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This is an essay advocating the efficacy of using the (noninteger) fractional calculus (FC) for
the modeling of complex dynamical systems, specifically those pertaining to biomedical
phenomena in general and oncological phenomena in particular. Herein we describe how
the integer calculus (IC) is often incapable of describing what were historically thought to be
simple linear phenomena such as Newton’s law of cooling and Brownian motion. We
demonstrate that even linear dynamical systems may be more accurately described by
fractional rate equations (FREs) when the experimental datasets are inconsistent with
models based on the IC. The Network Effect is introduced to explain how the collective
dynamics of a complex network can transform a many-body noninear dynamical system
modeled using the IC into a set of independent single-body fractional stochastic rate
equations (FSREs). Note that this is not a mathematics paper, but rather a discussion
focusing on the kinds of phenomena that have historically been approximately and
improperly modeled using the IC and how a FC replacement of the model better
explains the experimental results. This may be due to hidden effects that were not
anticapated in the IC model, or to an effect that was acknowledged as possibly
significant, but beyond the mathematical skills of the investigator to Incorporate into
the original model. Whatever the reason we introduce the FRE used to describe
mathematical oncology (MO) and review the quality of fit of such models to tumor
growth data. The analytic results entailed in MO using ordinary diffusion as well as
fractional diffusion are also briefly discussed. A connection is made between a time-
dependent fractional-order derivative, technically called a distributed-order parameter, and
the multifractality of time series, such that an observed multifractal time series can be
modeled using a FRE with a distributed fractional-order derivative. This equivalence
between multifractality and distributed fractional derivatives has not received the
recognition in the applications literature we believe it warrants.
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INTRODUCTION

All phenomena are equally susceptible of being calculated, and all that is necessary, to reduce the
whole of nature to laws similar to those which Newton discovered with the aid of the calculus, is to
have a sufficient number of observations and a mathematics that is complex enough (Marquis de
Cordorcet, 2022).

Edited by:
Plamen Ch. Ivanov,

Boston University, United States

Reviewed by:
Paul Bogdan,

University of Southern California,
United States

Pedro Carpena,
University of Malaga, Spain

*Correspondence:
Bruce J. West

brucejwest213@gmail.com

Specialty section:
This article was submitted to

Systems Interactions and Organ
Networks,

a section of the journal
Frontiers in Network Physiology

Received: 29 December 2021
Accepted: 07 February 2022
Published: 24 March 2022

Citation:
West BJ (2022) The Fractal Tapestry of

Life: II Entailment of Fractional
Oncology by Physiology Networks.

Front. Netw. Physiol. 2:845495.
doi: 10.3389/fnetp.2022.845495

Frontiers in Network Physiology | www.frontiersin.org March 2022 | Volume 2 | Article 8454951

ORIGINAL RESEARCH
published: 24 March 2022

doi: 10.3389/fnetp.2022.845495

http://crossmark.crossref.org/dialog/?doi=10.3389/fnetp.2022.845495&domain=pdf&date_stamp=2022-03-24
https://www.frontiersin.org/articles/10.3389/fnetp.2022.845495/full
https://www.frontiersin.org/articles/10.3389/fnetp.2022.845495/full
https://www.frontiersin.org/articles/10.3389/fnetp.2022.845495/full
http://creativecommons.org/licenses/by/4.0/
mailto:brucejwest213@gmail.com
https://doi.org/10.3389/fnetp.2022.845495
https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org/journals/network-physiology#editorial-board
https://doi.org/10.3389/fnetp.2022.845495


The modern science of medicine, like many other non-
physical disciplines, has been guided in its early mathematical
development by the successful mechanical models of physics.
That strategy has proven to be extraordinarily successful, even
surviving the introduction of fractals into its modeling, until quite
recently. The true complexity of medical networks has been
revealed with the development and implementation of ever
more sensitive sensors and mathematically sophisticated data
processing techniques (Niu et al., 2021). These developments
have led to a divergence of the modeling strategies appropriate for
the physical sciences from those for the life sciences.

Complex phenomena in any of the science disciplines have
complicated and intricate behaviors, typically balancing
randomness against order, with no consensus among scientists
or poets as to what constitutes a reasonable scientific measure of
complexity. Any list of traits of complexity is arbitrary and
idiosyncratic and mine consists of eight traits which is
recorded in Where Medicine Went Wrong (West, 2006). It
would not serve our purpose to reproduce the details of that
list here except to note that it contained such things as the
number of time-dependent variables, along with the nonlinear
relations among them, a dependence on their environment,
scaling is space and time, and a mixture of order and randomness.

Recognizing the different ways each of these complexity
properties are treated in the physical, social, and life sciences,
led to further divergences of the modeling strategies developed for
each. Therefore, we review how far the fractional calculus (FC) or
alternatively fractional dynamics (FD) has taken us into the non-
mechanical interpretation of medicine. On the one hand, network
science has had a significant growth spurt over the last 2 decades
with the recognition of its utility in describing the dynamic
behavior of all manner of complex phenomena. This includes
the recent establishing of new journal on Network Physiology
(Ivanov, 2021). On the other hand, although the developers of
network science have put such topics as scaling (Schmitt and
Ivanov, 2007), renormalization group theory, fractal statistics
(Bernaola-Galván et al., 2012), and other ostensibly esoteric
mathematical tools into their bag of tricks, they have been
slow to incorporate FD and the FC as a primary modeling
strategy. Hopefully, the present essay will help to rectify that
situation.

This essay is an unapologetic advocacy for the use of FC in the
effective modeling of complex phenomena in biology and
medicine. What emerges herein is the increasing importance
of criticality (West, 2020), the cooperative nature of networks in
healthy physiologic behavior (West et al., 2014), and the
importance of the FC in characterizing the dynamics of living
networks (West et al., 2008; West and Grigolini, 2021). In
particular, we examine how and why the dynamic behavior of
such pathologies as cancer may lend themselves to description by
the FC (Nasrolahpour, 2018).

Historical Perspective
The present paper is the sequel to The Fractal Tapestry of Life: A
review of Fractal Physiology (West, 2021). The prequel contains a
critique of the reliance that physiology theory has had on the
mechanical models of physics for its development, pointing out

the extraordinarily success this strategy has enjoyed, see for
example (Ruch and Patton, 1979). However, with the
introduction of fractals by Mandelbrot (Mandelbrot, 1977)
into the modeling strategy of science and engineering, the true
complexity of physiological networks was revealed and led to the
parting of the ways for the modeling strategies appropriate for the
physical sciences from those for the life sciences. In the prequel
we emphasized how far the fractal concept has taken us in the
non-mechanical interpretation of physiology since the term
fractal physiology was coined by Bassingthwaighte et al.
(Bassingthwaighte et al., 1994) a quarter century ago. The
prequel drew largely from papers published in the frontiers in
Physiology, Fractal Physiology over my 2 decade tenure as its
founding editor. The intent of that review was to demonstrate
how far the modeling community has come in accepting fractals
as a part of natural history.

As done in the prequel, the discussion presented herein draws
inspiration for its rationale from Daniel Kahneman’s book,
Thinking, fast and slow (Kahneman, 2011). Kahneman is a
psychologist who was awarded the 2002 Noble Prize in
Economics, suggesting that disciplinary borders, between
economics and psychology in that case, are self-imposed
barriers not supported by experiments done on the
phenomena being studied. One consequence of the psychology
experiments done and interpreted by him and his long time
friend and collaborator Amos Tversky was that the historical
assumptions about how humans make decisions, and in
particular, how economic decisions on which microeconomics
was based, had to be reexamined and some needed to be
abandoned altogether. The assumption of strict rationality in
humans, foundational to modern economic theory, turned out to
be at odds with the empirical findings (Ariely, 2008).

The purpose of the present work is to demonstrate that we are
now entering a new era inmedicine, or rather in themathematical
modeling of medical phenomena, and what that entails for the
future. It is useful to recall that in the Principia Newton
introduced motion as a central idea of mechanics into physics,
and although he never used the term fluxion, his word for a
differential, in this major work he drew inspiration from his new
mathematics to explore its implications. It was the mathematical
notion of a differential that led Newton to identify motion as the
central concept in celestial mechanics. He communicated this
using the scientific language of the day, that being geometry,
which explains some of the more torturous geometric arguments
one finds in that remarkable book. His use of the differential
historically guided the mechanics-based development of
quantitative physiologic models, with some extraordinary
successes, see, e.g., (Ruch and Patton, 1979) for a
comprehensive discussion of the IC modeling of physiological
systems.

On the other hand, this new era of medicine argues against
relying on borrowing as a strategy for model building. It is not
much of a stretch to say that typical phenomena in the life
sciences are significantly more complex than those typically
addressed in the physical sciences. Consequently, how one
incorporates this complexity into the dynamic description of
living cells, tissue and organs is uniquely defined by the
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phenomenon being considered (Magin, 2006;West et al., 2008). It
is also the case that the way in which complexity enters the
mathematical model determines the sensitivity of the model’s
reaction to changes in parameter values. In other words the
complexity of the phenomenon being modeled determines the
degree of disruption that can be tolerated without the network
degenerating into pathological behavior.

It is also the case that the standard training of the life scientist relies
less on mathematical formalism, a reliance that enabled the success of
the physical scientist in constructing useful physics-based
mathematical models. However, scientists from both the physical
and medical camps saw, almost immediately, the benefit of the fractal
concepts for their respective domains of interest after it was introduced
by Mandelbrot (Mandelbrot, 1977). But unlike Newton, who was
working to understand a clearly observed physical phenomenon,
Mandelbrot was attempting to understand not just the way we
model change in the physical world, but change in every scientific
discipline. To accomplish this ambitious goal he introduced the fractal
concept through an endless succession of exemplars, including
mathematical measures, noise, error, stellar matter, turbulence,
statistics, polymers, and so on. These and many other applications
of his ideas were based on his phenomenal intuition, using a kind of
mathematics that neither the physical nor life sciences had seen before,
much less implemented in the understanding of complex phenomena.
Consequently, scientists in each discipline began developing fractal
models based onwhat was needed to understand the unique processes
and phenomena in their respective areas of study. It was equally clear
that the fractal behavior of phenomena in living systems is the norm,
and not the exception it seemed to be, at first, in the physical sciences
(Mandelbrot, 1982).

In general, the complexity of a phenomenon molds the
characteristics of the function used to describe its behavior.
This is particularly true in describing how a function
describing a phenomenon changes in time. The Weierstrass
function, although expressed as an infinite Fourier series, does
not have a finite integer derivative and was for that reason chosen
by Richardson (Richardson, 1926) to describe the diffusion of a
passive scalar in the turbulent flow of a fluid. It has been shown
(Rocco and West, 1999) that such a function can have a finite
fractional derivative, even when its integer derivative diverges. So
what does this divergence property entail? It was determined
during the last quarter century that an amazing number of
familiar medical phenomena are described by fractal functions
(West, 2006; West, 2021). Subsequently, it was argued that the
equations of motion for such complex phenomena must be
fractional, since a fractal function does not have integer-value
derivatives and consequently cannot have Newtonian equations
of motion (West, 2016). Thus, this essay is devoted to the whys
and ways the FC enters into the dynamics of medicine and
provides insight into certain medical pathologies including
MO (Durrett, 2013).

THE NETWORK EFFECT

The new millennium has witnessed the blossoming of two quite
different strategies for the mathematical modeling of the complex

dynamics of large collections of interacting elements that appear
in medicine, those being network science (West et al., 2014;
Barabasi, 2016; Newman, 2018) and the fractional calculus
(Podlubny, 1999; West et al., 2003a; Magin, 2006). The
adoption of the network science strategy for the study of
complex phenomena such as epidemic spreading of diseases
(Pastor-Satorras et al., 2015), neuronal avalanches
(Hernandez-Urbina et al., 2016), and social dynamics (Bak,
1996; Castellano et al., 2009; Mahmoodi et al., 2017) is a
consequence of the fact that these networks are composed of
many simple, interconnected, and dynamically interacting
elements (West, 2014). In a similar way, the popularity of the
FC in research has grown in the modeling of processes
characterized by long-term memory as well as spatial
heterogeneity (Herrmann, 2011; West, 2016). This FC
popularity stems from its particular mathematical formulation,
based on various definitions of non-local differentiation and
integration operators and its utility in describing the dynamics
of fractal phenomena, both in space and time. Therefore, since the
effects of spatial heterogeneity and memory are frequently
observed in biological, social, and artificial networks (Magin,
2016; Meerschaert et al., 2017), the application of FC in the
domain of complex networks is a natural step toward providing
novel analytical tools that are capable of addressing research
questions arising in the field of medicine, such as fractional
dynamics (FD). For example, FD has been used to model the
complex dynamics in biological tissue (Magin, 2010) and
biomedicine (Nasrolahpour, 2017; Nasrolahpour, 2018), as well
as in the growth of cancer cells (Valentim et al., 2021), the signal
decay in MRIs (Magin, 2016), and finally in the bizarre statistical
fluctuations in dilute suspensions of algae and bacteria (Zaid
et al., 2011), to name a few applications that are subsequently
discussed.

At the turn of the 20th century the foundation of biology
started moving from the concept of homeostasis, which is
compatible with the physical notion of regression to
equilibrium, to the concept of homeodynamics, which involves
periodicity (Lloyd et al., 2001; Tu and McKnight, 2006), chaos
and complexity (Guzm´an et al., 2017). As far as the important
biological role of periodicity is concerned, we invite the readers to
consult the excellent review paper of Strogatz (Strogatz, 2000),
which reveals a connection between homeodynamics and
neurophysiology.

