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Estimating resilience of adaptive, networked dynamical systems remains a challenge.
Resilience refers to a system’s capacity “to absorb exogenous and/or endogenous
disturbances and to reorganize while undergoing change so as to still retain essentially
the same functioning, structure, and feedbacks.” The majority of approaches to estimate
resilience requires exact knowledge of the underlying equations of motion; the few data-
driven approaches so far either lack appropriate strategies to verify their suitability or remain
subject of considerable debate. We develop a testbed that allows one to modify resilience of
a multistable networked dynamical system in a controlled manner. The testbed also enables
generation ofmultivariate time series of system observables to evaluate the suitability of data-
driven estimators of resilience. We report first findings for such an estimator.
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1 INTRODUCTION

The term resilience is commonly used to describe the ability of a system to return to its normal
condition after its state has been perturbed. It is closely related to the notion of local stability
(Lyapunov, 1892; Holling and Goldberg, 1971). When dealing with adaptive dynamical systems, the
nonlocal stability concept of ecological resilience is increasingly employed throughout a number of
scientific disciplines. With this concept, resilience refers to the system’s capacity “to absorb
exogenous and/or endogenous disturbances and to reorganize while undergoing change so as to
still retain essentially the same functioning, structure, and feedbacks” (Walker et al., 2004; Barabási
and Posfai, 2016; Schoenmakers and Feudel, 2021). Despite the wide use of this concept, there is by
now no commonly accepted method to assess resilience. Rather, a plethora of different indicators of
resilience were proposed which are often not directly comparable [for an overview, see Meyer (2016)
and Quinlan et al. (2016)]. Moreover, the vast majority of indicators of resilience require precise
knowledge of the governing equations of motion and are thus of only limited value for the analysis of
empirical data, such as for example time series of physiological observables of the human organism
(Lehnertz et al., 2020; Romero-Ortuño et al., 2021).

Among the few data-driven indicators of resilience (or loss thereof) are the ones related to the
concept of critical slowing down [see for example Scheffer et al. (2009); Dai et al. (2012); Lenton et al.
(2012); Dakos et al. (2015); Scheffer et al. (2018)], namely lag-1 autocorrelation and variance (or other
higher-order statistical indicators) estimated from time series of appropriate system observables. The
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suitability of these indicators has been extensively investigated with
a variety of domain-specific models (see for exampleWeinans et al.
(2021) and references therein). Nevertheless, a number of field
applications indicate that these indicators are not always reliable
(Ditlevsen and Johnsen, 2010; Boettiger and Hastings, 2013;
Clements et al., 2019; Diks et al., 2019; Wilkat et al., 2019;
Marconi et al., 2020; Hagemann et al., 2021; van der Bolt et al.,
2021). In part, this can be attributed to the fact that the assumed
mechanism behind critical slowing down (bifurcation-induced
tipping) may be too simplistic for many natural systems which
calls for data-driven indicators of resilience related to other
transition scenarios (Kuehn, 2011; Ashwin et al., 2012; Kuehn
et al., 2015; Ritchie and Sieber, 2017; Vanselow et al., 2019;
O’Keeffe and Wieczorek, 2020; Hernández-Navarro et al., 2021;
Schoenmakers and Feudel, 2021).

Another, more recently proposed, fully data-driven indicator
of resilience – dynamical resistance (Rings et al., 2019) – takes
into account that the dynamics of some elementary unit of a N-
dimensional networked dynamical system can be described by its
self-dynamics as well as by interactions with other units:

_xi � f xi( ) + σ∑N
j�1

Aij h xj; xi( ), (1)

where f (xi) determines the self-dynamics of unit i. The coupling
between units i and j is defined by a coupling strength σ, a
coupling matrix A (binary adjacency matrix), and a coupling
function h, each of which can be time-dependent. With the ansatz
of Rings et al. (2019), it is assumed that perturbations
predominantly affect the dynamical coupling structure (second
term on r.h.s of Eq. 1), so that a possible influence of a unit’s self-
dynamics can be neglected. The authors proposed to approximate
this structure with bivariate time-series-analysis techniques
(Pikovsky et al., 2001; Kantz and Schreiber, 2003; Hlaváčková-
Schindler et al., 2007; Marwan et al., 2007; Stankovski et al., 2017)
in a time-resolved manner, and at the example of epileptic
seizures in human brains, they demonstrated their approach to
efficiently monitor dynamical resistance of a complex networked
system prone to extreme events.

