This is because Ns determines the fraction of interpopulation
synapses to intrapopulation synapses. For small Ns, a substantial
portion of the synapse are intrapopulation synapses.
Intrapopulation synapses are predicted to weaken during
ongoing CR and tCR stimulation by our theory. In contrast, for
large Ns most synapses are interpopulation synapses. Their
dynamics depends on the stimulation parameters. For high
stimulation frequencies (right of orange curve in Figure 3), only
interpopulation synapses strengthen during ongoing stimulation
which, eventually, leads to an Ns-dependent mean synaptic weight
given by the fraction of interpopulation synapses.

3.2 Uniformly Distributed Stimulus
Amplitudes Improve Long-Lasting
Desynchronization for Fast Stimulation
Next, we study how a randomization of stimulus amplitudes
Astim affects these results. To this end, we consider two
randomization schemes: uniform randomization (u) and
binary randomization (b). For uniform randomization, each
subpopulation receives one stimulus with a uniformly
distributed amplitude Astim ∈ [0, 1] per CR cycle.
Corresponding stimulation patterns are marked by the letter
‘u’, e.g., uCR and utCR. For binary randomization, each
subpopulation receives a stimulus with amplitude Astim = 1
with probability p during a CR cycle. Corresponding stimulation
patterns are marked by the letter ‘b’, e.g., bCR and btCR.

First, we consider the case of uniformly distributed stimulus
amplitudes. Simulation results for uCR and utCR are shown in
Figure 4. For both patterns, the overall mean stimulus amplitude
〈Astim〉 is 1/2. For comparison, we show results for CR with a
constant stimulus amplitude Astim = 1/2 in Figure 4A.

We find that long-lasting desynchronization occurs in a
substantially bigger portion of the Ns-fCR parameter plane if
stimulus amplitudes are uniformly randomized. For uCR
stimulation, the nonlinear parameter dependence of long-lasting
effects is still visible; however, it is less pronounced for
intermediate stimulation frequencies (3–30 Hz). utCR stimulation
entails long-lasting desynchronization in an even broader frequency
range than tCR stimulation (compare Figures 3B-B- and
Figures 4C-C”).

3.3 Random Stimulus Removal Improves
Long-Lasting Desynchronization Effects of
Fast Stimulation
Uniformly distributed stimulus amplitudes increase the
parameter regions where CR and tCR stimulation entail
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long-lasting desynchronization (Figure 4). Next, we study
whether this effect can be reproduced by randomly
removing stimuli from the stimulus pattern. This is
implemented by considering binarily distributed stimulus
amplitudes, i.e., with probability p a subpopulation receives
a stimulus of strength Astim = 1 and with probability 1 − p no
stimulus is delivered (Astim = 0).

Results for p = 1/2 are plotted in Figure 5. Panels B–B” show
results for bCR simulation and panels C–C” results for btCR
stimulation. For comparison, we show results for regular CR
stimulation with constant stimulus amplitudes Astim = 0.5 in
panels A–A”. Binarily distributed stimulus amplitudes extend the
parameter region in which bCR and btCR stimulation entail long-
lasting desynchronization towards higher stimulation frequencies
(Figures 5B-B” and C-C” as compared to Figures 5A-A” and
Figure 3). However, bCR and btCR stimulation perform worse
than stimulation with constant stimulus amplitudes for low
stimulation frequencies (Figure 5).

Binarily distributed stimulus amplitudes have a qualitatively
similar effect as uniformly distributed amplitudes with the same
mean stimulus amplitudes 〈Astim〉 = 0.5; however, the frequency
range in which long-lasting desynchronization can be achieved is
smaller for binarily distributed stimulus amplitudes than for
uniformly distributed stimulus amplitudes (compare Figure 4 and
Figure 5).

Next, we analyze how the results depend on the fraction of
delivered stimuli p. Results for bCR and btCR stimulation with
fixed numbers of stimulation sites Ns = 4 and Ns = 8 are shown in
Figure 6.

For bCR stimulation, long-lasting desynchronization effects
are sensitive to p and the stimulation frequency. They are most
robust with respect to changes of p for low stimulation
frequencies (< 20 Hz) (Figures 6A,B). For higher stimulation
frequencies, low p typically leads to more pronounced long-
lasting desynchronization; however, for larger Ns we find an
intermediate frequency range in which stimulation does not
entail long-lasting desynchronization (Figure 6B).