Despite how simple the basic elements of complex networks
are assumed to be, such as in cooperative behavior of animals
(Flack et al., 2018), in the flow of highway traffic (Bette et al.,
2017), or in the cascades of load shedding on power grids
(Yang et al., 2017), the network dynamics are invariably
characterized by rich self-organized emergent behavior
(West and Grigolini, 2021). However, in most cases solving
a network of coupled nonlinear equations to describe the
behavior of a network composed of N units is at best labor
intensive and at worst it is intractable. Consequently, the
primary focus of investigations into the behavior of
complex networks has been on their global behavior
(Dorogovtsev et al., 2008). This approach travels the path
taken by classical statistical physics, starting from insights
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of Maxwell and Boltzmann that the description of the state of a
gas or a solid could only be achieved over the scale of the entire
system (Toda et al., 2004).

In the same way, the ability to portray the global behavior of
a complex network is not free but comes at the price of not
being able to quantify the Newtonian dynamics of the
components of which it is composed. Typically, one
attempts to infer the global dynamics by averaging the
behavior of single elements within the system, following a
bottom-up approach of mean field theory (Turalska and West,
2018). Turalska and West (Turalska and West, 2018)
addressed the issue of depicting global dynamics by turning
the question around and rather than joining the behaviors of
single elements within the dynamic network, they asked
whether it is possible to construct a description of the
dynamics of the individual elements from information
provided about the network’s global behavior. They
approach the problem by considering statistical properties
of the global variable.

Frequently, the macro, or coarse-grained, variables
observed in complex networks display emergent properties
of scale invariance in space and/or in time. This scale
invariance is manifest by, for example, the inverse power
law (IPL) scaling of waiting-time probability density
functions (PDFs) that reveals the variability of the time
intervals between events. These time intervals are manifest
in heart rate variability (HRV), in stride interval variability
(SIV) and breath interval variability (BIV), or in the
occurrence of brainquakes (West and Grigolini, 2021). The
IPLs that characterize the emergent macroscopic behavior are
reminiscent of particle dynamics near a critical point, where a
dynamic network undergoes a phase transition (Christensen
and Moloney, 2005). However, despite the mathematical
advances made by the renormalization group approach and
self-organized criticality theories that have shown how scale-
free phenomena emerge at critical points, the issue of
determining how the emergent properties influence the
micro-dynamics of individual units, such as the growth of a
single cell within a network of cells, whether healthy or
pathological, is still in its nascent phase.

The Entailment of Network Dynamics
Grinstein et al. (1985) demonstrated that any discrete network,
whose dynamics are defined in terms of local interactions,
having symmetric transitions between states and random
fluctuations originating from a thermal bath or internal
dynamics is a member of the Ising universality class. One
such dynamic complex network is given by the decision
making model (DMM) (Bianco et al., 2008; Turalska et al.,
2009; Turalska et al., 2011) and for clarity of discussion this is
the dynamic model we implement in this section. Each
individual unit of the DMM is a stochastic oscillator that
statistically dithers between the two states, +1 and -1. The
dynamics are modeled on a two-dimensional lattice and
defined in terms of the probability of an individual at lattice
point i to be in either state, by the coupled two-state master
equation:

dp(i)(t)
dt

� Gi(t)p i( )(t), (1)

p i( )(t) ≡ p i( )
1 (t)

p i( )
2 (t)( ), (2)

where p(i)(t) is the probability of the element i = 1, 2, . . ., N
within the network at the time t is normalized such that p(i)

1 (t) +
p(i)
2 (t) � 1 for every i and changes with the fundamental

transition rate g0 < 1 between states. The matrix of time-
dependent coupling rates for individual i is given by:

Gi(t) � −g i( )
12 t( ) g i( )

21(t)−g i( )
21 (t) g i( )

22(t)( ); (3)

where the individual transition rates are:

g i( )
12 (t) � g0 exp − K

M i( ) M i( )
1 (t) −M i( )

2 (t)( )[ ],
g i( )
21 (t) � g0 exp

K

M i( ) M i( )
1 (t) −M i( )

2 (t)( )[ ], (4)

and 0 ≤ K < ∞ is the strength of the interaction. On the regular
two-dimensional lattice considered here the number of nearest
neighbors is given by M(i) � 4 and 0≤M(i)

1,2(t)≤ 4 denotes the
count of nearest neighbors in states si (K, t) = ±1 at time t for every
individual i. The probability that the single unit in isolation
changes its state corresponds to the case of K = 0. When the
coupling constant K > 0, a unit in state +1 (-1) makes a transition
to the state -1 (+1) faster or slower according to whether
M(i)

1 (t)<M(i)
2 (t) or M(i)

1 (t)>M(i)
2 (t), respectively.

This DMM network is defined by N such coupled equations,
which gives rise to the problem of finding an analytic solution to a
highly nonlinear network (Turalska et al., 2011) containing 2N
dynamic variables. Given this number of dynamic variables
extensive numerical calculations are supplemented by an
analytic formulation of the evolution of a global variable. As
depicted in Figure 1B, the global behavior of the model is defined
by the fluctuations of the mean field variable:

ξ(K, t) � 1
N
∑N
i�1

si(K, t), (5)

which shows a pronounced transition as a function of the control
parameter K as it passes through the critical value K = Kc. The
network dynamics for various quantities are depicted in the figure
for the control parameter being subcritical (K < Kc), critical (K =
Kc) and supercritical (K > Kc). While in Figure 1A a typical single
element appears to be essentially unchanged by its interactions
with the rest of the network elements. On the other hand, the
global variable shifts from a configuration dominated by
randomness (subcritical) to one in which strong interactions
give rise to long-lasting majority states (supercritical) shown in
Figure 1B. Note that the source of the random fluctuation in the
DMM is the finite size of the network, having a strength of 1/

		
N

√
and has nothing to do with the thermal fluctuations arising in the
modeling of phase transitions in physics phenomena such as the
freezing of water or magnetization (West et al., 2014).

To characterize the changes in temporal properties of the
network elements and those of the emergent properties of the
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macro variables, we evaluate the survival probability function
Ψ(τ), where τ is the time interval between consecutive events.
These events are defined as changes of state or crossings of the
zero-axis, for a single element or the global variable, respectively.
These calculations reveal a modest deviation of the survival
probability function for a single individual from the
exponential form, Ψ(τ) � exp(−g0τ), that characterizes a
single non-interacting element, as shown in Figure 1C. The
network’s influence on the behavior of the individual appears
to induce only a small change in the behavior of the latter. Despite
this apparently small change in the individual’s behavior, the
global variable changes dramatically, manifesting IPL statistics, as
depicted in Figure 1D.

In this last panel three different aspects of dynamic behavior
are revealed. The potential for the global variable is bimodal with
the height of the barrier between the two potential minima
determined by the parameter K. The dynamics are given by a
Langevin equation with the strength of the random fluctuations
driving the network from one well to the other decreasing with
the size of the network as 1/

		
N

√
. The subcritical and critical

domains have dominant IPL survival probabilities trailing off into
exponentials for long times. In the supercritical domain (green
curve) a new phenomenon emerges called the Kramers shoulder.
In his study of chemical reactions involving two states Kramers
determined that the process becomes ergodic for times larger
than what is now called the Kramers time, which increases
exponentially with the size of the network, see West et al.
(2014) for a detailed discussion.

Thus, to what extent are individual opinions within a complex
network influenced by the network dynamics?

Complex Network Subordination
To determine the network’s influence on the dynamics of the
individual unit we adapt a subordination argument, and relate the
time scale of the macro variable ξ(K, t) to the time scale of the
micro variable si(t) following the arguments presented in
(Turalska and West, 2018). The notion of different clocks
associated with different aspects of a complex network
dynamics dates back to the middle of the 19th century where
the two clocks defined subjective and objective times and were

FIGURE 1 | Behavior of a discrete, two-state dynamic unit on a two-dimensional lattice. Temporal evolution and corresponding survival probability Ψ(τ) for the
transitions between two states for the single unit si(t) of the network, presented on panels (A,C), respectively, are compared with the behavior and statistical properties
of the global order parameter ξ(t), shown on panels (B,D). Simulations were performed on a lattice of sizeN = 50 × 50 nodes, with periodic boundary conditions, for g0 =
0.01 and increasing values of the control parameter K. Blue, red, and green lines correspond to K = 1.50, 1.70, and 1.90, respectively. The critical value of the
control parameter is KC ≈ 1.72. Black dashed line on the plots of Ψ(τ) denotes an exponential distribution, with the decay rate g0. From (Turalska and West, 2018) with
permission.
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used to justify the empirical Weber-Fechner law (Fechner, 1860).
More recently, due to the availability of time resolved datasets, life
science has begun adopting the notion of multiple clocks to
distinguish between cell-specific and organ-specific clocks in
biology, which is analogous to person-specific and group-
specific clocks in sociology. While the global activity of an
organ, such as the brain or the heart, might be characterized
by quite regular, often periodic behaviors, the activity of single
neurons or pacemaker cells demonstrate burstiness and noisiness.
Thus, because of the stochastic behavior of the clocks, a
transformation between clock times is necessary. An example
of such a probabilistic transformation is the subordination
procedure, see for example (Feller, 1966).

The two-state master equation for a DMM single isolated
individual in discrete time n in steps of Δτ can be written in terms
of the single variable:

φ n + 1( ) − φ n( ) � −g0Δτφ n( ) (6)
in the notation φ(n) � φ(nΔτ) ≡ p1(nΔτ) − p2(nΔτ) being the
difference in probabilities for the typical individual to assume one
of two states. The solution to this discrete equation is after n ticks
of the individual’s clock is:

φ n( ) � (1 − g0Δτ)nφ 0( ), (7)
which, in the limit g0Δτ ≪ 1, becomes an exponential.
However, when the individual interacts with the other
members of a network, the dynamics are no longer simple.
Assuming a renewal property for events, an event being a
transition from one state to the other, so that each event is
independent of every other event, one can relate the discrete
time of the unit to the clock time of the network using
subordination theory.

Introducing subordination, we define the discrete index n as
the operational time of the individual that is connected to the
chronological time t recorded by the ticking of the network’s clock
in which the global behavior is observed. If each tick of the
discrete clock n is thought of as an event, then the relation
between the operational time and the continuous chronological
time can be given by the waiting-time PDF of those events in
chronological time ψ(t). The chronological time lies in the
interval (n − 1)Δτ ≤ t ≤ nΔτ for each operational tick and
consequently the equation for the average dynamics of the
individual probability difference is given by (Pramukkul et al.,
2013):

〈φ t( )〉 �∑∞
n�1
∫
0

t

Ψ t − t′( )ψn t′( )φ n( )dt′. (8)

Every tick of the operational clock is an event and occurs in
chronological time at the drawing from the renewal waiting-time
PDF ψ(t) determined by the derivative of the survival probability.
The empirically determined analytic expression for the survival
probability from the numerical simulation of DMM is:

Ψ t( ) � T

T + t
( )μ−1e−ϵt. (9)

The dominant behavior of the empirical survival probability is
IPL as indicated in Figure 1D. However, at early times the
probability of not making a transition approaches the constant
value of unity, whereas at late times the probability of not making
a transition in a given time decays exponentially. It is in the
middle range, where the survival probability is IPL. The extent of
the IPL range of the survival probability is determined by the
empirical values of T, μ and ϵ and from Figure 1D the value of ϵ is
seen to become smaller as the control parameter K increases. The
IPL functional form of the PDF results from the behavior of the
survival probability Ψ(τ) of the global variable depicted in
Figure 1D with μ = 3/2.

Using a renewal theory argument Pramukkul et al. (2013)
show that Eq. 8 expressed in terms of Laplace transform variables
indicated by f̂(u) for the time-dependent function f(t) has the
form:

〈φ̂ s( )〉 � φ 0( )
u + ϵ + λ0Φ̂ u + ϵ( ) (10)

where λ0 ≡ g0Δτ and Φ̂(u + ϵ) is the Laplace transform of the
Montroll-Weiss memory kernel (Pramukkul et al., 2013):

Φ̂ u + ϵ( ) � u + ϵ( )ψ̂ u + ϵ( )
1 − ψ̂ u + ϵ( ) . (11)

Note that u is replaced by u + ϵ in the Laplace transforms,
because the exponential truncation of the empirical survival
probability shifts the index on the Laplace transform
operation. The asymptotic behavior of an individual in time is
determined by considering the waiting-time PDF as u + ϵ → 0:

ψ̂ u + ϵ( ) ≈ 1 − Γ 1 − α( )Tα u + ϵ( )α ; 0< α � μ − 1< 1, (12)
so that Eq. 10 reduces to:

〈φ̂ u( )〉 � φ 0( )
u + ϵ + λα u + ϵ( )1−α. (13)

The inverse Laplace transform of Eq. 13 yields the tempered
non-integer rate equation:

zt + ϵ( )α〈φ t( )〉 � −λα〈φ t( )〉, (14)
where the operator zμ−1t [·] is the Caputo fractional derivative For
the moment we define the Caputo fractional derivative in terms of
its Laplace transform:

LT zαt f(t)[ ]; u[ ] � uαf̂(u) − uα−1f(0),
where f (0) is the initial value of f(t) and f̂(u) is its Laplace
transform for 0 < α = μ − 1 < 1 (West, 2016) and:

λT � g0Δτ/Γ 2 − μ( )[ ] 1
μ−1. (15)

Note that due to the dichotomous nature of the states that
〈φ(t)〉 is the average opinion of the individual si(t).

A technique for obtaining the solution of the asymptotic
fractional master equation Eq. 14 is given in the following
section in some detail. For the moment we solve the equation
for a randomly chosen unit within the social network and obtain
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an exponentially attenuated Mittag–Leffler function (MLF)
(Turalska and West, 2018):

〈φ(t)〉 � φ 0( )Eα − λt( )α( )exp −ϵt[ ]. (16)
and the MLF is defined by the series:

Eα(z) ≡ ∑
n�0

∞ zn

Γ nα + 1( ), α> 0. (17)

TheMLF is a stretched exponential at early times and an IPL at
late times, with α = μ − 1 being the IPL index in both domains
(West et al., 2003a). The MLF will be discussed more fully in
subsequent sections.