It is, however, not clear whether the assumptions underlying
data-driven indicators of resilience are fully justified and whether
indicators are generally applicable to estimate resilience of any
real world system. An important step towards answering these
questions is the development of a versatile testbed that would
allow one to verify the reliability of data-driven estimators of
resilience of networked dynamical systems. Here, we develop
such a testbed that allows one to modify resilience of a multistable
networked dynamical system in a controlled manner and to
generate multivariate time series of system observables. We
report first findings on the suitability of dynamical resistance
as a data-driven indicator of resilience.

2 SETTING UP THE TESTBED

Before going into details, let us first list some basic requirements
for a testbed to be versatile:

1 in order to simulate a multistable system, a testbed should
allow for an adjustable number of system states but more
than two;

2 in order to simulate normal (desired) and aberrant (undesired)
states, a testbed should generate distinguishable dynamics for
each state;

3 in order to allow data-driven indicators of resilience to reliably
characterize different system states (including those with
fragmented boundaries), waiting times within each state
should be sufficiently long;

4 in order to allow for a number of modifications of the system’s
resilience, a testbed should have sufficiently many control
parameters.

2.1 Dynamics: FromOscillators to Networks
of Oscillator Networks
For our testbed, we consider one of the most simple and widely
studied excitable systems, namely the FitzHugh–Nagumo (FHN)
oscillator (also known as Bonhoeffer–van der Pol oscillator) (van
der Pol and van der Mark, 1928; Bonhoeffer, 1948; FitzHugh,
1961; Nagumo et al., 1962; Rocşoreanu et al., 2000), which is a
prototypical model for excitable behavior in neural and cardiac
nonlinear activities (Glass et al., 1991; Koch, 1999). The equations
of motion for the FHN oscillator read:

_x � x a − x( ) x − 1( ) − y + I
_y � bx − cy,

(2)

with x and y denoting the (fast) excitatory and (slow) inhibitory
dynamical state variables. Here a, b, and c are dimensionless
control parameters: a and c are scaling parameters, and b controls
the emergence of various dynamical regimes (such as tonic and
phasic spiking or sub-threshold oscillations). I is themagnitude of
stimulus current.

Networks of coupled, non-identical FHN oscillators can exhibit
much richer dynamics depending on the coupling and the coupling
topology. Apart from various synchronization phenomena
(Chernihovskyi and Lehnertz, 2007; Omelchenko et al., 2015;
Plotnikov et al., 2016; Masoliver et al., 2017; Ramlow et al., 2019;
Gerster et al., 2020), such networks are capable of generating
extreme-event-like phenomena (Ansmann et al., 2013; Karnatak
et al., 2014; Rings et al., 2017; Saha and Feudel, 2017) and self-
induced switching between multiple space-time pattern (Ansmann
et al., 2016). The complexity of dynamics can further be enhanced, if
one considers networks of networks of (diffusively coupled) FHN
oscillators (Rydin Gorjão et al., 2018). Here the equations of motion
for the i-th oscillator (i ∈ 1, . . . ,No{ }; No denotes the number of
oscillators) in the k-th sub-network ((k, l) ∈ 1, . . . ,Nn{ }; Nn

denotes the number of sub-networks) read:

_x k( )
i � x k( )

i ai − x k( )
i( ) x k( )

i − 1( ) − y k( )
i

+ C k( )
w

No − 1
∑No

j�1
Sij x k( )

j − x k( )
i( ) + 1

N
∑Nn

l�1
C k,l( )

b Bkl ∑No

j�1
x l( )
j − x k( )

i( )
_y k( )
i � bix

k( )
i − ciy

k( )
i ,

(3)
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where C(k)
w and C(k,l)

b denote the global coupling strengths within
and between sub-networks k and l. For a given sub-network,
S ∈ 0, 1{ }No×No denotes the symmetric adjacency matrix (Sij =
Sji = 1, if oscillators i and j are coupled, else Sij = Sji = 0). The
symmetric adjacency matrix B ∈ 0, 1{ }Nn×Nn characterizes the
coupling structure between sub-networks. For the numerical
integration of such large systems of differential equations, we
use the python module jitcode (Ansmann, 2018).