Pronounced long-lasting synchronization occurs for high
stimulation frequencies fCR and large fractions of delivered
stimuli p. Its boundary was well described by the zeros of
J bCR

inter, Eq. 4. This suggests that strong interpopulation
synapses are critical for synchronization. The mentioned
intermediate frequency range for which bCR stimulation
does not entail long-lasting desynchronization is well-
reproduced by our theory. This suggests that this region
results from a delay-induced effect, similar to the one leading
to the patterned region of long-lasting synchronization in
Figure 3A (see also Kromer et al. (2020)). In more detail, a
sudden transition from J bCR

inter > 0 (strengthening of
interpopulation synapses) to J bCR

inter < 0 (weakening of

FIGURE 4 | Acute and long-lasting effects of CR, uCR, and utCR stimulation with randomly distributed stimulus amplitudes (A,B,C): The acute mean synaptic
weights, 〈w〉ac, at the end of the 1,000 s stimulation duration for CR (A), uCR (B), and utCR (C) stimulation. The vertical red dashed line marks the frequency of the
underlying synchronous rhythm (≈3.5 Hz). The pink horizontal line marks the region of clinically relevant values of Ns (see caption of Figure 3). A′,B′,C′: The acute after-
effect on synchronization as quantified by the Kuramoto order parameter, �ρaf , time-averaged over a 10-s interval after cessation of stimulation. A″,B″,C″: The long-
lasting desynchronization effects quantified by the Kuramoto order parameter, �ρll , averaged over a 10-s interval 1,000 s after cessation of stimulation. The stimulation
duration was set to Tstim = 1,000 s.
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interpopulation synapses) occurs at 1/NsfCR = τ, i.e., when the
presynaptic spike arrival occurs right when the next stimulus is
delivered (with probability p). Another parameter region with
long-lasting synchronization is found for low fCR and low p.
Here, stimulation is too slow to destabilize the initial
synchronous state of the network.

Results for btCR stimulation are shown in Figures 6C-C” and
D-D”. We find that the parameter region of long-lasting
desynchronization is substantially bigger for btCR stimulation
than for bCR stimulation. For higher stimulation frequencies,
lower fractions of delivered stimuli p are required for long-lasting
desynchronization. Fewer stimuli are delivered for lower p,
resulting in fewer stimulus-triggered neuronal spikes. On
average, this leads to longer time lags between post- and
presynaptic spikes and reduces the contribution of synaptic
LTD to the synaptic weight dynamics.

The zeros of J btCR
inter approximate the boundary of the

parameter region with long-lasting synchronization well,
occurring for high stimulation frequencies and high
probabilities of stimulus delivery. We also find high values of
the mean synaptic weight for very high fCR and p (upper right
corners of Figures 6C,D). There, stimulation strengthens inter-
and intrapopulation synapses. This is also predicted by our

theory as both J btCR
intra and J btCR

inter are positive in this parameter
region. Remarkably, the shapes of the zero contour lines of
J btCR

intra and J btCR
inter indicate that the parameter p and the

stimulation frequency fCR can be tuned to either weaken both
intra- and interpopulation synapses (below the white and the
orange curve in Figure 6), strengthen interpopulation synapses
while weakening intrapopulation synapses (above the orange
and below the white curve in Figure 6), or strengthen both
intra- and interpopulation synapses (top right corner of
Figure 6).

3.4 Less Stimulation Current Required for
Uniformly Distributed Stimulus Amplitudes
So far, effects of all stimulus patterns were compared for the same
stimulation duration. For clinical application, however, it is
important to study long-lasting desynchronization effects as a
function of the integral stimulation current, IC. The latter is
strongly related to the battery lifetime of DBS pulse generators
and the risk of unwanted side effects, for instance, due to current
spread to neighboring tissue or due to too strong stimulation of
the target region (see Krack et al. (2002) for a summary of possible
side effects).