Comparisons With Numerics
We test the above solution against the numerical simulations of
the dynamic network consisting of N = 104 units on a two-
dimensional lattice with nearest-neighbor interactions in all three
regions of DMM dynamics; subcritical, critical and supercritical.
The time-dependent average opinion of a randomly chosen
individual is presented in Figure 2, where the average is taken
over 104 independent realizations of the dynamics in the three
regimes.

A comparison with the exponential form of 〈φ(t)〉 for an
isolated individual depicted by the dashed line segment depicted
in Figure 2 indicates that the influence of the network on the
individual’s dynamics clearly persists for increasingly longer
times with increasing values of the control parameter within
the network. The parameters μ and λ of Eq. 16 obtained through
fitting numerical results of Figure 2 with the MLF are
summarized in the table given in Figure 3. It is evident that
the influence of the network dynamics on the individual is
greatest at long times. The deviation of the analytic solution to
the FRE from the numerical calculation is evident for values of the
control parameter at and below the critical value. The analytic
prediction is least reliable at extremely long times in the
subcritical domain. Consequently, the response of the
individual to the group, mimics the group’s behavior most
closely when the control parameter is equal to or greater than
the critical value.

Complex Networks Entail Fractional Space
Diffusion Equations
Herein the subordination procedure provides an equivalent
description of the average dynamics of a single individual
within a complex network in terms of a linear fractional
stochastic rate equation (FSRE). The fractional dynamics given
by Eq. 14 is solved exactly, determining that the Poisson statistics
of the isolated individual, becomes attenuated Mittag–Leffler

FIGURE 2 | The probability difference 〈φ(t)〉 estimated as an average
over an ensemble of 104 independent realizations of single element trajetories.
Each trajectory corresponds to evolution of a randomly selected node within a
N = 100 × 100 lattice network, with g0 = 0.01 and the same initial
condition si (0) = 1. The parameter values for the numerical data are given in
Figure 1 and from top to bttom K = 1.0, 1.7, 2.5, respectively. The fit of the

(Continued )

FIGURE 2 | exponentially truncatedMLF to the numerical calculations over the
time interval [a,b] yields the parameter values: K = 1.0, ϵ = 4 × 10−3, λ = 1.47 ×
10−2, α = 0.892 [1, 300]; K = 1.70, ϵ = 1.4 × 10−11, λ = 2.06 × 10−2, α = 0.805,
[1, 103]; K = 2.50, ϵ = 5.58 × 10−12, λ = 2.93 × 10−2, α = 0.558 [1, 104].
Adapted from (Turalska and West, 2018) with permission.
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statistics, due to the interaction of that individual with the other
members of the complex dynamic network. The numerical
simulation of the network dynamics consisting of ten
thousand nonlinearly interacting units collapses onto a one-
dimensional fractional dissipative rate equation for a typical
single unit. Note that the average influence of the other 9,999
units in the nonlinear dynamic network on the unit of interest is
predicted by the MLF solution of the linear FRE without
linearizing the dynamics. Let me say this again the FRE is an
exact representation of the complete response of a typical unit to
the rest of the nonlinear dynamic network without linearizing the
dynamics. The effect of the other 9,999 units on the typical one is
two-fold giving rise to an attenuated MLF dynamics with an
attenuation rate ε and the noninteger-order derivative α,
apparently without approximation.

As Pointed out in West (West, 2016): The results in this
section provide a partial answer to a question in
sociophysics identified by Kulakolwski and
Nawojczyk (Kulakolwski and Nawojczyk, 2008)
concerning how empirical regularities such as
prejudice or tolerance can be derived from global
social properties such as entropy or temperature. We
can interpret their use of the nomenclature
“temperature” as the control parameter in the DMM
network. Here again we have demonstrated how the
state of the network, as described by the global
dynamics, can influence the decision making
behavior of the individual.

This quote can be recast in the form where sociophysics is
replaced by medical biophysics and the same partial answers can
be obtained for how the empirical regularities such that the
ubiquity of IPL statistics can be derived from global properties
of physiological networks. We shall pursue this more fully in
subsequent sections.

We conjecture that the behavior of the individual units are
generic, given that the DMM network dynamics belong to the
Ising universality class. Members of this universality class
share the critical temporal behavior (West et al., 2014)
driving the subordination process. It is the renewal property
of the event statistics, which through the subordination
process, gives rise to the linear fractional master equation
for the typical unit’s dynamics. The solution to the
tempered FRE manifests a subsequent robust behavior of
the individual. It remains to determine just how robust the

behavior of the individual is relative to control signals that
might be used to manage healthy dynamics, as well as any
pathologies that arises in the dynamics over the lifetime of the
living network.

Thus, a unit’s simple random behavior, when isolated, is
replaced with behavior that could serve a more adaptive role
in social and medical networks. Think of the difference in the
dynamics of an isolated pacemaker cell and that of the sinus node,
the heart’s natural pacemaker. One might consider the solution to
the following FSRE:

zt + ϵ( )αξ t( ) � −λαξ t( ) + V(t), (18)
and V(t) represents parasympathetic and sympathetic fluctuating
signals from the autonomic nervous system and ξ(t) is the mean
field electrical output of the sinus node. The two branches of the
nervous system are in an on-going tug-of-war in driving the sinus
node, one decreasing and the other increasing the heart’s rate
thereby producing the HRV time series in healthy subjects.

We close this section with the observation that the aggregate
effect of the network dynamics is to reduce the 2N − dimensional
master equation description of the nonlinear evolution of the
probability to a 1 − dimensional description of the linear
fractional dynamics of the global variable. Therefore, Eq. 18 is
a generic representation of such dynamics with the formal
solution in Laplace space:

ξ̂ u( ) � u + ϵ( )α−1ξ 0( )
u + ϵ( )α + λα

+ V̂(u)
u + ϵ( )α + λα

, (19)

where the homogeneous solution ξh(t) is obtained from Eq. 16:

ξh t( ) � ξh 0( )Eα − λt( )α( )exp −ϵt[ ], (20)
and the complete time-dependent solution is obtained by Laplace
inversion to be (West et al., 2003a):

ξ t( ) � ξh t( ) + ∫
0

t

dt′(t − t′)α−1Eα,α − λ t − t′( )[ ]α( )exp −ϵ(t − t′)[ ]V(t′),
(21)

where we have introduced the generalized MLF:

Eα,β(z) ≡ ∑∞
n�0

zn

Γ nα + β( ), α, β> 0. (22)

The formalism represented here in the solution given by Eq.
21 is probably overwhelming if you are seeing it for the first time.
So for the sake of clarity let us take a step back and systematically

FIGURE3 | The probability difference 〈φ(t)〉 of Figure 2 is fitted with theMLF using an algorithm developed by Podlubny (Gorenflo et al., 2002). Assuming T = 0.10,
Δτ = 1 and g0 = 0.01 the parameters of analytic solution are μ = 3/2 and λ = 0.031 8. The mean-square goodness of fit R2 is discussed in (Turalska and West, 2018).
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prepare the ground for solving differential equations involving
noninteger operators before interpreting the above solution. The
take away message from introducing such FDEs is that the
solution to a ten thousand component master equation using
IDEs has been expressed as a global variable solution to an
appropriate FDE. As a medical application consider a tissue
consisting of a large number of cells and what a practitioner
could do with a model that exploited such a startling
mathematical simplification.

APPLICATIONS OF FRACTIONAL
CALCULUS

Since the time of Newton science has accepted the explanation
that the myriad kinds of motions of the objects in the physical
world around us are determined by energy. Electrical energy
provides the power that runs social media, the internet and
lights our cities; chemical energy supplies the power to drive the
engines in our transportation systems, and solar energy is
converted by photosynthesis into the foods we eat. Physics
provides a detailed description of how changes in energy
over spatial intervals produce forces, which moves things
around. A kite pulling at its tether, the invariant order of the
colors in a rainbow, moon rise, and sunset, all have their causal
explanations in terms of forces. But the force laws, even when
generalized to continuous media such as fluids, are not able to
explain everything. We talk of individuals exerting forces on one
another, of stress in a relationship or in the work place. Is the
latter force merely an analogue of the mechanical forces and
thereby lacking material substance, or is it something more? Or
are the dynamics of living networks really no different from
those for inanimate matter?

We do not have complete answers to such profound questions,
but what we can say is that models using IC from theoretical
physics when applied to the complex phenomena of social and life
sciences have, by and large, been disappointing. Here we argue
that much of the disappointment encountered in the
development and application of models outside the physical
sciences has been the result of the simplifying assumptions
made. Very often the simplifying assumption were known to
be wrong but were necessary to satisfy the known properties of
the mathematics used to construct the models. Other times the
assumptions were idealizations that although not entirely
accurate, were thought to capture the dominant characteristic
of the phenomenon being investigated, and therefore the
idealized model was wrong, but conveyed the truth. This is
not unlike the children stories in Aesop’s Fables that teach
abstract lessons in ethics and morality in a language children
can understand.

The purpose here is not to belittle the mathematical
techniques used in the past to understand the unifying nature
of physical laws, but rather to highlight the fact that the only way
we can formulate questions is by means of language and
mathematics is the language of science: for Galileo the
language was geometry and algebra; for Newton and scientists
for the following three centuries the language was primarily the

differential calculus. Consequently, much of what is presented is
concerned with the mental map of the world we construct from
such mathematics. An exhaustive treatment of the social
implications of the limit concept has been treated by Amir
Alexander in his remarkable book Infinitesimal, How a
Dangerous Mathematical Theory Shaped the Modern World
(Alexander, 2014):

On 10 August 1,632, five men in flowing black robes
convened in a somber Roman palazzo to pass
judgment on a simple proposition: that a
continuous line is composed of distinct and
infinitely tiny parts. The doctrine would become
the foundation of calculus, but on that fateful day
the Jesuit fathers ruled that it was forbidden. With the
stroke of a pen they launched a war for the very soul
of the modern world.

This dramatic depiction of the dispute over a mathematical
concept lay at the heart of what was the Catholic Church’s role
in interpreting how we humans were to understand the world
in which we live. It is not my purpose here to present
Alexander’s brilliant historical arguments on how the
concepts of continuity and limit became a fundamental
theological issue. Instead I wish to emphasize that then, as
now, our understanding of the world is based on the language
we use to describe it and which necessarily determines how we
can think about it. Our mental models of the world and its
events are all we have, so when we embark on scientific
investigations it is in our fundamental interest to refine
those models as best we can.

This is where the FC enters the discussion. It is not
surprising that colleagues should ask about noninteger
differentials and integrals and they did so in Newton’s
lifetime, asking Leibniz the cofounder of the differential
calculus if such noninteger operators could be defined.
Other than these technical questions addressed in private
letters the noninteger aspect of the calculus was mostly
ignored by the social, physical, and life scientists,
intermittently emerging from the shadows of formalism
with an application over the centuries. The international
scientific community saw no need for a new calculus. As a
body, the science community tacitly agreed that the ordinary
differential calculus, along with the analytic functions entailed
by solving the equations resulting from Newton’s force law, are
all that was required to provide a scientific description of the
macroscopic physical world.

As pointed out elsewhere (West, 2020) the evidence is all
around us that the domain of application of Newton’s view of
the physical world is contracting dramatically. This is one
result of the increase in sensitivity of diagnostic tools, advances
in data processing techniques, and expanded computational
capabilities, which have all contributed to the broadening of
science in ways that have pushed many phenomena from
borderline interest to center stage. These curious complex
processes are now catalogued under the heading of fractal
scaling phenomena and their impact has nowhere been more
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emphatic than in medical science (West, 2016). The
understanding of the fundamental dynamics underlying
such scaling requires the new mathematical perspective
obtained using fractional operators and such descriptions
have apparently ushered in the sunset for much of what
remains of Newton’s world view.

Fractional Differential Equations
FC is concerned with the quantitative analysis of functions using
non-integer-order operators that generalize the traditional
meaning of integration and differentiation. The non-integer
order of a FC operator can be a real number, a complex
number, or even the function of a variable, as we shall see. But
this is less an essay on mathematics, than it is a presentation of the
remarkable scientific utility of the FC, whose scope is intended
here for medical scientists who recognize the need for such
methods but may be less interested in learning the formal
details of the methodology. So let us begin by examining well-
accepted, simple, linear, dynamic processes that turn out to be not
so simple.

Newtonian Cooling
We begin with an example presented by Mondol et al. (Mondol
et al., 2018) who used a FDE to examine Newton’s linear cooling
law. This law states that the rate of heat loss from a body is
directly proportional to the difference in the temperatures
between that of the body at time t denoted as T(t) and that of
its surroundings Ta given by the IRE:

dT(t)
dt

� −λ T(t) − Ta[ ], (23)

with loss rate λ, provided the temperature difference is not too
large and the nature of the radiating surface remains the same
throughout the time of the cooling process. The prediction of this
law is that cooling proceeds at a constant rate from the initial
temperature of the object T0 to the ambient temperature Ta and is
exponential in time:

T(t) � T0e
−λt + Ta 1 − e−λt( ), (24)

since it is the solution to a linear rate equation. This solution
allows the medical examiner to unambiguously establish the
time of death in every television murder mystery ever made.
However, in the real world Mondol et al. determined
experimentally that the cooling problem is not so simple
and does in fact depend more subtilely on the properties of
the objects being cooled.

In general, they replace Newton’s cooling equation with
the FRE:

zαt T(t)[ ] � −λ T(t) − Ta[ ], (25)
where again the ambient temperature is Ta. Notice also that the
solution to cooling equation given by Eq. 25 using a Caputo
noninteger derivative zαt [·] has the same form as Eq. 24 with the
exponential replaced with a MLF:

T(t) � T0Eα −λtα( ) + Ta 1 − Eα −λtα( )[ ], (26)
a complete discussion of this solution is given elsewhere (West,
2016; Mondol et al., 2018). In Figure 4 the dashed curve
depicts the “best” exponential solution to Newton’s cooling
law, which clearly deviates from the experimental data given
for 300 ml of water. The solution to the FRE is given by Eq. 26
and is depicted by the solid curve, fitting the experimental data
extremely well.