For our study, we consider Nn = 2 fully connected sub-
networks, each consisting of No = 25 diffusively coupled non-
identical FHN oscillators (FHN-NoN). The control parameters a
and c are identical for all oscillators: ai = a = − 0.027 6 ∀i and ci =
c = − 0.02 ∀i; parameter bi is linearly distributed on [0.006, 0.014]
to prevent immediate synchronization among oscillators for
non-zero coupling strengths (cf. Ansmann et al. (2013) and
Rydin Gorjão et al. (2018)). The set of coupling strengths βc �
(C(1)

w , C(2)
w , Cb) is adjustable (note that we dropped the

superscripts k and k| for the sake of readability). As an
example, we show in Figure 1 time series of the averaged
dynamical variables �x(k)(t) � ∑No

i�1 x
(k)
i (t) and �y(k)(t) �∑No

i�1 y
(k)
i (t) of sub-network 1 for various βc, following

Ansmann et al. (2013); Karnatak et al. (2014); Ansmann
et al. (2016), and Rydin Gorjão et al. (2018). For the single
FHN oscillator, we obtain the two Lyapunov exponents as λ1 =
− 3.45 ± 6.14 · 10−6 and λ2 = − 2.89 ± 0.01 · 10−1. For two
coupled FHN, the three largest Lyapunov exponents amount to
λ1 = 4.07 ± 0.14 · 10−3, λ2 = 5.04 ± 12.06 · 10−7, and λ3 = − 7.00 ±
0.09 · 10−2. For the fully connected network with 25 FHN
oscillators, we obtain for the three largest Lyapunov exponents
λ1 = 5.91 ± 0.23 · 10−3, λ2 = 4.81 ± 13.01 · 10−6, λ3 = − 2.17 ± 0.05
· 10−2 and for the FHN-NoN λ1 = 6.42 ± 0.16 · 10−3, λ2 = 5.40 ±
8.85 · 10−6, λ3 = − 5.94 ± 0.78 · 10−4. These Lyapunov exponents
(Benettin et al., 1980a,b) were derived from 20 realizations of
the systems with different initial conditions.

2.2 Modeling a Multistable System
The next building block of our testbed is the modeling of a
multistable system, in which transitions between more than two
states (dynamical regimes) are not induced by a change of control
parameters but occur in a self-induced manner. To this end, we
consider a potential landscape with transitions between states that
are mediated by the rare recurring, high-amplitude phenomena
generated by the network of networks of FHN oscillators. We
approximate the potential landscape L(z) by a succession of Ns

potential wells (modeled as inverted Gaussian functions; z is the
dynamical variable that describes the motion within the potential
landscape), that mimic the basins of attraction of the Ns states of
our multistable system (see upper part of Figure 2):

L z( ) � ∑Ns

n�1

aGn�������
2π σG

n( )2√ exp − z − μGn( )2
2 σGn( )2( ). (4)

Here aGn , μ
G
n , and σGn denote amplitude, mean and standard

deviation of the n-th Gaussian function. Together with the
distance Δz between potential wells, these control parameters
allow one to modify resilience of a system (see Mitra et al. (2015)
and references therein). We couple the FHN-NoN’s mean field
M(t) to the potential landscape and derive the equation which
governs the motion of z:

_z t( ) � _L z( )∣∣∣∣z t( ) + ζ t( )M t( ), (5)
where

M t( ) � Γ t( )
No

∑No

i�1
x 1( )
i C 1( )

w , Cb, t( ) + x 2( )
i C 2( )

w , Cb, t( ) (6)

and ζ(t) = (0.6 − 0.01z(t)) is a scaling factor. The second term on
the r.h.s. of Eq. 5 enables the switching of the dynamics into
different potential wells mediated by the high-amplitude