FIGURE 5 | Effects of CR, bCR, and btCR stimulation on the mean synaptic weight and on synchronization after cessation of stimulation. The acute mean synaptic
weight, 〈w〉ac, at the end of the 1,000 s stimulation duration is shown for CR (A), bCR (B), and btCR stimulation (C) in the first column. The orange curves show the zero-
contour line ofJ bCR

inter as obtained fromEq. 4. The white dashed curves in panel Bmark the curves 1/NsfCR = τ and 2/NsfCR = τ. The former onemarks the limit of the zeroth
order approximation used for the calculation of J bCR

inter and the latter one the limit of the first correction term. The vertical red dashed line marks the frequency of the
targeted synchronous rhythm (≈3.5 Hz). The pink horizontal line marks the region of clinically relevant values of Ns (see caption of Figure 3). A′,B′,C’: The acute after-
effect on synchronization as quantified by the Kuramoto order parameter, �ρaf , time-averaged over a 10-s interval immediately after cessation of stimulation. A″,B″,C″:
Long-lasting desynchronization effects quantified by the Kuramoto order parameter, �ρll , averaged over a 10-s interval 1,000 s after cessation of stimulation. Parameters:
Stimulation was delivered for 1,000 s, Astim = 0.5 in A,A′, and A″.
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We calculate the overall integral stimulation current IC
injected during a time interval t ∈ [0, T] as

IC T( ) ≔ ∫T
0

dt ∑
i�0

Astim,iδ t − ti( ). (18)

Astim,i is the amplitude of the stimulus delivered at time ti to a
subpopulation. The sum runs over all realizations of stimulus
amplitudes delivered to the Ns subpopulations. Thus, for the
case of constant Astim,i = 1 and p = 1, IC increases by Ns during
individual CR cycles. Note that, in general, Astim,i and IC are
random variables. For a fixed time interval T, IC measures the

FIGURE 6 | Effect of bCR and btCR stimulation as function of the stimulation frequency, fCR, and the number of stimulated subpopulations, Ns. Columns show
results for bCR stimulation with Ns = 4 (bCR 4) and with Ns = 8 (bCR 8), and for btCR stimulation withNs = 4 (btCR 4) and withNs = 8 (btCR 8). Rows show results for the
acute mean synaptic weight, 〈w〉ac, evaluated at the end of the stimulation duration (top); the acute after-effect on synchronization as quantified by the Kuramoto order
parameter, �ρaf , evaluated for a 10 s time interval immediately after cessation of stimulation (middle row); and the long-lasting effect on synchronization as quantified
by the Kuramoto order parameter, �ρll , evaluated for a 10 s time interval 1,000 after cessation of stimulation. Colored thick curves show zero-contour lines of J X

inter

(orange) and J X
intra (white) for respective stimulation patterns (X) obtained from Eq. 4. The red dashed curve represents parameter combinations for which the mean

frequency of stimulus deliveries (pfCR) equals the frequency of collective spiking events in the synchronized state (≈ 3.5 Hz). Data points represent averages over three
network realizations. Parameters: Astim = 1.

FIGURE 7 | Themean synaptic weight during ongoing stimulation as a function of the integral stimulation current for different stimulation patterns. (A–C): Results for
CR with Astim = 0.5, 1, bCR (green), and uCR stimulation (red) for slow (A), intermediate (B), and fast stimulation (C) (see labels). On the x-axis, we show the overall
integral stimulation current (Eq. 18). Curves show averages over 12 network and stimulus pattern realizations and the shaded region corresponds to the range between
the minimum and maximum across all network realizations. Panels A′-C′ show corresponding results for tCR, btCR (‘binary’, green curves), and utCR (‘uniform’,
red curves) stimulation. Parameters: Ns = 8, p = 0.5 for bCR and btCR stimulation.
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total strength of administered stimuli. Large values of IC
indicate that either strong stimuli were administered or
rather weak stimuli were administered over a long time
interval.