Of course, this is just one example selected from the many
experimental results Mondol et al. present. These IRE and FRE
predictions compared to the experimental datasets emphasize
the error one can make in modeling even familiar linear
dynamic phenomena that one has no reason to believe are
not simple. But this is a cautionary tale. One should consider
every phenomenon to be complex or nonsimple until it is
verified by both experiment and theory to be simple. In the case
of an object cooling over time the nonsimplicity has to do with
memory that is built into the definition of the FC derivatives
irrespective of their detailed forms. Mondol et al. (Mondol
et al., 2018) demonstrate experimentally that some cooling
phenomena are represented by Newton’s law of cooling, others

FIGURE 4 | Comparison of the experimental cooling data with solutions
using the Caputo derivative in Eq. 25 with α = 0.79 and the exponential for
300 ml of water. Adapted from Mondol et al. (2018) with permission.
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by the Caputo noninteger form as in the example shown in
Figure 4 and still others by the Reiman-Liouville form of the
FC derivative operator, both of which will be defined in due
course. The need for the fractional (noninteger)
differential is explained in the following manner (Mondol
et al., 2018):

Thus, it is all about taking rate of change of a
variable. . .with respect to fractional differential of
time which defines Δt, the “window of observation.”
While the classical differential is Δtα with α = 1, the
fractional differential is Δtα with α < 1. . .(thus) the
fractional differential will always be greater than
classical differential as Δt → 0. This makes the
“window of observation” to view complex dynamics
effectively larger, as compared toΔt . . .as wemakeΔt go
from milli, to micro, to pico. . .the fractional differential
. . .grows, helping us to view the dynamics whichmay be
complex with several relaxation processes and
relaxation rates, better.

They go on to say that if the dynamics is governed by a
unique cooling rate, there is no need to increase the viewing
window by using a fractional (noninteger) differential and
Newton’s cooling law prevails. Thus, if you are convinced that
the process you are dealing with is linear, but the data deviate
systematically from any linear IDE model you have examined,
the deviation may be the result of non-locality and not a
nonlinearity. The questions you need to answer is which
calculus Nature has chosen for the dynamics of the
phenomena under investigation and why?

Brownian Motion
The only exposure to stochastic processes that typically
resonates with non-mathematically oriented scientists is the
phenomenon of Brownian motion. The phenomenon was
observed by the botonist Robert Brown in 1827, who studied
the erratic motion of a pollen mote suspended in a fluid using a
microscopic. He hoped that his observation would explain the
‘life force’ he thought at first he was observing, which he
admittedly did not accomplish. Of course, it turned out that
he was watching the reaction of the pollen mote to the thermal
motion of the invisible molecules of the ambient fluid as
explained by Einstein in his 1905 paper on diffusion
(Einstein, 1905). In a 1907 sequel to this paper Einstein
speculated, after informally hearing of these early
experiments, that Brown could well have been observing a
diffusive process (Einstein, 1907). This off-hand remark in a
published paper was sufficient to insure Brown’s scientific
immortality.

Einstein did however recognize a problem with his
formulation of what is now known as Brownian motion. If
X(t) is the instantaneous position of a free Brownian particle its
mean-square displacement (MSD) from its initial position is
predicted by Einstein’s theory to be X(0):

〈ΔX t( )2〉 � 〈 X(t) −X(0)[ ]2〉 � 2Dt, (27)

where D is the diffusion coefficient and t is the time. Without
going into the underling physics of molecular diffusion we can
observe, as did Einstein, that the average velocity �V over a time t
can be estimated using the MSD:

�V � ΔX
Δt �

								
〈ΔX t( )2〉
√

t
�
			
2D

√ 	
t

√ . (28)

Consequently, for very short times, where one might expect
the estimate to be better, the mean velocity diverges to infinity
and therefore cannot represent a real velocity (Einstein, 1907).
Using an argument based on the equipartition theorem of
statistical physics Einstein concluded (Einstein, 1907):

We must conclude that the velocity and direction of
motion of the particle will be already very greatly altered
in the extraordinary short time θ, and, indeed, in a
totally irregular manner. It is therefore impossible - at
least for ultramicroscopic particles - to ascertain

			
V2
√

by
observation.

As Li and Raizen (2013) point out, it took more than a
century for Einstein’s conclusions to be experimentally
challenged because of the technical difficulties of doing an
experiment that can resolve a Brownian particle at times on
the order of nanoseconds and within distances on the order of
the radius of a hydrogen atom. Li et al. (2010) were able to
achieve the incredibly high resolution in space and time
necessary to measure the ballistic motion of the Brownian
particle between molecular collisions using optical trapping
interferometry.

FIGURE 5 | The MSDs of a 3 μm silica bead trapped in air at 99.98 kPa
(red squares) and 2.75 kPa (black circle). They are calculated from 4 × 107

measurements for each pressure. The “noise” signal (blue triangles) is
recorded when there is no particle in the optical trap. The solid lines are
the theoretical predictions of Eq. 31. The prediction of Eistein’s theory of free
Brownian motion in the diffusive regime is shown in dashed lines for
comparison. From (West, 2016) with permission originally published by (Li and
Raizen, 2013).
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Langevin’s theory of Brownian motion (Langevin, 1908),
based as it is on dynamic equations and not on probability
arguments, is ostensibly valid at all times including for times
much smaller than that for diffusion of the Brownian particle. It
predicts ballistic motion for such short times and as a
consequence the MSD is independent of the diffusion
coefficient D and is given directly in terms of the fluid
temperature T, Boltzmann’s coefficient kB, and the mass of the
Brownian particle M:

〈ΔX t( )2〉 � kBT

M
t2, (29)

yielding the average velocity:

�V �
								
〈ΔX t( )2〉
√

t
�
				
kBT

M

√
, (30)

a well-defined constant.
Li et al. (2010) determined the position and velocity of a 3 μm

diameter silicon sphere confined in an air optical trap configured
in a vacuum chamber. Without presenting the details of the
experiment it is sufficient to note that the optical trap
harmonically confines the particle in physical space where it is
subject to thermal collisions with the air particles in the chamber.
It is evident from Figure 5 that the measured MSD deviates
markedly from Einstein’s theory of Brownian motion in the early
time regime.

Langevin theory gives the proper ballistic behavior for a
harmonic oscillator driven by random noise and the MSD was
originally obtained in 1930 by Uhlenbeck and Ornstein
(Uhlenbeck and Ornstein, 1930):

〈 X(t) − 〈X(t)〉[ ]2〉 � 2kBT
Mω2

0

1 − e−t/τD cosω1t + sinω1t

2ω1τD
[ ]{ }

(31)
where τD is the diffusion time scale, ω0 is the resonant frequency
of the optical trap and ω1 �

												
ω2
0 − (1/2τD)2

√
. Note that the

strength of the fluctuations driving the Langevin equation in
the experiment are not proportional to the diffusion coefficient
but to the temperature of the ambient air in the chamber. This
solution is given by the solid curve in Figure 5with the parameter
values determined from the experiment the fit to the data is
excellent.

Like the story of Newton’s linear theory of cooling the
present tale of Brownian motion does not end here. You
may have noticed that Einstein’s theory was based on a
Brownian particle in water, whereas Langevin’s theory is
applied to one in air and this highlighted the difference
between the two theories at short times. The properties of
the ambient fluid turn out to make a tremendous difference in
which theory to apply because the momentum relaxation time
scale in a liquid phase is 50 times greater than in a gas phase
due to the difference in the ambient fluid density. It turns out
that neither Einstein nor Langevin got it entirely right, because
the dynamics of a freely moving Brownian particle is more
subtle than either of them imagined. Brownian motion had
been separated into microscopic and macroscopic by both men

but the phenomenon actually lives in the in-between world of
the mesoscopic.

The force equation used to describe Brownian motion by
Langevin is given by the direct application of Newton’s Third Law
to a spherical particle in water and that turned out to be the wrong
approach. The phenomenon is more subtle than that. It requires
taking into account the inertia of the ambient fluid. The
derivation of the equation for the motion of a heavy spherical
particle in a fluid, requires taking into account the back-reaction
of the ambient fluid in contact with the Brownian particle. This
back-flow of the fluid was first derived in 1885 by Boussinesq
(Boussinesq, 1885) and independently 3 years later by Basset
(Basset, 1888).

For a spherical particle of radius R in a fluid with a viscosity η
the force law is given by (Clercx and Schram, 1992):

m*
dV(t)
dt

� −γV(t) − U′(X) + η(t) − λ∫
0

t
dτ				
t − τ

√ dV(τ)
dτ

, (32)

where m* = 1 + 0.5M0/M is the ratio of the mass of the Brownian
particleM to its value shifted by half the virtual mass of sphere of the
same size in an incompressible fluidM0; the ordinary Stokes friction
with coefficient γ = 6πηR/M is the first term on the right hand side of
Eq. 32; the second term is a mechanical force modeled by the
potential function U(X); the third is the random force generated by
the ambient fluid η(t) = f(t)/M; the final term is the memory
associated with the hydrodynamic retardation effects with λ �
6R2 				πρη

√
/M and is today called the Basset force. Clercx and

Schraom (Clercx and Schram, 1992) solve this equation using

FIGURE 6 | Experimental and theoretical correlation functions from
recorded trajectories of two different bead-fluid combinations. Double
logarithmic plot of theMSD for an optically trapped barium titanate glass (BTG)
bead (3.7 μm diameter) in acetone (blue circles; τp = 11.0μs, τf = 8.5μs,
τv = 11.0μs), and a silica bead (2.8 μm in diameter) in water (green squares; τp
= 1.2μs, τf = 2.01μs, τv = 0.57μs). The red dashed lines indicate the MSD of a
particle moving at constant velocity. Adapted from (Kheifets et al., 2014) with
permission.
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Laplace transforms and the time-dependent solution fits
experimental data over the entire time domain (Huang et al., 2011).

Mainardi and Pironi (Mainardi and Pironi, 1996) discuss the
solution to Eq.(32) in terms of a FDE:

M
dV(t)
dt

+ λ0z
1/2
t V(t)[ ] � −γ0V(t) − U′(X) + η(t), (33)

expressed here in terms of the Caputo fractional derivative z1/2t [·]
and the parameters λ0 and γ0 are known functions of the fluid
viscosity coefficient, the particle masses, and the radius of the
Brownian particle, see the excellent paper (Mainardi and Pironi,
1996) for details. The optical trap previously used by the scientists
in Raizen’s lab to measure the instantaneous velocity of a
harmonically bound particle in air (Li et al., 2010) and a bead
in fluid (Huang et al., 2011) was again employed to test the
theoretical predictions and interpretations of the Langevin
equation modified to include the Basset force. The fit of
theory (Clercx and Schram, 1992) to experiment is excellent
(Kheifets et al., 2014) as indicated for the fit to the experimental
MSD depicted in Figure 6 by the solid black line segments.

We note that fractional Brownian motion and fractional
diffusion in general has attracted significant attention recently
and now techniques have been developed to identify the
fractional diffusion equation from datasets (Znaidi et al.,
2020). This is part of the vast literature due to space
limitations we can only mention in passing.

Inanimate and Living Particles
As emphasized a number of times the FD term in Eq. 33 is the
result of the back-reaction onto the Brownian particle by the
ambient fluid flowing around it, inducing the retarded viscous
force. The solution to this equation is asymptotically dominated
by viscous dissipation and the Brownian particle being ‘heavy’
accounts for the success of the usual description of Brownian
motion without the inclusion of the FD term. However, when the
ambient fluid is not homogeneous, or the Brownian particle is not
‘heavy’, the derivation of the forces acting on the Brownian
particle need to be re-examined.

Leptos et al. (2009) conducted experiments on the motion of
tracers (Brownian particles) suspended in a living fluid of
swimming Eukaryotic micro-organisms of varying
concentrations. The interplay between the inanimate Brownian
particles and the advection by flows from the swimming micro-
organisms results in their displacement having a self-similar PDF
with a Gaussian core and exponential tails. Eckhardt and
Zammert (2012) re-analyzed these data and obtained an
excellent fit to a MLF PDF based on the continuous time
random walk (CTRW) model.

A theoretical study of a simplified tracer-swimmer interaction
by Zaid et al. (2011) show that the non-Gaussian effect of the tails
of the PDF can also arise from a combination of truncated Lévy
statistics for the velocity field and the IPL decay of correlations in
the ambient fluid. They further show that the dynamics of the
PDF leading to the truncated Lévy statistics is given by a
fractional diffusion equation, which we discuss subsequently. It
is evident that rigorous modeling of Brownian motion in

heterogeneous fluids such as microbial suspensions in marine
ecologies would potentially benefit from applications of the FDC.

Fractional Brownian Motion and the Fractional
Calculus
It occurs to me that the above discussion of Brownian motion
contained no mention of the fact that one of Mandelbrot’s first
formal applications of the fractal concept was to a generalization
of this stochastic process. In the paper where Mandelbrot and van
Ness (Mandelbrot and van Ness, 1968) introduced the term
fractional Brownian motion (FBM) they made use of the
fractional calculus, but did not think the FC was sufficiently
significant to develop further given the context of its utilization
and their interpretation of it as a moving average. The fractional
operator they used in the definition of FBM had been defined by
Weyl (1917) in 1917:

BH(t1) − BH(t2) � 1
Γ α( ) ∫

t1

−∞

dB(τ)
t1 − τ( )1−α − ∫

t2

−∞

dB(τ)
t2 − τ( )1−α

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (34)

where dB(t) is aWiener process, α =H + 1/2 and as they point out
the properties of FBM corresponding to the Hurst parameter 0 <
H < 1/2, 1/2 < H < 1, and H = 1/2, respectively, differ in many
significant ways. This in itself has led to a vast literature some of
which are summarized in Crucial Events (West and Grigolini,
2021).