FIGURE 1 | Exemplary time series and corresponding phase space representations of the dynamics of a single FHN oscillator (βc = (0, 0, 0)), two coupled FHN
(βc = (0.1308, 0, 0)), a fully connectednetworkwith 25FHNoscillators (βc= (0.115, 0, 0)), and a network of two networkswith 50 FHNoscillators (βc= (0.115, 0.215, 9.5 · 10−5)).
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phenomena generated by the FHN-NoN. This self-induced
switching thus solely depends on the amplitude of the FHN-
NoN’s mean fieldM(t) and is not mediated by a change of control
parameters of the potential landscape. In order to guarantee
distinguishable dynamics for the different potential wells, we
change the coupling strengths C(k)

w and Cb once the mean field
M(t) drives z(t) to overcome the local barrier between the
respective wells. The asymmetric amplitude distribution (cf.
Figure 1) of the mean field dominates the sequence in which
states are switched. As an example, setting Γ(t) = + 1 ∀t results in a
sequence of state switches from the first to the last potential well.
More complicated sequences of state switches can be achieved by
setting Γ(t) (with |Γ(t)| � 1 ∀t) appropriately. For example,
choosing the sign of a set of random numbers drawn from
some distribution centered around zero results in a random
sequence of state switches. The sign of Γ(t) may also be
chosen depending on the current state of the system. In the
upper part of Figure 2, we show for a 4-state system exemplary
phase space representations of the averaged dynamical variables
for each state. In the lower part, we show for two choices of Γ(t)
exemplary time series of the dynamical variable z(t) of the
potential landscape and of the averaged dynamical variable
�x(1)(t) of sub-network 1.

There are alternative ways to model a potential landscape (Hänggi
et al., 1990), for example using an n-th order polynomial. Advantages
of using a succession of invertedGaussian functions include the simple
and intuitive way of adding further potential wells, thereby retaining

the order of the wells. A disadvantage is the smooth barrier between
potential wells, whichmay result in a rapid escape fromawell once the
above mentioned escape condition is fulfilled, and thus to short
transition times (cf. Figure 2). This can be avoided by using, for
example, fragmented barriers that can be constructed using the classic
Cantor fractal construction process (see, e.g., Mandelbrot (1982);
Omelchenko et al. (2015)). Such fragmented barriers may also
mimic riddled basin of attractions (Alexander et al., 1992).
Another way to achieve a non-smooth barrier would be adding
e.g., colored noise to the potential landscape.

An example of a potential landscape with fragmented barriers is
shown in Figure 3 along with time series of the averaged dynamical
variable �x(1)(t) of sub-network 1 of the FHN-NoN and of the
dynamical variable z(t) of the potential landscape. The inclusion of
a fragmented barrier can be regarded as adding “intermediate
states” that temporarily trap the system. Note that the dynamics
within these intermediate states differs from the ones observed in
the potential wells. Figure 4 provides a synopsis of the accumulated
waiting times of the FHN-NoN dynamics within each state and
demonstrates how the steepness of fragmented barriers impacts on
the transition time between states.

2.3 Modifying the System’s Resilience: An
Example
As already mentioned above, several control parameters allow
one to modify the resilience of our multistable system which is

FIGURE 2 | (A): exemplary potential landscape with four system states. The potential landscape is driven by the mean field of FHN-NoN and, together, the system
exhibits self-induced transitions. (B): Exemplary phase space representations of the averaged dynamical variables for each state. (C,D): Exemplary time series of the
averaged dynamical variable �x(1)(t) of the FHN-NoN and of the dynamical variable z(t) of the potential landscape. In (C), Γ(t) is a random sequence of + 1s and − 1s and in
(D), Γ(t) is chosen state-dependent such that the system evolves alternating from the first to the last state (S1 → S4: Γ(t) = + 1) and back (S4 → S1: Γ(t) = − 1).
Settings of other parameters and conditions: random initial conditions for x(k)i × y(k)i ∈ [0, 1] × [0, 1] and for z ∈ [ − 5, 5]; aG = [5.5, 5.5, 5.5, 5.5]; μG = [ − 6, − 2, 2, 6];
(σG)2 � [1.8,1.8, 1.8, 1.8]; for all states: C(1)

w � 0.115, for state S1: C(2)
w � 0.116 and Cb = 1.045 · 10−5; for state S2: C(2)

w � 0.116 and Cb = 1.425 · 10−5; for state S3:
C(2)
w � 0.125 and Cb = 1.045 · 10−5; for state S4: C(2)

w � 0.125 and Cb = 1.5 · 10−5. The initial transient (105 data points) was dismissed.
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briefly illustrated in the following. We consider a system as in
Figure 3 with three desired states (S1, S2, S3) representing its
normal functioning and one undesired state (S4) representing an
aberrant functioning. The parameters controlling the distance
between wells S1, S2 and S3 as well as the height of the barriers

between these wells are identical but differ from those of well S4.
We allow for a state-dependent switching between states, and by
gradually moving S4 closer to S3 (i.e., decreasing the distance Δz
between these states), we mimic a progressive loss of the system’s
resilience. Since the height of the barrier between S3 and S4 is
enlarged, the system is trapped in S4 once it enters this state. A
schematic of this modification along with exemplary excerpts of
time series of observables from some oscillators are presented in
Figure 5.