Figure 7 shows simulation results for different stimulation
patterns for fixed Ns = 8 and different stimulation frequencies.
Results for CR, uCR, and bCR stimulation are shown in
Figures 7A–C. We find that these stimulation patterns
perform best for low stimulation frequencies (fCR = 4 Hz,
Figure 7A). Here, all of these patterns lead to a substantial
weakening of synapses. For higher stimulation frequencies, we
typically find a reduction of the mean synaptic weight for small
IC, whereas they strengthen for large IC (fCR = 20, 50 Hz,
Figures 7B,C). These two distinct regimes occur due to the
different stimulation-induced dynamics of intra- and
interpopulation synapses. For most stimulation patterns,
J X

intra is negative, which leads to the weakening of
intrapopulation synapses. Then, once the weights of these
synapses approach zero, the dynamics of the mean synaptic
weight is solely determined by that of interpopulation
synapses. Thus, the weight dynamics for high IC yields
information about the dynamics of interpopulation
synapses. For IC → ∞ the mean synaptic weight approaches
a stationary value given by the fraction of synapses that
weaken. This ratio is closely related to the relative portion
of inter- and intrapopulation synapses if stimulation
strengthens one, while weakening the other type of synapses.

Results for tCR, btCR, and utCR stimulation are shown in
Figures 7A9-C9. We find a qualitatively similar frequency
dependence of the dynamics of the mean synaptic weight as
for CR, bCR, and uCR stimulation. Remarkably, btCR and
utCR stimulation outperform tCR stimulation with Astim = 1
for intermediate stimulation frequencies. However, their
performance is qualitatively similar to that of tCR
stimulation with Astim = 0.5 for fstim = 20 Hz (Figure 7B’).
For high stimulation frequencies, utCR stimulation yields the
most pronounced weakening of synaptic weights
(Figure 7C’).

Next, we consider the amount of stimulation current IC
required for a substantial reduction of the mean synaptic
weight. For intermediate and high stimulation frequencies,
utCR stimulation typically leads to the lowest mean synaptic
weight for a fixed value of IC (Figure 7). The only exemption is
the low-IC region in Figure 7B, where CR stimulation with Astim

= 0.5 leads to a lower mean synaptic weight than utCR
stimulation. For low stimulation frequencies, patterns with
uniformly distributed stimulus amplitudes perform well for
low IC, however they are outperformed by patterns with
constant Astim = 0.5 for high IC (Figures 7A,A9). Here, btCR
and CR with Astim = 1 outperform utCR and CR with Astim = 0.5
(Figure 7A’).

Note, for regular CR (with Astim = 0.5 or 1) as well as uCR,
both delivered at fCR = 4 Hz, we observe the most robust
reduction of the mean synaptic weight with respect to large
variations of IC (Figure 7A), compared to all other
combinations of stimulation frequencies fCR and stimulation
patterns (Figures 7B,C,A9,B9,C9).

4 DISCUSSION

In the present paper, we studied the effect of isolated stimulus
amplitude randomization, isolated stimulus timing
randomization as well as combinations thereof on the
parameter robustness of long-lasting desynchronization effects
of CR stimulation in networks of LIF neurons with STDP. Long-
lasting desynchronization is observed when a sufficient
weakening of synaptic connections occurs during the
stimulation. Such weakening may drive the network into a
stable desynchronized state, which allows desynchronized
activity to persist after cessation of stimulation (Tass and
Majtanik, 2006; Kromer et al., 2020). We considered regular
CR and temporally uncorrelated CR stimulation, i.e., CR with
stimulus timings that are randomized within CR cycles and
uncorrelated between stimulus channels. In addition, two
distributions of stimulus amplitudes were considered: a
uniform distribution and a binary distribution. For binarily
distributed stimulus amplitudes, a random fraction of stimuli
was removed from the stimulus pattern (Astim = 0), while the
remaining stimuli had amplitude Astim = 1. We find that
randomization of stimulus amplitudes extends the parameter
region of stimulation-induced long-lasting desynchronization
effects towards high stimulation frequencies. However, it
slightly reduces desynchronization effects for low stimulation
frequencies.