Fractional Differential Equation Models of
Cell Growth
In the prequel (West, 2021) we discussed the ubiquity of fractal
time series, factal dynamics and fractal geometric structure in
physiological phenomena. The analysis gave rise to scaling as a
way to directly interconnect the very large with the very small, as
well as the very fast with the very slow. The prequel closed with a
suggestion that the FC is a systematic way to incorporate spatial
inhomogeneity into describing how information is transported
across a complex dynamic network. That suggestion was
augmented by another involving memory effects in physiologic
networks being generic (Goldberger et al., 2002) and the FC was
also pointed out by Nasrolahpour (Nasrolahpour, 2017) as being
the natural way to incorporate memory effects into the modeling
of various complex phenomena including the growth of cancer
tumors.

He (Nasrolahpour, 2017) proposed a new model which is a
member of a class of simple models that have been extensively
used to describe the growth of stem and cancer cells. Following up
on his comment about the utility of this mathematical technique
in modeling cancer cells I found that over the past decade it had
become a cottage industry with hundreds of papers being
published each year on the modeling of cancer.

The mathematician Durrett (Durrett, 2013) in a personal
perspective on cancer modeling pondered that 80% of the
problem is figuring out what the appropriate question is in the
biological application and what mathematical tools to use in
answering it. This is unlike physics where the applications are
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typically formulated in such a way that a mathematician may
immediately see how s/he might be able to help solve the problem.
Or in some cases, like Dirac’s introduction of the delta function in
quantum mechanics based solely on his intuition of the physics
problem, he saw that the problem required the existence of such
an object for its solution. The delta function led to the
development of new area of mathematics providing
justification of that intuition and provides a useful tool to the
broader scientific community once they had caught up with
Dirac’s intuition.

With this in mind I have elected to concentrate the
following remarks on those aspects of biology and medicine
which I believe provide the reasons for FDE being the
appropriate mathematics for oncological modeling. We use
the master equation for the size distribution of cancer cell
colonies P(x, t), defined as the probability that a single cancer
cell gives rise to a colony consisting of x cells at time t. The PDF
evolves according to the master equation with nearest neighbor
interactions and constant coefficients from (Nasrolahpour,
2017) with a slight change in notation:

dP(x, t)
dt

� a − a + b( )x b( ) P(x − 1, t)
P(x, t)

P(x + 1, t)
⎛⎜⎝ ⎞⎟⎠, (35)

where b is the probability per unit time that a cell dies and a is
the probability per unit time a cell divides into 2 cells. The
equation for the growth of the average colony size is obtained
by multiplying Eq. 35 by x and summing such that after some
algebra we obtain the integer rate equation (IRE) for the
average size of the colony:

d〈x(t)〉
dt

� (a − b)〈x(t)〉, (36)

which has the exponential solution for the initial value P (x, t = 0)
= δx,1:

〈x(t)〉 � e a−b( )t. (37)
Nasrolahpour (2018) states without discussion that his new

model of cancer replaces the IRE for the average cancer cell
colony size with a FRE. Note that this could be viewed as an
adaptation to the cancer problem of the DMM social
interaction model introduced in Section 2. We propose
doing that here, but instead of an ansatz we apply the
network effect argument to the interaction of the cell of
interest, the one that gives rise to the cancer colony, and
transform the IRE into the FRE:

zαt 〈x(t)〉[ ] � λα〈x(t)〉. (38)
Here we have raised the rate λ = a − b to the power of the

noninteger derivative α in order to retain the same
dimensionality on both sides of the equality. Like most
differential equations, integer or fractional, we guess the
form of the solution and explicitly determine whether or
not it solves the equation of interest. The network effect

argument applied to a growing population of cells leads to
the FDE given by Eq. 14 and the solution Eq. 16 which also
solves Eq(38) for ε = 0.

Solving the Linear Fractional Rate Equation
It is time to introduce some of the new mathematics that show
how to solve this class of linear FREs. Can we use the Taylor series
expansion technique to solve a linear FRE or a more general FDE?
The answer is yes, as long as we are sufficiently cautious in doing
so. The first caution involves generalizing the Taylor series. We
start as with IDEs and introduce a Taylor series for the assumed
form of the solution. But with a little thought realize that the
Taylor series must be generalized to accommodated the
noninteger order of the derivative (West, 2017) in the
following way:

〈x(t, α)〉 �∑∞
n�0

Ant
nα, (39)

where we have tagged the proposed solution with the index α to
match the FRE that is solves. The noninteger derivative zαt [·] in
the FRE must satisfy the familiar derivative relation from the
ordinary calculus:

zαt tβ[ ] � Γ β + 1( )
Γ β + 1 − α( )tβ−α, (40)

when all exponents are integers and Γ(·) is a gamma function.
This same relation holds when the exponents are not integers
(Podlubny, 1999; West et al., 2003a) in which case substituting
the generalized Taylor series into the FRE given by Eq. 38 yields:

A0
t−α

Γ 1 − α( ) + A1
Γ α + 1( )
Γ 1( ) + A2

Γ(2α + 1)tα
Γ α + 1( ) + · · ·

� λα A0 + A1t
α + · · ·{ }. (41)

Equating coefficients of equal powers of time from both sides
of the equation yields:

A1 � λαA0

Γ α + 1( ); A2 � λαΓ α + 1( )A1

Γ 2α + 1( ) ; A3 � λαΓ 2α + 1( )A2

Γ 3α + 1( ) ; etc.,

all of which can be generated from the compact form:

An � λnα

Γ nα + 1( )A0, (42)

and the n = 0 term is a tautology. A A0 term is left over in the
process of equating coefficients since the IPL in time given by t−α

only appears on the LHS of Eq. 41 and must be otherwise
accounted for in the analysis. This is the second place where
we must be cautious.

Collecting the coefficients from Eq. 42 into the generalized
Taylor series after some algebra yields the curious result:

zαt 〈x(t, α)〉[ ] − t−α

Γ 1 − α( ) 〈x(0, α)〉 � λα〈x(t, α)〉, (43)

and since the n = 0 term in the generalized Taylor series is not
excluded Eq. 43 is a new FRE. The new FRE explicitly displays the
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term that was not canceled when the generalized Taylor series was
introduced to solve the original FRE and here the unknown
coefficient is identified with initial value of the average cancer
colony: A0 � 〈x(0, α)〉. With the coefficients inserted into Eq. 39
the generalized Taylor series yields the exact solution to the
revised FRE:

〈x(t, α)〉 � 〈x(0, α)〉∑∞
n�0

λt( )nα
Γ nα + 1( ). (44)

Remarkably the fractional derivative on the LHS of Eq. 43 has
a name, the Riemann-Liouville (RL) fractional derivative (FD),
and has a long lineage. To make contact with that long history
and for notational clarity we rewrite Eq. 43:

Dα
t 〈x(t)〉[ ] − t−α

Γ 1 − α( ) 〈x(0)〉 � λα〈x(t)〉, (45)

where we have suppressed the α − dependence of the solution and
added a new symbolDα

t [·] to denote theRL-fractional derivative.
The exact solution to theRL FRE is expressed in terms of a series
first obtained by the mathematician Mittag–Leffler in the early
20th century and which now bears his name:

〈x(t)〉 � 〈x(0)〉Eα λt[ ]α( ). (46)
The MLF in simplest form is given by the series:

Eα z( ) �∑∞
j�0

zj

Γ jα + 1( ), (47)

and is here called out explicitly because it appears over and over in
both the discussion of applications and in the formal theory of the
FDC. Note that the MLF series sums to an exponential for α = 1,
which accounts for the identical form of the solutions in the linear
cooling example. It should also be stressed that like the
exponential in the ordinary calculus the MLF appears as the
backbone to the solutions of more complicated FDEs, as seen
elsewhere (Podlubny, 1999; West, 2016; West, 2017).

Altrock et al. (2015) point out that a branching process is a
powerful mathematical tool for the study of cancer population
growth. In addition they emphasize that this growth model is
based on the assumption that cellular events, such as mutation,
replication and death, are independent of one another and is
assumed for mathematical simplicity. This independence
assumption would be partially removed by taking into
account the network effect. The resulting generalization of
Eq. 46 would be the case where, at any time, each cell is
fully described by cell-intrinsic probability rates of
proliferation, mutation, and death, as well as the parameter
of the FRE noninteger order. The latter parameter α provides a
measure of the level of internal dependency of the intrinsic
dynamic processes.

Tumor Nonlinear Dynamics
In the previous subsection we took advantage of the linear master
equation to show how probabilistic arguments can be generalized
using the FC for a linear dynamic system. In the present section
we take a different tack and instead briefly review a number of

growth models that have been borrowed from the social sciences
and adapted for the modeling of tumor growth. Each of these
borrowed and adapted models is nonlinear and that provides a
new degree of difficulty in solving the resulting equations. Recall
that the FRE obtained from the network effect took such
nonlinearities into account without explicitly linearizing the
full dynamics of a network.

The most famous of the nonlinear growth equations was
introduced into social science by Verhulst in 1838 in order to
provide a rationale for a way to limit the world’s population and
thereby alay the fears resulting from the dismal forecasts of Maltus,
who predicted unflagging exponential population growth that
would all too soon quench the world’s linearly growing food
supply, resulting in world-wide famine. The nonlinear equation
of Verhulst has become known as the logistic growth model and as
pointed out by Varalta et al. (2014) has been used to successfully
describe the growth of populations in both the laboratory and in
natural habitats, limiting the growth by influencing factors of
competition, mortality and fertility. As more complex effects
enter into the modeling, such as interactions within food webs,
a number of investigators have generalized the logistic equation
using the FC to help slow the convergence to the population’s
carrying capacity.

Much of the previous work in this regard has been on the
numerical simulation of fractional nonlinear growth models
(FNGMs) and a number of these numerical methods were
used to test analytic results, see e.g., the 51 papers devoted to
the Future Directions in FC Research and Applications
(Meerschaert et al., 2017) as an exemplar of the rigorous
mathematics being done in this area.

Fractional Logistic Equation
Varalta et al. (2014) are investigators whose work bridges the gap
between the complexity of medicine and the mathematics on
which medical models can be based. The Malthusian model of
exponential growth flies in the face of observation, whether it is
the growth of a population of humans or of cells. What all
growth processes have in common is that the population must
be continually supplied with nutrients, the individual members
must be born and they eventually die. This is the process that
Malthus modeled and is incorporated into the master equation
Eq. 35 with a modest generalization in the form of the
distribution of possible futures, but with the pessimism of
Malthus being the final average outcome. Verhulst
introduced the idea that a society has a finite carrying
capacity, such that the rate of growth is dependent on the
population and this rate goes to zero as the carrying capacity
of the population is approached:

dX(t)
dt

� λ[1 −X(t)]X(t), (48)

where if N(t) is the instantaneous population and NT is the
carrying capacity (the maximum population the society can
maintain) we have X(t) ≡ N(t)/NT. The Verhulst or logistic
equation is popular because it: 1) provides a reasonable
explanation for why the exponential growth is suppressed; 2)
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the growth is eventually sub-exponential and saturates at a finite
value; 3) the logistic equation has an analytic solution.

The analytic solution to the logistic equation is obtained by
making the substitution of variables Y(t) = 1/X(t) to obtain the
linear growth equation:

dY(t)
dt

� λ[1 − Y(t)], (49)

which is solved in terms of eλt and the initial population X (0).
Inverting the substitution variable in the solution to this linear
equation yields the sigmoidal solution to the logistic equation:

X(t) � X 0( )
e−λt + 1 − e−λt( )X 0( ) ''''→t→∞

1, (50)

which asymptotically approaches the carrying capacity, which
is 1 in these units.

There are a number of ways to introduce the fractional
calculus into the logistic model of growth. One way is
through the introduction of the Carleman embedding
technique, which follows from the theorem that any finite
order nonlinear equation of motion can be replaced by an
infinite order set of linear equations (West, 2015). Another is
a spectral technique to solve a nonlinear FDE (Turalska and
West, 2017). Both these approaches start from the fractional
logistic equation:

zαt X(t)[ ] � λα[1 −X(t)]X(t), (51)
where one might have used the subordination method introduced
in Section 2.1 to replace the integer order time derivative with the
Caputo time derivative. We now know that the fractional
derivative in time incorporates memory into the population
dynamics. Both the Carleman embedding and spectral

techniques yields the same solution to the fractional logistic
equation (Turalska and West, 2017):

X(t) �∑∞
n�0

X(0) − 1
X(0)( )n

Eα −nλαtα( ), (52)

which is an expansion over a set of eigen functions given by the
MLFs, and the coefficients are in terms of powers of the initial
value. Note that asymptotically all the MLFs go to zero except the
n = 0 term which yields the carrying capacity of the network. The
choice α = 1 reduces the MLF to the exponential enλt and the sum
over eigen functions in Eq. 52 reduces the solution to the ordinary
logistic equation given by Eq. 50.

The analytic series solution to the fractional logistic equation
given by Eq. 52 is compared with the numerical integration of the
FDE in Figure 7 each for the same time step and initial condition.
It is evident by inspection that the closer the fractional order is to
unity the closer the correspondence between the analytic and
numerical results. There are some technical issues with this
solution which are addressed in (Turalska and West, 2017),
but their discussion would take us too far into the
mathematical weeds to be of value here.

A very different way of introducing the influence of the FC on
the logistic growth is made by (Varalta et al., 2014). They cleverly
introduce the fractional derivative into the linear growth of the
transformed variable Y(t), which was introduced in Eq. 49 rather
than in the nonlinear equation given by Eq. 51. This choice for
the insertion of the fractional derivative essentially introduces the
network effect into the time rate of change of the population-
dependent growth rate:

zαt Y(t)[ ] � λα[1 − Y(t)], (53)
rather than into the population dynamics directly. Taking the
Laplace transform of the linear equation, after some algebra the
Laplace equation can be inverted to yield the solution to the initial
value problem:

X(t) � X(0)
Eα −λαtα( ) +X(0) 1 − Eα −λαtα( )[ ]. (54)

However, these solutions are equal when α = 1 and MLF
becomes an exponential, just as did Eq. 52 even though these two
solutions appear to be very different from one anothe for α < 1.