Before closing this section, we briefly summarize the main
aspects of our testbed that allow us to modify resilience of a
multistable networked dynamical system in a controlled manner.
Our testbed provides the means to simulate the dynamics of a
multistable system with the help of a network of networks of
FitzHugh-Nagumo oscillators coupled to a potential landscape
that consists of a succession of a number of potential wells with
smooth or fragmented barriers. Various control parameters allow
one to generate distinguishable dynamics for each (desired or
undesired) state, to adjust the waiting time of the system within
each state, as well as the transition time between states. Our
testbed also allows for a generation of time series of system
observables, and these time series may serve as input to data-
driven indicators of resilience.

3 AN EXEMPLARY EVALUATION OF A
DATA-DRIVEN INDICATOROF RESILIENCE

In the following, we utilize time series generated by our testbed
for an exemplification of a data-driven indicator of resilience.
Rings et al. (2019) proposed a time-series-based and non-
perturbative approach to efficiently monitor dynamical

FIGURE 3 | (A): same potential landscape as in Figure 2 but with fragmented barriers, generated by using the classic Cantor fractal construction process. We
bridge “gaps” in the barriers that result from the fractal construction process by inserting segments with adjustable steepness α. The fragmented barrier begins and ends
outside of the local minimum of a potential well such that an amplitude-based transition can be induced from the potential well into the barrier. (B,C): Exemplary time
series of the averaged dynamical variable �x(1)(t) of the FHN-NoN and of the dynamical variable z(t) of the potential landscape.

FIGURE 4 | Distributions of accumulated waiting times of the FHN-NoN
dynamics within the potential wells (states S1–S4) of the landscape with
fragmented barriers shown in Figure 3 and for Γ(t) chosen state-dependent
such that the system evolves alternating from the first to the last state
and back. Distributions (kernel density estimates) were derived from 10
realizations with random initial conditions of oscillators and of the dynamical
variable z(t) of the landscape. Other control parameters as in Figure 3. The
larger waiting times within states S2 and S3 result from these states being
visited, on average, more often than the other states as they each can be
reached via two transitions. The inset shows the dependence of the average
transition time between potential wells on the steepness α of the fragmented
barrier. The average transition time was estimated over 20 realizations with
different initial conditions. Lines are for eye-guidance only.
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resistance, an indicator of resilience of a networked dynamical
system. The approach is fully data-driven since it takes into
account the units’ individual signals only and consists of the
following three central steps of analysis:

1 Probe with high temporal resolution the dynamical coupling
structure between interacting system units;

2 identify dynamical regimes (here: states) from similar time-
dependent coupling structures;

3 define dynamical resistance R as the minimum distance
between all accessible dynamical regimes.

Step of analysis # 1: The dynamical coupling structure (the
second term on the r.h.s. of Eq. 1; coupling strength, coupling
structure, and coupling function) can be probed with bivariate time-
series-analysis techniques developed in statistics, nonlinear
dynamics, information and synchronization theory as well as in
statistical physics (Pikovsky et al., 2001; Kantz and Schreiber, 2003;
Pereda et al., 2005; Hlaváčková-Schindler et al., 2007; Marwan et al.,
2007; Stankovski et al., 2017; Tabar, 2019). Here we use three widely-
used techniques, namely the zero- and maximum-lag cross-
correlation (Brillinger, 1981; Rosenblum et al., 1997) as well as
the (normalized) mutual information (Kraskov et al., 2004). These
techniques allow one to estimate the similarity/interdependence ρuv
between pairs of time series u{ } and v{ } each of length T (with T
much smaller than the total observation time). If appropriately

normalized, ρuv assumes values between 0 and 1, indicating either
complete independence or complete dependence. We use a sliding
window approach to calculate ρuv between all pairs of units in a time-
resolved manner which results in a temporal sequence of interaction
matrices ρ.