First, we studied regular CR and temporally uncorrelated CR
with constant stimulus amplitudes. We set Astim = 1 which
corresponds to a strong stimulation regime where stimuli
trigger neuronal spikes (Kromer et al., 2020). The regular CR
pattern was used in previous computational studies (Popovych
and Tass, 2012; Zeitler and Tass, 2015), preclinical studies (Tass
et al., 2009; Tass et al., 2012b; Wang et al., 2016), and clinical
studies in Parkinson’s disease patients where it was either
delivered using DBS electrodes (Adamchic et al., 2014) or
using vibrotactile fingertip stimulation (Syrkin-Nikolau et al.,
2018; Pfeifer et al., 2021). It was also delivered to suppress binge
alcohol drinking in mice (Ho et al., 2021) and as a treatment for
tinnitus (Tass et al., 2012a; Munjal et al., 2021). Temporally
uncorrelated CR was introduced in an earlier computational
study, where it was referred to as uncorrelated multichannel
noisy stimulation (Zeitler and Tass, 2018). In networks of LIF
neurons, both stimulation protocols yield pronounced long-
lasting desynchronization effects for stimulation frequencies in
the range from one to five times the frequency of the targeted
synchronous rhythm. This frequency range is independent of the
number stimulated subpopulations for temporally uncorrelated
CR (Figure 3B). Contrastingly, it may shrink substantially for
unfavorable numbers of subpopulations for regular CR
(Figure 3A). This shrinking was first reported in Kromer et al.
(2020) (note that shorter stimulation durations were used in
Kromer et al. (2020)). In that study, the pronounced dependence
on the number of subpopulations was explained as a delay-
induced effect. More specifically, transitions between
parameter regions with long-lasting desynchronization and
parameter regions with long-lasting synchronization occurred
when integer multiples of the minimal interstimulus interval,
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1/fCRNs, equaled the delay time, τ (white dashed curves in
Figure 3A). Thus, stimulus-triggered spikes cannot arrive at
their postsynaptic neurons before the next stimulus is
delivered (Kromer et al., 2020). This led to a sudden
transition from stimulation-induced LTP (the presynaptic
spike arrives shortly before the postsynaptic neuron fires a
spike triggered by a later stimulus) to stimulation-induced
LTD (the presynaptic spike arrives shortly after the
postsynaptic neuron fires a spike triggered by a later
stimulus). Remarkably, this effect does not occur for
temporally uncorrelated CR rendering its long-lasting
desynchronization effects more robust with respect to
parameter changes (Figure 3B). This is in line with results
from previous studies suggesting that a reduction of temporal
correlations between stimuli improves the frequency
robustness of long-lasting desynchronization effects
(Kromer and Tass, 2020; Khaledi-Nasab et al., 2021a;
Khaledi-Nasab et al., 2021b). Specifically, we added
temporal jitter and found that this smoothes out these
sudden transitions and leads to overall stronger
stimulation-induced LTD (see Figure 3 in Khaledi-Nasab
et al. (2021b)). However, we find that temporally
uncorrelated CR performs slightly worse than CR at low
stimulation frequencies (lower than the frequency of the
targeted synchronous rhythm). This is in line with the
results of Zeitler and Tass (2018). Zeitler et al. considered
a network of coupled Hodgkin-Huxley neurons with
excitatory and inhibitory synaptic connections and
adjusted the stimulation frequencies to that of the targeted
synchronous rhythm. They reported on average weaker long-
lasting effects for temporally uncorrelated CR than for the
regular CR stimulation.

In the present paper, we considered random stimulus
amplitudes. First, we distributed stimulus amplitudes
uniformly between Astim = 0 (no stimulus is delivered) and
the maximum stimulus amplitude Astim = 1. For Astim = 1, the
integral current over the excitatory part of a single stimulus is
strong enough to drive the LIF neurons’ membrane potentials
over the spiking threshold (Kromer et al., 2020). We find that
this type of stimulus amplitude randomization substantially
extends the frequency range for long-lasting
desynchronization effects towards higher stimulation
frequencies. For uCR stimulation, this mainly affects the
parameter region of large Ns (Figure 4B). In contrast, if
combined with temporal randomization, stimulation with
uniformly distributed stimulus amplitudes induces long-
lasting desynchronization effects for stimulation frequencies
at least up to twelve times the frequency of the synchronous
target rhythm and arbitrary values of Ns (see results for utCR
stimulation in Figure 4). Long-lasting desynchronization can
be achieved for all considered numbers of subpopulations. For
regular CR, we find that stimulus amplitude randomization
reduces the delay-induced effects mentioned above. This
substantially extends the parameter region in which long-
lasting desynchronization can be achieved. However, this
occurs mainly in the range of large numbers of
subpopulations (Figure 4B).