These authors (Varalta et al., 2014) point out that the use of
such sophisticated mathematical techniques in the modeling of
medical pathologies is of recent vintage, particularly in the study
of cancer tumors. They consider this to be one of the reasons that
the methods are still finding difficulty in modeling the growth of
tumors satisfactorily:

In the case of tumor dynamics saturation of various
types of tumors is not well modeled by the exponential
model. For this reason, this model applies only to
avascular tumors, i.e., when angiogenesis has not
occurred. . .Indeed, tumor cells compete for oxygen
and vital resources that is the reason why the logistic
model fits well in several cases. . .

FIGURE 7 | Analytic solutions to the fractional logictic equation (solid) for
a number of fractional derivatives are compared to the numerical solutions
(dashed) for the values of the fractiona-order α indicated with X (0) = 0.75, λα =
0.1, and time step 0.001. From (West, 2015) with permission.
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We can here answer the question as to whether the fractional
forms of the logistic equation and that of the linear form in the
transformed variable have the same solution. Taking the solution
given by Eq(54) and expanding it is an infinite series yields:

X(t) �∑∞
n�0

X(0) − 1
X(0)( )n

Eα −λαtα( )[ ]n, (55)

and the inequality:

Eα −nλαtα( ) ≠ Eα −λαtα( )[ ]n, (56)
establishes proof that the solutions given by Eqs. 52 and 54 are not
the same. The relation between theMLFs becomes an equality in the
singular case α = 1 and the MLF becomes an exponential. However,
this does not tell us which of the two models better describes the
growth of tumors. In fact since there is no universal law to describe
tumor growth these two contenders remain in competition with a
host of others, all of which await the detailed fit to extended datasets.

Mathematical Oncology and Fits to Data
Oncology is the branch of medicine that deals with the treatment,
diagnosis, and prevention of cancer and the models of tumor

growth are within the ever broadening domain ofMO. As pointed
out by Valentim et al. (2020) all solid cancers originate with the
growth of a primary tumor, and the majority of the growth
patterns follow a sigmoidal shape determined by the population’s
growth rate and carrying capacity. They go on to argue that the
IDE models for tumor growth possesses certain deductive-
reductionistic characteristics that are maintained when such
models are generalized to fractional form, for example, the
inclusion of memory and heterogeneity effects in fractional
MO (FMO).

Valentim et al. (2020) study the deviation in tumor growth
from a simple exponential for the analytic solutions for four
distinct nonlinear growth models in the IDE as well as the
solutions to their fractional generalizations. The FDE and IDE
(α � 1) models considered have the generic form:

zαt u(t)[ ] � af(u) − bg(u), (57)
here V(t) is the size of the tumor volume at time t, the two
functions f and g determine the functional form of the growth:
fractional exponential u = V, f = V, g = 0; fractional logistic u = 1/

FIGURE 8 | Fitted tumor growth: clinical data (circles), numerical fits to
data (first seven data points). Themodels used are indicated for IDE (top, α = 1)
and FDE with indicated values of α (bottom). Adapted from (Valentim et al.,
2020) with permission.

FIGURE 9 | Predicted tumor growth: clinical data (circles). The models
used are indicated for IDE (top, α = 1) and FDE with indicated values of α
(bottom) and the last seven data points are predicted using the model
parameters obtained in Figure 8. Adapted from (Valentim et al., 2020)
with permission.
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V, f = au, g = 1; fractional Gompertz u = lnV, f = 0, g = u; fractional
Bertalanffy u = Vp, f = p, g = pu where p is a rational fraction. The
solutions to the exponential and logistic forms have been
presented in previous sections and the remaining models are
solved using the methods discussed and may be expressed in
terms of MLFs (Valentim et al., 2020).

The algebraic form of the various solutions are not as
important as their flexibility in fitting tumor growth datasets.
Such fits are indicated in Figure 8 where the first seven tumor
volume data points are indicated along with fits to the IDEmodels
(top) and their FDE generalizations (bottom).

Using the parameters fit of the first seven data points to the
model parameters the prediction of the next seven data points are
indicated in Figure 9 with the IDE models (top) and their FDE
generalizations (bottom). Valentim et al. (2020) discuss the
relative merits of the modeling of tumor growth using integer
versus fractional time derivatives:

If one also considers fractional models instead of only
their classical versions, the indicator for how close the
best model replicates experimental data would rise
from 67.5 to 88.8% - a very significant improvement.
This reveals a major convenience of using fractional
models as they keep a higher degree of information
regarding the fitted time series, decreasing the chance
of misfitting while still maintaining a relatively simple
and reductionist form. Such advantage is mainly
attributed to the memory effect, a characteristic
inherently linked to the definition of fractional
operators allowing models to consider not only
elements at the evaluation instant but also those
occurring before. This feature naturally favors
fractional models to describe biological phenomena.

This improvement in the mean-square error supports the
interpretation that the FDE models include more information
of the cancer time series being fitted than do the IDE models.

In spite of the positive observations made regarding the
fractional models it is evident from the comparison with real
data that neither the IDE nor FDE models provide an accurate
prediction of the asymptotic size of the tumor. On the other hand,
even slightly better predictions may improve clinical assessments
so the choice of FDE model should be made very carefully
(Valentim et al., 2020).

Our intent here is not to argue for the superiority of one
numerical fitting technique over another. Rather it is to
provide insight provided by a new mechanism available to a
FDE model that is not reachable using IDE models. The fitting
of the fractional derivative order to the first seven data points
provides a mechanism not available to IC fitting procedures.
This fitting of the order of the fractional derivative to the early
data means that any early change in the internal
dynamics can be captured and influences the later system
behavior.

The closest analog to this situation in the IC modeling of
complex systems is the telegrapher’s equation (TE). The diffusion
process is generalized in two important respects for telegraphic

processes: 1) the TE allows for a finite velocity of information
propagation which is infinite in the diffusion equation and 2) the
TE at short times describes nearly deterministic wave
propagation, whereas at long times the TE supports diffusive
behavior.

In the one-dimensional case the MSD for the solution to the
time-fractional TE at early times describes wave motion with
damping and at late times diffusion with a finite velocity
(Masoliver, 2021):

〈X(t)2〉 ~ t2α, t → 0
~ tα, t → ∞ .
{

For the IC TE we have α = 1 and obtain the familiar IC results.
When generalized to the fractional order TE with α < 1 the
solution is a bi-fractal with the fractal dimension halving from
one asymptotic time regime (t→ 0) to the other (t→∞). We refer
the interested reader to the excellent review by Masoliver
(Masoliver, 2021) for details and we shall have more to say on
the notion of multifractal behavior and its relation to FC
subsequently.

Variable Fractional Order
The fitting of the fractional growth models to the tumor dataset
has so far not exploited the full flexibility of the FC. We have
replaced the IDE growth models, both linear and nonlinear, with
their FDE generalizations. In making these replacements we have
used two distinct arguments. One based on the network effect and
the other on the time subordination method.We now examine an
additional generalization of both these techniques and consider
what might make the fractional order of the time derivative itself a
function of time, that is, what property of tumor growth would
entail:

zαt ·[ ] → zα t( )
t ·[ ], (58)

where α(t) is a time-dependent fractional order derivative and is
called a time profile in (Valentim et al., 2021). Such a time-
dependency could incorporate into the growth process the
changes in physical characteristics and biomechanical
modifications that tumors undergo while advancing toward
their malignant final state.

When a mechanical force is applied to a solid body that
body changes shape in response to the applied force; these
deforming forces are collectively called stresses (σ) and the
deformation the body undergoes under stress is called strain
(ε). An object that undergoes deformation can do one of two
things after the stress is released. An elastic material object
returns to its original shape immediately, whereas a plastic
material object will retain its deformation for some length of
time including permanently. The branch of physics dealing
with study of the dynamics of plastic materials goes by a
number of different names including rheology,
viscoelasticity and hereditary solid mechanics, all of which
address the solution of dynamic stress-strain relations. It is in
this context that the time-dependent fractional derivative
expressed in Eq. 60 has been most fully motivated for
application in MO (Di Paola et al., 2020; Valentim et al., 2021).
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Di Paola et al. (2020) note that the response of a linear
viscoelastic material to a generic imposed strain or stress
history is obtained by applying Boltzmann’s linear
superposition principle:

σ t( ) � ∫
0

t

Φ t − τ( )dε τ( ), (59)

ε t( ) � ∫
0

t

J t − τ( )dσ τ( ), (60)

where Φ(t) is the relaxation function from a constant strain
ε(t) � ε0Θ(t), and J(t) is the creep function for a constant stress
σ(t) � σ0Θ(t) andΘ(t) = 1 for t ≥ 0, and = 0, for t < 0. Under the
linearity assumption these expressions are readily extended to
complex FDE form with a constant power law index, see e.g.,
West et al. (2003a). In the linear regime the creep law is:

J(t) � tα

EαΓ 1 + α( ), (61)

and the relaxation function is:

Φ(t) � Eαt−α

Γ 1 − α( ), (62)

and 0 < α < 1 and the standard generalizations to the FC for the
stress-strain relations can be made. Note that this is the physical
basis for the failure of linear IDEs to describe what appeared to be
simple phenomena until the environment was more completely
analyzed and found to introduce either memory or spatial
heterogeneity into the dynamics.

However even the more familiar arguments breakdown when
the dynamics become nonlinear, because in that situation the
Boltzmann superposition principle no longer applies. However, if
α and Eα are constant and the nonlinearity involves only the level
of stress, the Boltzmann superposition principle holds in a space
different from the traditional (ε, σ)-space and the response
properties may be represented by the FC operations of
constant order. As stated by Di Paola et al. (2020):

However, for the purpose of handling systems where Eα

and α may change during the time interval of interest
new and pertinent fractional calculus tools should be
considered rather than variable-order fractional-
operators, as obtained from classical fractional
operators upon replacing the constant order with a
variable one; indeed, these operators implicitly rely
on the assumption that the Boltzmann linear
superposition holds true in the classical form, which
may not be a rigorous assumption in the presence of the
nonlinearity associated with changing values of α.

The approach developed by Di Paolo et al. is not presented
here due to space constraints, but does warrant a number of
additional comments. As they point out their proposed approach
is an effective way to build the stress (strain) response of a

nonlinear viscoelastic material body having time-dependent
fractional order operators to a general imposed strain (stress)
history. Throughout the observation time interval it is assumed
that the evolution of the parameters α and Eα are known at each
instant of interest.

Here we demonstrate the utility of a time-varying order α(t)
using the previously fitted tumor growth dataset. This is done
even though such a mathematical description of specific time-
dependent tumor features are not known a priori. Valentim et al.
(2021) use an exploratory approach and capture the 14 data point
history of the tumor in the value of the order of the time
derivative with a Taylor series:

α t( ) �∑N
n�0

αnt
n, (63)

where the n = 0 coefficient corresponds to the fixed-order FC
model. The FRE for tumor growth is given by Eq. 38 with time-
varying order and has the MLF solution for the growth of the
tumor volume V(t):

V(t) � V0Eα(t) λtα t( )( ), (64)
where the MLF has the form defined by Eq. 47. The fitting of the
MLF solution with time-varying order to the 14 data points is
given in Figure 10 for four consecutive orders of the polynomial
in the Taylor series. The variable-order models fit the dataset
better than either the solution to the IRE or to the FRE with errors
to the fit that decrease with the order of the polynomial N in
Eq. 63.

Note the two very different strategies for fitting the same
dataset in Figures 9, 10. The former uses a nonlinear FRE with a
fixed order whose numerical value varies with the model
nonlinearity to fit the early time well but does not do well in
predicting the tumor volume at late times. The latter multistep
experimental model tunes the profile of the time varying order to
a third-order polynomial that appears to capture the nuances of
the pattern of growth of the tumor volume extremely well.
Valentim et al. (2021) emphasize that these latter results
indicate the superiority of the proposed strategy for describing
experimental data and provides a new perspective for modeling
tumor growth. They also explain the difference between a time
varying rate of growth λ(t) and the variable-order α(t). While it is
true that the time variable order does in fact ultimately dictate the
time changes in the growth rate the biomedical interpretation of
α(t) goes a great deal deeper. A possible source of the time-
variability is the fractional stress-strain relations just discussed to
take into account the tumor evolution, but in addition how that
influence may change during the separate growth stages.

Valentim et al. (2021) make a strong case for interpreting α(t)
as a memory index, which may potentially translate the time
variation to the activation and/or development of identifiable
hallmarks of tumor evolution:

When α ≈ 1 tumors follow an exponential increase
“programmed” in their original cells (activating
hallmarks related to the evasion of growth
suppressors and sustainability of proliferative
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signaling). On the other hand, when α is lower tumors
evolve at a slower growth rate, potentially due to
challenges from the microenvironment (e.g., shortage
of nutrients, extracellular matrix resistance). In this
case, they “forget” (or inactivate) part of their
original programming, developing traits suitable to
their current evolution stage (hallmarks related to
angiogenesis and invasion).

Distributed Fractional Order Derivative and
Multifractality
Another of the avenues we have not explored is signal
processing and here again Mandelbrot was the first to
recognize that signals that are singular at almost every
point are encountered everywhere including in physiological
datasets. One historical strategy for interpreting a signal in
communication theory is to construct the reciprocal integral
relations of Fourier and although the method is
mathematically unassailable the interpretation of the
various derived quantities have been called into question.
The basis for these questions is the mutually exclusive
treatment of time and frequency in the specification of the
signal, that is, the time series is assumed to have infinite length
and each frequency is defined for an infinite monochromatic
wave train. In the real world, particularly in medicine, all time
series are of finite duration and frequencies change over time.
The recognition of this limitation of the (time, frequency)

-representation of Fourier signals led to the development of the
wavelet transform method for representing one-dimensional
signals as a function of time and frequency (Mallat, 1999).