Step of analysis # 2: In order to identify dynamical regimes,
one can define similarity between two interaction matrices
ρ (tl) and ρ (tm) at times tl and tm as ξ (tl, tm) ≡‖ρ (tl) − ρ
(tm)‖, where ‖. . . ‖ denotes the Euclidean norm (Münnix et al.,
2012). The similarity matrix ξ—estimated for all times tm and
tl—then contains pertinent information about the system’s
dynamics, and recurrent patterns in the similarity matrix
indicate dynamical regimes (Marwan et al., 2007). In order to
identify these regimes and their number, Rings et al. (2019)
proposed to use a time-resolved hierarchical clustering analysis
of coupling structures in an abstract space spanned by all pairwise
interactions. For our investigations, we use a k-means algorithm
(MacQueen, 1967) given that the number of different dynamical
regimes (clusters k = Ns) is known a priori.

Step of analysis # 3: The minimum Euclidean separation
between cluster centroids is taken as the minimum distance
between dynamical regimes and is an estimate for dynamical
resistance R: the larger this distance between regimes the higher is
the capacity of a system to absorb disturbances and to reorganize
while undergoing dynamical changes so as to still retain
essentially the same functionality.

FIGURE 5 | Schematic of a modification of resilience of a multistable system with three desired states (S1, S2, S3) and one undesired state (S4) (A) and excerpts of
exemplary time series of system observables from various states (B). Setting of control parameters of the potential landscape: aG = [36.5, 36.5, 36.5, 36.5]; μG = [ − 18.3,
− 6.2, 6.2, 22.3]; (σG)2 � [12,12, 12, 5]. Coupling constant for all states: C(1)

w � 0.115, for state S1: C(2)
w � 0.116 and Cb = 1.045 · 10−5; for state S2: C(2)

w � 0.116 and
Cb = 1.425 · 10−5; for state S3:C(2)

w � 0.125 andCb = 1.045 · 10−5; for state S4:C(2)
w � 1.25 andCb = 1.5 · 10−5. Initial configuration at time interval t ∈ [0, 105): Self-

induced transitions are possible between states S1, S2, and S3 but a transition into the undesired state S4 is not possible. Starting at time t = 105, the position μG4 is
linearly decreased up to μG4 � 19.3 at time t = 2.5 · 10-5, which decreases the distance ΔzS3,S4 between S3 and S4. The lower part of the figure exemplifies excerpts of
time series of the x-components of oscillators 1, 3, 5, 10. and 25 (increasing value of control parameter bi) of sub-network 2 at time intervals indicated in the upper part.
The excerpts are labeled according to the system’s state, and T1 and T2 indicate excerpts from transitory phases.
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For our investigations, we consider the example from Section
2.3 and simulate a gradual loss of resilience of the system, which
we assume to result from a “perturbation” mediated by the
undesired state. We again incrementally decrease the distance
ΔzS3,S4 between states S3 and S4, and for each increment we
record time series of observables of each FHN oscillator for 106

time steps thereby starting from identical initial conditions of
each oscillator. For our analyses, we use the oscillators’ x-
components from sub-network 2 that we observe using the
identity as measurement function.

In Figure 6, we show how the shortening of the distance
ΔzS3,S4 impacts on the waiting times within each state. As
expected, the median waiting time within state S4 increased

upon decreasing ΔzS3,S4, while within state S3 the median
waiting time gradually decreased. Waiting times within
states S1 and S2 remained largely unaffected by the
perturbation. In the upper part of Figure 7, we summarize
our findings for dynamical resistance R. Depending on the
bivariate time-series-analysis technique employed to estimate
R, we observe the initial resilience of the system to be
diminished by about 10% as S4 gets closer to S3. Our
interpretation of this loss of resilience due to a
“perturbation” mediated by an undesired state is further
corroborated by the distinct increased area between cluster
centroids reflecting a deformation of the initial configuration
of the system’s dynamical regimes (lower part of Figure 7).