To put our results for larger numbers of subpopulations Ns in
perspective, we note that the clinical proof of concept data
obtained with CR stimulation delivered to the STN in
Parkinson’s patients were obtained with only two or three
active circular stimulation contacts being located in the STN
(Adamchic et al., 2014; Ebert et al., 2014). In general, in clinical
applications, the number of subpopulations Ns is limited by the
electrode design, the number and dimension of stimulation
contacts and the size of the target brain region (Krauss et al.,
2021). While recent multisite stimulation electrodes possess large
numbers of stimulation contacts (Steigerwald et al., 2019), e.g., up
to 32 (Contarino et al., 2014), it remains to be shown whether
such electrodes can be used to deliver stimuli to large numbers of
separate neuronal subpopulations in target brain areas, such as
the STN, independently. Larger numbers of smaller, e.g.,
segmented rather than circular, stimulation contacts might
enable more focal stimulation by selecting groups of active
stimulation contacts, hence, providing more favorable
outcome. However, larger numbers of stimulation contacts do
not imply a larger number of subpopulations Ns, since, due to the
non-homogeneous anatomy of DBS targets, activation of
particular subsets of stimulation contacts typically does not
yield any therapeutic effects or even cause side effects. Further
studies are required to understand the anatomy and physiology of
the spatial dimensions of DBS target subpopulations to infer
realistic ranges and, specifically, maximum values of Ns. With
these caveats in mind, in Figures 4, 5 we used the range Ns)8
(pink dashed line) (Krauss et al., 2021) to illustrate a plausible
clinically relevant range of Ns achievable with recent multi-
contact DBS electrodes. In that range, however, uniform
stimulus amplitude randomization alone does not improve the
frequency robustness of long-lasting desynchronization effects
compared to regular CR stimulation (Figures 4A,B,A”,B”) while
binary stimulus amplitude randomization even worsens the
frequency robustness of long-lasting desynchronization effects
compared to regular CR (Figures 5A,B,A”,B”). By the same
token, the advantage of stimulus timing randomization alone is
rather limited (Figures 3A,B,A-,B-). However, double-random
CR, i.e., CR with the combination of (uniform or binary)
amplitude randomization as well as stimulus timing
randomization, leads to more favorable long-term
desynchronization for values of the stimulation frequency fCR
that exceed the intrinsic frequency of the abnormally
synchronized target rhythm by a factor of five or more
(Figures 4A,C,A”,C” as well as Figures 5A,C,A”,C”). If future
clinical studies showed that a large number of neuronal
subpopulations can be stimulated independently in related
brain areas, double-random CR stimulation might induce
more favorable long-lasting desynchronization effects,
specifically for larger numbers of subpopulations Ns.

Since weak stimuli may not trigger neuronal spikes, stimulus
amplitude randomization may lead to more sparse stimulation-
induced spike patterns than stimulation with constant
amplitudes. Intuitively, this may lead to more long time lags
between arrivals of stimulus-triggered presynaptic spikes and
stimulus-triggered postsynaptic spikes, which may favor LTD
for STDP rules where LTD dominates over LTP for long time lags
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(τ+ < τ− and β > 1 in Eq. 1). Previous studies analyzed the firing
rate dependence of the synaptic weight dynamics in neuronal
networks with STDP. They found that lower firing rates typically
result in weaker synaptic weights for asymmetric STDP functions
with strong LTP for short positive and LTD for negative time lags
(Equation 1) (Sjöström et al., 2001; Burkitt et al., 2004). A
sparsening of the stimulation-induced spike pattern might
therefore reduce synaptic potentiation. This may explain the
observed extension of the frequency range for long-lasting
desynchronization towards higher stimulation frequencies. To
test this hypothesis, we considered a second type of stimulus
randomization where only a random fraction p of stimuli was
delivered: binary stimulus randomization. We find that binary
stimulus randomization leads to qualitatively similar effects as
uniform stimulus randomization (Figures 4, 5). This supports the
hypothesis that the observed improvement of long-lasting effects
at high stimulation frequencies results from the effective
sparsening of the stimulation-induced spike pattern.