Here let us define the wavelet transform Tg (a, b) of a time
seriesX(t) with respect to a wavelet g, which is broadly interpreted
as being equivalent to a mathematical microscope whose
magnification is 1/a, whose position in the time series is b,
and whose optics are given by the choice of the specific
wavelet function g (West, 1990). I bring this up here because
one can relate this formalism to the FC by applying a wavelet
transform to a fractal function, say a function describing the
growth of a tumor, as we sketch below.

A fractal function is self-affine and can be generalized by
examining the local scaling properties of the function at small
scales. Consider an arbitrary point t0 in the time series X(t):

X(t0, t) � X(t + t0) −X(t), (65)
and the function remains the same up to a scale factor at different
length scales. In this case self-affinity at the point t0 < tmeans that
by scaling the local variable t with a parameter λ > 0 yields:

X(t0, λt) � λα t0( )X(t0, t). (66)
The parameter α is the local scaling exponent at t0 and can be

shown to be the fractal dimension of the process being measured
X(t). The fact that α is a function of t0 means that the time series
X(t) is multifractal; when the scaling index is independent of t0
then X(t) is a homogeneous fractal. Equation 66 was established

FIGURE 10 | Tumor growth: comparison between clinical data (open circles) and the best-fit variable-order models (solid line segment) given by the MLF solution
Eq. 64 with λ = 0.090 8. The time-varying order is given by the Taylor series with N terms Eq. 63. Adapted from (Valentim et al., 2021) with permission.
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using the wavelet transform to construct the scaling relation
(West, 1990):

Tg λa, λb + t0( )X(t) � λα t0( )+1/2Tg a, b + t0( )X(t), (67)
thereby establishing the underlying process to be multifractal.

Halsey et al. (1986) posit that if a dynamic system is
partitioned into pieces of size l then the number of times the
exponent takes on the value α is:

N(l) ~ l−f(α), (68)
where f(α) is the continuous spectrum of singularities of strength
α. They go on to show that the generalized fractal dimension Dq

can be computed directly from the singularity spectrum:

q � df(α)
dα

→ Dq � 1
q − 1

qα − f α( )[ ], (69)
and consequently the scaling properties of the multifractal is
determined by:

α � d

dα
q − 1( )Dq[ ]. (71)

Measurements of the Dq’s and the spectrum of singularities
provide global and statistical information of the scaling properties
of fractal measures. This information is similar to the power
spectral density obtained from the Fourier transform of a time
series that quantifies the relative contributions of the underlying
frequencies. The function f(α) quantifies the relative
contribution of the underlying singularities. Just as the Fourier
transform does not keep track in time of the frequencies
contributing to a power spectral density, neither does f(α)
denote the locations of the singularities. Thus, a multifractal
spectrum can only give an indication of the span of dimensions
being accessed by the dynamic process and not the order in time
at which they occur.

A vast literature has become available on multifractals and
their processing techniques over the last quarter century, and
there is every indication that the complex dynamics evident in
tumor growth from early insights (Baish and Jain, 1998;
Nonnenmacher et al., 1993; Losa et al., 1998; ibid, 2002; ibid,
2005; Meakin, 1998) to the development of analytic methods
based on multifractal analysis to characterize the emergent
properties of complex biological patterns (Balaban et al., 2018)
will be facilitated by multifractal data processing techniques
(Ivanov et al., 1999; Ivanov et al., 2009).

OM AND DIFFUSION

No discussion of OM would be complete without at least a brief
review of the phenomenon of diffusion in a reaction-diffusion
type of modeling of cancer growth, even without an extension
beyond IDEs to include the fractional derivatives in space as well
as in time. An excellent review of diffusion starting from the
simple Brownian motion of tracer particles but focusing on the
deviations from the laws of Brownian motion is given by Metzler
et al. (2014), who provide an overview of different popular

anomalous diffusion models paying special attention to their
loss of ergodic properties. They highlight several of these models
concentrating on the long-time averaged mean squared
displacement, showing that the data obtained from time
averages are different from ensemble averages. Thus, the
workhorse of statistical physics, the ergodic hypothesis,
breaks down.

The oncological application of anomalous diffusion is made
by Debbouche et al. (2021), who remark that the first
mathematical tumor growth models were integer partial
differential equation (IPDE) models taking into account
tumor, normal and dead cells, nutrition, various inhibitory
substances and immune system response. Cells of a healthy
organism are mortal with apoptosis being the end of the life
cycle, whereas the lack of apoptosis is a main feature of
tumor cells.

Here we take a different route and offer various mechanisms
that modulate the diffusion process as well as compliment the
growth laws already discussed. In this section we are concerned
with characterizing the growth of a single species, both in
isolation in the presence of other species. The growth of a
species in isolation is modeled by means of a growth function
which is intended to represent the influence of the fluctuations in
the environment on the population. The influences being
modeled will, of course, vary from species to species and will
often be left quite general in the discussion so as not to
unnecessarily limit the applicability of the growth function
being used. The total rate of growth of a species is only partly
given by such a function. As the population grows in a region of
space, it may also migrate into the surrounding territory; also,
members in other regions of space may migrate into the given
region. This migration may be motivated by the avoidance of
competition for common food sources with other species, the
depletion of local food stuffs and/or becoming the food source of
another species.

Our discussion centers on the three components of the
multi-species network: 1) the growth in time of a single species
in isolation, 2) the diffusion of that species in space, and 3) the
modification of the growth and redistribution (diffusion) of a
given species due to its interaction with other species.

Diffusion, Growth and Interactions
The non-homogeneous diffusion equation for the density of cells
is given by:

zρ(x, t)
zt

� D
z2ρ(x, t)

zx2
+ f(x, t), (71)

where ρ(x, t) is the concentration of cells at spatial location x and
time t and D denotes the diffusion coefficient throughout this
chapter. When we consider a specific type of cell the
concentration will carry an index to indicate the cell type, and
the initial state will be denoted by ρ(x, t � 0) � ρ0(x). The non-
homogeneous term is a growth function for the concentration
that we write as:

f(x, t) � ρ x, t( )G(ρ), (72)
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G ρ( ) ≡ κ
1 − ρ x, t( )μ

μ
, (73)

and logistic growth is identified with μ = 1 and the Gompertz
growth with the limit μ → 0, although the latter equation was
developed to model the mortality of the elderly rather than
population growth.

The Verhulst and Gompertz models, as well as those with
more general forms of G(ρ) were constructed to predict the
growth of a single species at a rate κ in a stable environment with
limited resources. A growing population can circumvent the
saturation inherent in such growth laws (D = 0) by
redistributing (diffusing D ≠ 0) into nearby unoccupied
territory as the resources become depleted at their existing
locations. The diffusion does not stop the saturation but it
does retard it. These complementary mechanisms are
subsequently discussed in the oncology context.

We can express the self-limiting growth equation by
neglecting diffusion and setting D = 0 in Eq. 71:

dN(t)
dt

� NG
N

NT
( ), (74)

and NT is the carrying capacity of the growth model, i.e., ρ = N/
NT. The first restriction we relax here in the discussion of Eq. 74 is
that of the stability of the environment. For example, in the case
of human populations, such things as a vacillating economy or
war could have extremely large effects on the population; whereas
for lower-level biological species, violent weather changes or
short-term food shortages could be major influences in the
population’s growth. Finally, a tumor’s environment may
disrupt the growth by invading with blood vessels as well as
other things. Since it is their unpredictability which all these
impacts have in common, the most elementary way to model
their effects and still maintain a degree of generality is to assume
them to be random. We model these external influences by
adding a random forcing term F(t) to the IRE, which we scale
to the instantaneous growth rate by choosing the function to be
proportional to N(t):

dN(t)
dt

� NG
N

NT
( ) +N(t)F(t). (75)

If we introduce a new variable by the transformation:

U(t) � ln N/NT[ ] ; N � NTe
U,

then by substituting the new variable into Eq. 75 we obtain:

dU(t)
dt

� G eU(t)( ) + F(t), (76)

which has the structure of a nonlinear Langevin equation
with a deterministic forcing term G(eU(t)) and a random
force F(t). Equation 76 may be solved quite generally by
means of a finite difference scheme for the deterministic
function and a random walk (RW) process for the random
force. If the RW is sufficiently simple, then analytic forms for
the probability that the population grows to a level U(t) in a
time t may be obtained from the nonlinear Langevin

equation. To determine the PDF centered on the
deterministic growth we must make some assumptions
about the RW process generating F(t), that is, about the
statistical character of the fluctuating environment. If we
assume the random force is generated by a memoryless
Wiener process we have:

〈F(t)F(t′)〉 � 2Dδ(t − t′). (77)
This assumption enables us to construct the Fokker-Planck

equation (FPE) for the PDF:

zP(u, t|u0)
zt

� − z

zu
G eu( )P(u, t|u0)[ ] +D

z2P(u, t|u0)
zu2

(78)

where P (u, t|u0)du is the probability that the dynamic variable
U(t) is in the phase space interval (u + du, u) at time t given the
initial value U (0) = u0.

The FPE may be put in a more recognizable form to physicists
by ignoring the dependence on the initial condition and
introducing the nonlinear transformation:

P(u, t) � ψ u, t( )exp 1
2D
∫
0

u

G(eu′)du′⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, (79)

into the FPE to yield:

zψ

zτ
� z2ψ

zU2 −
zG

zU + G2( )ψ, (80)

where we have scaled the time τ = Dt/4 and the population
u � 2DU . Note that this last equation has the form of the
Schrödinger equation in Quantum Mechanics and therefore
makes available a vast literature on the solution to Eq. 80 for
prescribed forms of G (eu). The Verhulst growth law [G(x) � 1 −
x] is the analogue of theMorse potential in molecular physics and
that of Gompertz corresponds to the harmonic oscillator. The
solution to Eq.80 for these cases, among others, was explored and
the equilibrium PDF for the Gompertz case was determined to be
Gaussian and that for the Verhulst case to be Poisson (Goel et al.,
1971).

Multiple Species
The single species equation of growth was intended to model
all the stable environmental effects determining the growth law
of a particular cell. We now wish to generalize this expression
to include the interaction between multiple kinds of cells. We
postulate that a single kind of cell grows in proportion to its
instantaneous population with a nonlinear growth rate, which
is coupled to all the other cell species in the tissue:

dNj

dt
� NjGj N1, N2, N3( ), (81)

here cell type #1 is healthy, #2 is cancerous and #3 is dead. The
function Gj(N1, N2, N3) is a normalized growth law for the jth
cell type and an interaction function, i.e., the interaction with
other cell types has been removed from the fluctuating force of the
model just discussed and made explicit. We assume that the
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functions Gj{ } do not depend explicitly on the time, and that
there exists a set of equilibrium populations nj{ } such that Gj (n1,
n2, n3) = 0 and none of the equilibrium populations vanish.
Consequently in the vicinity of an equilibrium point the growth
functions can be expressed as the Taylor series expansions:

Gj � �Gj +∑3
k�1

(Nk − nk) z
�Gj

zNk
+ ∑3

l,k�1
(Nk − nk)(Nl − nl) z2 �Gj

zNkzNl

+ · · ·,
(82)

where �Fj( �Gj � 0) is the value of the function calculated at the
equilibrium level. Substituting the Taylor series into the rate
equation and defining the coefficients:

ajk ≡
z �Gj

zNk
; bjkl ≡

z2 �Gj

zNkzNl
, (83)

gives rise to:

dNj

dt
�∑3

k�1
ajkNj(Nk − nk) + ∑3

l,k�1
bjklNj(Nk − nk)(Nl − nl) + · ··

(84)
Note that if one neglects the second order and higher terms in

the deviation from equilibrium and introduces the constants:

κj � −∑3
k�1

ajknk ; a
j
k � ajk/βj,

then Eq. 85 can be written:

dNj

dt
� κjNj + 1

βj
∑
k�1

3

ajkNjNk (85)

which is the form of the multi-species interaction modeled by
Lotka and Volterra as well as other investigators. In the LVmodel
the quadratic terms are interpreted as binary collisions between
species j and kwith ajk being positive if j eats (kills) k and negative
for the reverse. The 1/βj represents exchange rates of the various
species so that (βj/βk)−1 is the ratio of k’s lost (or gained) to j’s
gained (or lost). Volterra postulated that the coefficient ajk is
antisymmetric (ajk = − akj) as required for the eating (killing)
order mentioned above, and showed the existence of a constant of
the motion for the dynamic system. The Volterra model has,
therefore, been shown to be a first approximation to any situation
in which the growth rate of a variable is proportional to its
instantaneous value when the population is small and in which a
steady-state value exists when there are interactions with other
species.

Montroll (1972) used the general growth function to extend
the LV model to the new form:

dNj

dt
� αjNj + 1

βj
∑
k�1

3

ajkNj
Nμ

k − 1( )
μ

, (86)

which becomes the Volterra system when μ = 1 and the linear
growth rate is:

αj � κj + 1
βj
∑
k�1

3

ajk.

On the other hand, as μ → 0, after some algebra Eq. 86
becomes the linear interaction equation in terms of the
transformed variable Uj = ln (Nj/nj):

dUj

dt
� 1
βj
∑
k�1

3

ajkUk, (87)

which may be solved by usual methods for linear IREs.

Fisher-Like Equation
We begin the discussion on the effects of diffusion on the growth
of a species with a brief review of the classic problem in genetics
developed by Fisher (1937). He was interested in the propagation
of a virile mutant in a population living in a linear habitat, an
example of which would be a species living along a seacoast. He
developed his dynamic equations with a RW argument involving
finite difference equations defined on a lattice. We skip to the
continuous limit of his RW argument and write:

z

zt
p(x, t) � D

z2

zx2
p(x, t) + κp(x, t) 1 − p(x, t)[ ], (88)

which has both the features of self-limited (saturated) growth and
diffusion. Here, p (x, t)dx is the relative frequency of the mutant
strain in the population at the position x and time t, and κ is the
advantage of the mutant strain under conditions of random
mating.