FIGURE 6 | Impact of decreasing the distance ΔzS3,S4 between states S3 and S4 on the waiting times in each of the four states (S1–S4). Medians and variances
(lengths of error bars) obtained from 10 realizations of the simulation setup. A zero value of the waiting time of S4 indicates that this state is never reached because it is too
far away from S3. The vertical dashed line indicates onset of perturbation. Other lines are for eye-guidance only.

FIGURE 7 | Relative change of dynamical resistance [δR; (A)] and of area between cluster centroids [δV; (B)] upon decreasing the distance ΔzS3,S4 between states
S3 and S4. Dynamical resistance R estimated with mutual information (filled circles), zero-lag cross-correlation (filled triangles), and maximum-lag cross-correlation (filled
squares). Area V between cluster centroids calculated from the distances between the three cluster centroids representing states S1–S3 (symbols as above). Data
normalized to the respective values for largeΔzS3,S4. Medians and variances (lengths of error bars) obtained from 10 realizations of the simulation setup. The vertical
dashed line indicates onset of perturbation. Other lines are for eye-guidance only.
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4 CONCLUSION

We develop a testbed that allows one to modify resilience of a
multistable networked dynamical system in a controlled manner
and to generate time series of observables that may be used to
evaluate the suitability of data-driven indicators of resilience. The
testbed presented here was designed in such a way that it provides
a means—with the help of an adjustable potential landscape,
sufficiently many and, more importantly, contextual control
parameters—to simulate a multistable system with a number
of system states and with self-induced switching between them as
well as to simulate distinguishable dynamics for each state.
Waiting times within states are sufficiently long to allow data-
driven indicators of resilience to reliably characterize the different
states. With the inclusion of fragmented barriers between
potential wells, transition times between states can be preset.
We here considered a potential landscape—consisting of a
succession of adjustable wells—driven by the rich dynamics of
a network of networks of diffusively coupled FitzHugh-Nagumo
(FHN) oscillators (Rydin Gorjão et al., 2018). The network’s
dynamics is chaotic and can exhibit different dynamical patterns
such as low-amplitude oscillations, nonlinear waves, and rare
recurring high-amplitude phenomena (Ansmann et al., 2013).
The network can also exhibit self-induced switchings between
these patterns (states) without a change of control parameters
(Ansmann et al., 2016). Our testbed allows for short computation
times and can modify resilience during run time. As an example,
the generation of time series of observables of a fully connected
network of two networks of 50 FHN oscillators with 106 data
points each requires about 3 min on a 64-bit architecture with a
single CPU at 2.2 GHz.

Using time series data generated by our testbed for a
multistable system gradually perturbed by an undesired state,
we performed an exemplary evaluation of a data-driven
indicator of resilience of a networked dynamical system
(Rings et al., 2019). Our findings indicate that this
indicator—dynamical resistance R—appears to be capable of
tracking changes in resilience, at least to some extent and for the
scenario considered here. Nevertheless, findings also indicate
that its performance appears to depend on the bivariate time-
series-analysis technique employed to characterize couplings
between system units. Future studies would need to address the
question as to which extent the influence of a unit’s self-
dynamics can be neglected when estimating resilience of a
networked dynamical system. In addition, future studies
would need to tackle the largely unsolved issue of how to

reliably interpret findings obtained with data-driven
indicators particularly with respect to Holling’s definition of
resilience.

We foresee various extensions to our testbed, also in view of
evaluating other data-driven indicators. For example, one may
consider other configurations of the potential landscape, other
models of networked dynamics, coupling and measurement
functions that are of relevance for a given research field.
Time-dependent control parameters [see, e.g., Nicolis and
Nicolis (2014); O’Regan and Burton (2018)] for both the
network dynamics and for the potential landscape will
introduce various non-stationarities, thus bringing our
testbed closer to natural systems. At a similar token, the
introduction of stochasticity (Freidlin and Wentzell, 1984;
Arnold, 1998) into our testbed may allow for various noise-
related phenomena such as noise-induced transitions
(Horsthemke and Lefever, 1984), stochastic resonance
(Gammaitoni et al., 1998), or noise-induced tipping (Ritchie
and Sieber, 2017; Wunderling et al., 2021). Their time-series-
analysis-based investigation in networked dynamical system
may, however, require more refined and better adapted
analysis techniques (Rydin Gorjão et al., 2019, 2021; Tabar,
2019; Aslim et al., 2021).
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