For the same mean stimulus amplitude, we find that
stimulation with uniform stimulus amplitude randomization
performs better for high stimulation frequencies than
stimulation with binary stimulus amplitude randomization.
We suggest that this arises from differences in the statistics of
time lags between stimulation-induced post- and presynaptic
spikes. These time lags determine synaptic weight updates via
the STDP function (Eq. 1). In the present paper, we considered an
asymmetric STDP function, τR > 1, for which synaptic LTP
dominates for time lags that are short compared to the STDP
decay time τ+ (Eq. 1). Synaptic LTD dominates for long time lags.
For uniform stimulus amplitude randomization, a large portion
of stimuli only triggers spikes when the LIF neurons’ membrane
potentials are close to the spiking threshold, i.e., after it left the
refractory period following its previous spike. Such stimuli
typically lead to rather large interspike intervals. In contrast,
for binary randomization, spikes are triggered independently of
the neurons’ membrane potential. Thus, for high stimulation
frequencies, binary randomization results in more short
interspike intervals. We therefore expect more short time lags
between post- and presynaptic spikes during stimulation with
binary stimulus amplitude randomization than during
stimulation with uniform stimulus amplitude randomization,
which would then translate into more pronounced
stimulation-induced synaptic LTP and less pronounced LTD
(compare Figures 4B-B”,C-C”, and Figures 5B-B”,C-C”).

We derived theoretical approximations for the mean rate of
weight change during CR and temporally uncorrelated CR with
binary distributed stimulus amplitudes. Our theoretical results
extend earlier results from Kromer and Tass (2020), Kromer et al.
(2020), and Khaledi-Nasab et al. (2021b) to the case of temporally
uncorrelated CR stimulation, and, for the first time, incorporate
stimulation with binary stimulus amplitude randomization. Our
theoretical approach builds on the assumption that each stimulus
triggers a neuronal spike, and each spike is triggered by a
stimulus. Thus, neuronal spiking due to the intrinsic
dynamics, noise, and synaptic input is neglected. Previous
studies found that corresponding results well approximated
the synaptic weight dynamics during ongoing strong (Astim ≈

1) and fast stimulation, i.e., when the stimulation frequency is
higher than that of the synchronous target rhythm.

Our theory predicts that the synaptic weight dynamics during
ongoing binary randomized stimulation depends on the statistics of
stimulus trains delivered to the postsynaptic and the presynaptic
neuron. We distinguish between intrapopulation synapses, where
both neurons belong to the same subpopulation, and interpopulation
synapses, where both neurons belong to different subpopulations. For
intrapopulation synapses, the post- and presynaptic neuron receive
stimuli simultaneously. We find that these synapses typically weaken.
In contrast, for interpopulation synapses, the post- and presynaptic
neuron typically receive stimuli at different times. Our theory predicts
that interpopulation synapses strengthen in a large part of the (p, fCR)-
parameter space (Figure 6). We find that our simulation results are
well-approximated by the zeros of the predicted mean rate of weight
change of interpopulation synapses. In particular, long-lasting
synchronization is observed when interpopulation synapses
strengthen during stimulation. In contrast, long-lasting
desynchronization occurs when interpopulation synapses weaken
during stimulation (Figure 6). We find that deviations between
theoretical predictions and simulations mostly occur for low values
of p. Thus, when a significant portion of stimuli is removed from the
stimulus pattern and the probability for long interstimulus intervals
increases (Figure 6).

Our analysis of the CR patterns with binary stimulus amplitude
randomization also yields information on the impact of
stimulation parameters on long-lasting desynchronization
effects. In particular, we studied the impact of the fraction of
removed stimuli p and the stimulation frequency for fixed numbers
of subpopulations. For temporally uncorrelated CR, we find that
the higher the stimulation frequency, the more stimuli have to be
removed to ensure long-lasting desynchronization (Figure 6C and
D). In contrast, for regular CR stimulation with binary stimulus
amplitude randomization, there is an intermediate frequency range
where no long-lasting desynchronization is possible for certain
unfavorable numbers of subpopulations (compare
Figures 6A”,B”). This effect has a similar origin as the delay-
induced effect described above. It occurs for stimulation
frequencies where the presynaptic spikes arrive shortly before
the next stimulus is delivered (Figure 5 and Kromer et al. (2020)).