Skellam (1951) considered a linear RW in space consisting of
computation cells containing a growing population and
obtained an equation of the same form as Fisher’s, as well
as others. A slightly more general form for this diffusion
equation was obtained for the population ρ(x, t) = NTp (x,
t) with a finite saturation levelNT, but that equation has proven
to be no more amenable to general closed form solution than
Fisher’s original equation. However, if we can obtain analytic
solutions in the region near saturation and another exact
solution in a region far from saturation NT ≫ ρ they can be
used to bracket the exact solution to Fisher’s equation, if it
exists. Moreover if the solution to Fisher’s equation is
continuous, then it must join the two asymptotic solutions
at the extremes of population growth.

The direct solution of Eq. 88 is extremely difficult to obtain
due to the nonlinear structure of the equation. Fisher (Fisher,
1937) and Skellam (Skellam, 1952) obtained numerical solutions
assuming the form of a diffusion wave p (x, t) = p (x − vt). A more
general analytic solution may be obtained in a restricted region,
say near saturation. Let us consider the expansion:

ρ x, t( )
NT

� eln ρ x,t( )/NT[ ] ≈ 1 + ln ρ x, t( )/NT[ ] + · · ·, (89)

the first two terms of which give a good representation of the ratio
ρ(x, t)/NT in the region near saturation. Substituting this
expansion into Eq. 88 and introducing the new variable u(x, t) �
ln[ρ(x, t)/NT] into the resulting equation yields:
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z

zt
u(x, t) � D

z2

zx2
u(x, t) − κu(x, t), (90)

It is clear that this equation provides a solution to the Fisher
equation near saturation. To obtain a closed form solution, we
strain Fisher’s example of a linear habitat and require that the
population lie along the perimeter L of an island such that u
(x + L, t) = u (x, t). With this assumption of periodicity it is
straightforward to show that the solution to Eq. 90 for an
initial distribution u0(x) = u(x, t = 0) is:

u(x, t) � e−κt ∫∞
−∞

G(x − x′, t)u0 x′( )dx′, (91)

where G(x, t) is the Gauss distribution solution of the
homogeneous diffusion equation and here plays the role of a
Greens function.

If we transfer Eq. 90 back to the population variable ρ, we
obtain after a little algebra:

zρ

zt
� D

z2ρ

zx2
− 1
ρ

zρ

zx
( )2[ ] − κρ ln

ρ

NT
( ), (92)

as the approximate form of the Fisher equation in the region near
saturation, whose analytic solution is:

ρ(x, t) � θ exp e−κt ∫∞
−∞

G(x − x′, t) ln ρ0 x′( )
NT

[ ]dx′⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (93)

A similar solution may be found in the region
far from saturation ρ≪NT, that being the solution to the equation:

zρ(x, t)
zt

� D
z2ρ(x, t)

zx2
+ κρ(x, t). (94)

Thus, we are able to bracket the exact solution the Fisher
equation even though we do know its analytic form.

Comments on Fractional Diffusion
From previous sections we know that we can introduce memory
into the population dynamics through a subordination process
and thereby obtain a fractional time diffusion equation (FTDE) of
the form:

zαt ρ x, t( )[ ] � D
z2ρ x, t( )

zx2
, (95)

which is expressed in terms of the Fourier transform of the
population ~ρ(k, t) as:

zαt ~ρ k, t( )[ ] � −Dk2~ρ k, t( ). (96)
Alternatively, the FTDE can be expressed in terms of the

Laplace transform of the population ρ̂(x, s) as:

sαρ̂ x, s( ) − sα−1ρ0 x( ) � D
z2ρ̂ x, s( )

zx2
, (97)

where the fractional time derivative is of the Caputo type. The
most efficient way to solve the FTDE is to invert the joint

Fourier-Laplace transform of the population ρ*(k, s) which
assumes the form:

ρ*(k, s) � sα−1~ρ0 k( )
sα +Dk2

. (98)

For a point source initial condition ρ0(x) � δ(x)we have ~ρ0(k) �
1 and the inversion of this equation yields:

ρ x, t( ) � FT −1 Eα −Dk2tα( );x{ }, (99)
with the solution to the FTDE in terms of the inverse Fourier
transform of the MLF.

We also know from previous discussions that spatial
heterogeneity can be introduced into the population dynamics
through the network effect and thereby obtain a fractional space
diffusion equation (FSDE) of the form:

zρ x, t( )
zt

� Dzβx| | ρ x, t( )[ ], (100)

where zβ|x|[·] is the Riesz-Feller fractional derivative (West, 2016).
The solution to this FSDE can be expressed in terms of the inverse
of the Fourier-Laplace transform:

ρ*(k, s) � ~ρ0 k( )
s +D k| |β, (101)

where the Fourier transform of the Riesz-Feller fractional
derivative in one spatial dimension is −|k|β. Inverting Eq. 101
for the same point source initial condition used previously
gives us:

ρ x, t( ) � ∫
−∞

∞
dk

2π
eikxe−D k| |βt, (102)

which is a Lévy stable PDF. Note that when α = 1 the MLF in Eq.
99 becomes an exponential and the PDF reduces to a Gauss PDF
which is a β = 2 Lévy stable form (West, 2017).

It is worth mentioning that the FTDE is a version of
(Evangelista and Lenzi, 2018):

zαt ρ x, t( )[ ] � D
z2ρ x, t( )

zx2 − z

zx
F(x, t)ρ x, t( )[ ], (103)

� zJ(x, t)
zx

, (104)

where is the influence of the environment is modeled as an
external force F (x, t) and J (x, t) is the population current density.
A exhaustive mathematical discussion of fractional anomalous
diffusion is given by Evangelista and Lenzi in their remarkably
timely book (Evangelista and Lenzi, 2018).

CLOSING THOUGHTS

In this all too brief introduction to the growing area of application
of the fractional calculus to MO we have covered many
mathematical concepts, each new wrinkle capturing a different
nuance in the complexity of biomedical phenomena. Rather than
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attempting a detailed summary of what has been presented
herein, we instead identify and articulate a number of general
results. We will then attempt to put these remarks into a larger
context and anticipate some of the future research directions that
may facilitate the modeling of biomedically complex phenomena
and pathologies.

We begin by identifying the most important points covered in
this essay:

1) The simple analytic functions of the IC have been shown in
the prequel to be insufficient to describe the time dependence
of most physiology networks. The notion of fractality was
introduced to capture the true complexity of such biomedical
networks through fractal geometry, fractal statistics and
fractal dynamics.

2) A fractal function diverges when an integer-order derivative
is taken, so that such a fractal function cannot be the solution
to a Newtonian equation of motion. However, when a
fractional-order derivative of a fractal function is taken it
results in a new fractal function. Consequently, a time-
dependent fractal process can have an equation of motion
that is a FDE.

3) The Network Effect is the influence exerted by a complex
dynamic network on each member of the network. When the
network dynamics is a member of the Ising universality class
the interconnected set of IDEs for the probability of an
individual being in one of two states during its nonlinear
interaction with the other members of the network can be
replaced by an equivalent linear FDE.

4) One of the simplest FDEs has a built-in memory resulting
from the hidden interaction of the observable with its
environment, which is manifest in the non-integer order of
the time derivative, as in the network effect. Examples include
the deviation of experimental results of Newton’s Law of
Cooling from predictions using an IRE and the dynamics
of the very early time description of Brownian motion also
using an IRE.

5) Another simple FDE has a built-in non-locality in space and
is the FSDE. The solution to this fractional diffusion
equation in space is a Lévy PDF, whose index is given by
the order of the spatial fractional derivative. Yet another
fractional diffusion equation differs in having a built-in
memory and is the FTDE. The solution to this fractional
diffusion equation in time is expressed in terms of the inverse
Fourier transform of a MLF.

6) The solution to a linear FRE is aMLF for α < 1 and becomes an
exponential function for α = 1. The MLF is the workhorse of
the FC just as the exponential is for the IC.

7) A truly complex stochastic dynamic process can have more
than one fractal dimension. A multifractal process is
characterized by a uni-modal spectrum f(h) peaked at the
value of the Hurst exponent h = H.

8) The time-dependent fractional-order index α(t) specifies a
distributed-order fractional operator. As a sufficiently rich
complex process evolves over time its fractal dimension
changes to explore the full range of dimensionality
0< α(t)≤ 1 through the multifractal spectrum f(α).

The short term goal of this essay has been, in part, to describe
how the growth of natural biological phenomena differs from the
growth of physical phenomena.We explored this by showing how
to incorporate memory effects into the growth process of
biological cells by replacing IREs with FREs. The replacement
of integer-order with fractional-order derivatives in time required
a brief foray into the solving of the FREs that describe the growth
of cells over time, including the saturation of growth using
Verhulst (logistic) and Gompertz models. Such descriptions
are important in order to understand the multiscale processes
that emerge when tissues are electrically stimulated or
mechanically stressed (Magin, 2010), as well as being
pathologically disrupted.

We close these remarks by emphasizing the nexus between
distributed-order differentiation and multifractality. The
invariance of scale is a property relating time series across
multiple scales and has provided a new perspective regarding
medicine, physiological phenomena and their associated control
systems. The historical engineering paradigm of ‘signal-plus-
noise’ was first replaced by a model of biological time series
that had fractal statistics. This however was also shown to be too
restrictive when a number of physiological signals were found to
be characterized by more than one scaling parameter and

FIGURE 11 | The average multifracal spectrum for middle CBF time
series is depicted by f(h). (A) The spectrum is the average of 10 time series
measurements of five healthy subjects (filled circles). The solid line is the best
least-squares fit of the parameters to the predicted spectrum. (B) The
spectrum is the average of 14 time series measurements of eight migraineurs
(filled circles). The solid curve is the best least-squares fit to a predicted
spectrum. From (West et al., 2003b) with permission.
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therefore to belong to a class of complex processes known as
multifractals. Such multifractal time series appear in the rich
healthy variability of both human gait and heart rate (Ivanov
et al., 1999; West, 2006; Bogdan et al. 2020).

We use blood flow within the brain as an exemplar of how the
multifractal character of health can be described and subsequently
explained using the FC. West et al., 2003b) demonstrated that the
scaling properties of the time series associated with cerebral blood
flow (CBF) significantly differs between that of normal healthy
individuals and migraineurs. The CBF time series discussed here
is typical of physiologic signals generated by complex self-regulated
networks that handle inputs having a broad range of scales. An
indirect way of measuring CBF is by monitoring the blood flowing
into the brain through the middle cerebral artery. This can be
accomplished using an instrument that operates like a radar gun, but
instead of scattering electromagnetic waves from your car back to the
gun to determine your speed, it scatters acoustic (sound) waves from
the fluctuations in the blood back to the gun to determine the flow
velocity. The instrument is a transcranial Doppler ultrasonograph
and provides a high resolution measurement of middle cerebral
artery flow velocity. We look for the signature of the migraine
pathology in the scaling properties of the human middle cerebral
artery CBF velocity time series.

The properties of monofractals are determined by the local
scaling exponent, but as mentioned multifractals are made up of
many interwoven subsets with different local scaling exponents.
The statistical properties of these subsets are characterized by the
spectral distribution of fractal dimensions f(h) as depicted in
Figure 11. In this figure we compare the multifractal spectrum for
the middle CBF velocity time series for a healthy group of five
subjects and a group of eight migraineurs.

A significant change in the multifractal properties of the middle
CBF velocity time series from the control group to that of the
migraineurs. is apparent. Namely, the width the multifractal
spectrum of the local scaling exponent is vastly constricted, being
reduced by a factor of three from 0.038 for the control group to 0.013
for the migraineurs. The multifractal spectrum for migraineurs is
centered at 0.81, the same as that of the control group, so the average
scaling behavior would appear to be the same. However, the
narrowing of the fractal dimension spectrum suggests that the
underlying process has lost its flexibility. The advantage of
multifractal processes is that they are highly adaptive, so that in
this case the brain of a healthy individual adapts to themultifractality
of the interbeat interval time series of the heart. We see that the
disease, in this case migraine, may be associated with the loss of
complexity (Goldberger et al., 1990), due to the narrowing of the
spectral width, and consequently the loss of adaptability, thereby
suppressing the normal healthy multifractality of CBF time series.

The experimental evidence presented in the prequel supports the
interpretation that the greater the complexity of the physiologic
time series, as measured by the width of the multifractal spectrum,
the healthier the physiological network. In addition, theory (West
and Grigolini, 2021) suggests that the information transfer between
two coupled networks is from the network with the wider spectrum
(greater complexity) to that with the narrower spectrum (lesser

complexity). We hypothesize that the multifractal dynamics of
oncological processes may be well represented by distributed-order
FDEs that captures the loss of complexity in the transition from
healthy multifractal physiologic processes with a substantial
spectral width to a pathological process with a significantly
narrower spectral width. This hypothesis will be the focus of the
next essay in this sequence.

To end this essay on a positive note, we brieflymention a number
of the topic areas suggested by thoughtful reviewers of the
manuscript, which although relevant to the theme of this essay
we lacked the skill to incorporate them into the present text. There
have been numerous efforts dealing with observability and
controllability of physiological networks while considering the FD
observed inmedicine, see for example, (Bogdan, 2019; Kyriakis et al.,
2020). Another is to use what we know concerning the information
exchange between complex networks (West et al., 2008; West and
Grigolini, 2021) to implement the FC for reducing the risk of closed
loop control of blood glucose in artificial pancreas (Ghorbani and
Bogdan, 2014), but also in optimal control theory where it may lead
to a new branch of control techniques such as time-dependent
fractal optimal control.

The acknowledgement of this new perspective is nowhere more
evident than in the timely launching of a journal that recognizes the
emergening field of Network Physiology (Ivanov et al., 2016; Ivanov,
2021). I wholeheartedly endorse this new journal with but a single
reservation, Ivanov’s reference to Network Physiology as being
‘multi-disciplinary’ (Ivanov, 2021). I much prefer the less
restrictive term ‘trans-disciplinary’, in large part because with the
future application of the FC to Network Medicine as well as to
Network Physiology will itself generate disciplines that will not fit
into our present day taxonomy of scientific disciplines.
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