Besides supporting long-lasting desynchronization for high
stimulation frequencies, stimulus amplitude randomization also
reduces the delivered stimulation current. This may be
advantageous for possible clinical applications, as the integral
modulus of the stimulation current is strongly related to the risk
of unwanted side effects (Krack et al., 2002). We compared the
stimulation-induced mean synaptic weight for the different
stimulation patterns as a function of the integral stimulation
current. We find that uniform randomization performs best for
intermediate and high stimulation frequencies. The best results were
obtained for double-random CR, i.e., temporally uncorrelated CR
with uniform stimulus amplitude randomization (Figure 7). This
indicates that uniform stimulus amplitude randomization does
perform better for a fixed stimulation duration, and requires less
integral stimulation current. This suggests that temporally
uncorrelated CR with uniform stimulus amplitude randomization
may be superior to other stimulation patterns if the stimulation
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frequency is substantially higher than that of the synchronous target
rhythm. Using a basal ganglia model without synaptic plasticity, an
earlier computational study analyzed the acute effects of CR
stimulation with noise stimuli instead of charge-balanced pulses
with random amplitudes (Liu et al., 2022). The authors found that
such noisy stimulation is also efficient in inducing acute
desynchronization. Here, we solely focused on long-lasting effects.

To the best of our knowledge, the present paper presents the first
study that analyzes long-lasting desynchronization effects of
stimulation patterns with randomized stimulus amplitudes. Some
experimental studies considered DBS with temporally randomized
stimulus patterns. However, these studies analyzed the acute effect of
temporally randomized DBS and providedmixed results: Dorval et al.
(2010) and Birdno et al. (2012) reported that temporally randomized
DBS was inefficient in providing symptom alleviation (Dorval et al.,
2010; Birdno et al., 2012), whereas Brocker et al. (2013) reported that
irregular DBS led to improved performance of Parkinson’s disease
patients in a fingertip task. It is currently not known, whether DBS
with randomized stimulus amplitudes is safe and feasible.

Our promising results suggest that temporally randomized CR
with uniform stimulus amplitude randomization might be
suitable for desynchronizing brain rhythms across a wide
frequency range. This might be advantageous in PD, where
different symptoms are associated with abnormal synchrony in
different frequency bands (Brown, 2003; Kühn et al., 2006;
Weinberger et al., 2006; Steigerwald et al., 2008). Assuming
that the interaction between rhythms is weak, the stimulation
frequency could be adjusted to the fastest rhythm. Our
computational results then suggest that such stimulation might
also induce long-lasting desynchronization in subnetworks with
pathological synchrony in lower frequency bands.

In the present study, we used a simplemodel of 103 excitatory LIF
neurons with STDP. Its low computational costs enabled us to
perform detailed scans of the parameter space (Figures 3–6). In
future studies, we anticipate working with more detailed neuron
models specifically fit to target brain areas for HFDBS in PD, such as
the basal ganglia (Terman et al., 2002; Fountas and Shanahan, 2017).
Note that the more detailed conductance-based STN neuron model
presented in (Terman et al., 2002) fired one spike per DBS pulse
during HFDBS, similar to our LIFmodel (Rubin and Terman, 2004;
Dorval et al., 2010). We anticipate studying the effect of stimulation
in systems with multiple synchronous rhythms that interact. An
interesting question for future studies would also be to which extend
non-neural cells such as glia cells contribute to the therapeutic effects
of stimulation. Growing evidence suggests that such cells play an
important role in both PD pathogenesis (Booth et al., 2017) and the
therapeutic mechanism of HF DBS (Vedam-Mai et al., 2012). We
also aim at including physiological input from other brain areas. In a

network model with additional, e.g., sensory input, after CR
stimulation the synaptic connectivity pattern converged to a
physiological connectivity pattern (Hauptmann and Tass, 2010).
Given the complexity of such high-dimensional models with large
numbers of parameters, predictions generated in simple models, e.g.,
the LIF model, may guide and inform the analysis of high-
dimensional models, in a similar way as they have enabled the
pre-clinical development (animal testing; (Tass et al., 2012b; Wang
et al., 2016)) and clinical development (Adamchic et al., 2014) so far.
Furthermore, we hope that our promising results inspire future
studies using detailed computational models of target brain regions,
e.g., for DBS in PD and other brain disorders, and preclinical and
clinical studies on long-lasting therapeutic effects of randomized
brain stimulation.
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