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There has been little change in morbidity and mortality in traumatic brain injury (TBI) in the
last 25 years. However, literature has emerged linking impaired cerebrovascular reactivity
(a surrogate of cerebral autoregulation) with poor outcomes post-injury. Thus,
cerebrovascular reactivity (derived through the pressure reactivity index; PRx) is
emerging as an important continuous measure. Furthermore, recent literature indicates
that autonomic dysfunction may drive impaired cerebrovascular reactivity in moderate/
severe TBI. Thus, to improve our understanding of this association, we assessed the
physiological relationship between PRx and the autonomic variables of heart rate variability
(HRV), blood pressure variability (BPV), and baroreflex sensitivity (BRS) using time-series
statistical methodologies. These methodologies include vector autoregressive integrative
moving average (VARIMA) impulse response function analysis, Granger causality, and
hierarchical clustering. Granger causality testing displayed inconclusive results, where PRx
and the autonomic variables had varying bidirectional relationships. Evaluating the
temporal profile of the impulse response function plots demonstrated that the
autonomic variables of BRS, ratio of low/high frequency of HRV and very low
frequency HRV all had a strong relation to PRx, indicating that the sympathetic
autonomic response may be more closely linked to cerebrovascular reactivity, then
other variables. Finally, BRS was consistently associated with PRx, possibly
demonstrating a deeper relationship to PRx than other autonomic measures. Taken
together, cerebrovascular reactivity and autonomic response are interlinked, with a
bidirectional impact between cerebrovascular reactivity and circulatory autonomics.
However, this work is exploratory and preliminary, with further study required to
extract and confirm any underlying relationships.
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1 INTRODUCTION

There has been little change in morbidity and mortality in
moderate and severe traumatic brain injury (TBI) over the
past 25 years (Carney et al., 2017; Maas et al., 2017; Donnelly
et al., 2019; Steyerberg et al., 2019). TBI remains one of the
leading burdens to global health (Maas et al., 2015), thus there is a
need to investigate new ways to improve TBI care. Secondary
injury mechanisms dictate ongoing neural injury during the acute
phase of TBI care and take various forms. Such secondary injury
pathways are essential targets for therapeutic intervention in
moderate/severe TBI care. However, before developing
precision therapeutics aimed at specific secondary injury
mechanisms, we require a more comprehensive understanding
of the inter-relationships between different aspects of cerebral
physiology post-injury.

Impaired cerebral autoregulation in moderate/severe TBI is a
secondary injury mechanism that leads to ongoing neural insult
(Zeiler et al., 2020a). Literature has emerged demonstrating
impaired cerebral autoregulation, assessed through
cerebrovascular reactivity indices (surrogate measures for
cerebrovascular autoregulation) after TBI are independently
associated with mortality and poor functional outcome at 6
and 12 months post-injury (Czosnyka et al., 1997; Sorrentino
et al., 2012; Zeiler et al., 2018a; Donnelly et al., 2019; Zeiler et al.,
2019; Bennis et al., 2020; Zeiler et al., 2020b; Åkerlund et al.,
2020). The pressure reactivity index (PRx) has emerged as one of
the most commonly utilized methods for assessing
cerebrovascular reactivity in the TBI literature (Zeiler et al.,
2017). Despite the growing body of literature supporting the
association of PRx with outcome (Czosnyka et al., 1997;
Sorrentino et al., 2012; Zeiler et al., 2018a; Donnelly et al.,
2019; Zeiler et al., 2019; Bennis et al., 2020; Zeiler et al.,
2020b; Åkerlund et al., 2020), emerging literature suggests
current guideline-based therapeutic interventions in moderate/
severe TBI have little-to-no impact on the degree of impaired
cerebrovascular reactivity seen (Donnelly et al., 2019; Froese et al.,
2020a; Froese et al., 2020b; Zeiler et al., 2020b; Froese et al.,
2020c). As such, more work is required to uncover the driving
factors of impaired cerebrovascular reactivity.

Autonomic dysfunction after moderate/severe TBI has been
well documented and is associated with poor global outcome
(Hasen et al., 2019; Tymko et al., 2019; Fedriga et al., 2021a;
Fedriga et al., 2021b). Furthermore, it is clear that autonomics
and cerebrovascular function intersect (Ogoh et al., 2005; Hasen
et al., 2019; Tymko et al., 2019; Fedriga et al., 2021a; Fedriga et al.,
2021b). Recent literature demonstrates that PRx has an
association with heart rate variability (HRV), including low
frequency HRV (HRV_LF) and high frequency HRV
(HRV_HF) (Lavinio et al., 2009; Sykora et al., 2016), with PRx
also being connected to the baroreflex sensitivity (BRS) (Sykora
et al., 2016). However, these studies had only a limited correlation
between the autonomic variables and PRx, and did not examine
the temporal profiles of autonomic and PRx measures. As such, a
knowledge gap regarding the temporal and causal relationship
between autonomic function and cerebrovascular reactivity
exists.

Understanding the relationship between cerebrovascular
reactivity and autonomic function is an important step to
improve TBI care. The directional relationship between PRx
and autonomic response portends to future targeted
therapeutic development that is aimed at the prevention and
reduction of secondary injury insult burden. Past work has shown
that autonomic response drives factors associated with
cerebrovascular reactivity, however dysautonomia has shown
to be exacerbated by increases in intracranial pressure
(Baguley et al., 1999; Baguley et al., 2008; Hasen et al., 2019).
Beyond this, a deeper understanding of this relationship may
enable the development of a more complete and accurate
prognostic model that accounts for both cerebral
autoregulatory and autonomic dysfunction. Ultimately, a
robust understanding of how these secondary factors
interconnect will improve our ability to predict patients at risk
for cerebral autoregulation failure and ANS dysfunction.

Thus, using the prospectively maintained high-resolution data
set from the Winnipeg Acute TBI Laboratories, we aim to
examine the temporal and causal relationship between PRx
and autonomic functionality in more detail using advanced
time-series methodologies. The goal of this project is to
comprehensively evaluate the time-series statistical properties
of cerebrovascular reactivity and autonomics, focusing on the
impact they have on each other. This will leverage the fact that
circulatory phenomena respond in a fashion which may be
assessed using the approach of linear interdependent time-
series. Thus, using time-series analysis allows us to comment
on what aspects of autonomic function drives cerebrovascular
reactivity and gives a more complete picture of physiological
response.

2 METHODS AND MATERIALS

2.1 Patients
Data were accessed retrospectively from the maintained TBI
database at the Winnipeg Acute TBI Laboratories, University of
Manitoba. For this study, patient data were collected from June
2018 up to December 2020. All patients suffered from moderate to
severe TBI (moderate = Glasgow Coma Score (GCS) 9—12, and
severe = GCS of 8 or less). All patients in this cohort were admitted
to the intensive care unit where they were sedated, intubated and
were on volume-controlled mode of ventilation (with constant
PEEP), during the course of cerebral physiologic data collection. All
patients had both invasive intracranial pressure (ICP) and arterial
blood pressure (ABP) monitoring conducted, per the Brain
Trauma Foundation guidelines (Carney et al., 2017).

2.2 Ethics
Data were collected following a full approval by the University of
Manitoba Health Research Ethics Board (H2017:181, H2017:188,
and H2020:118).

2.3 Data Collection
For this study, admission demographic information was extracted
following the existing prognostic models in TBI (Dijkland et al.,
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2021). Such demographic data collected was: age, sex, admission
pupillary response (bilaterally reactive, unilaterally reactive,
bilaterally unreactive) and admission GCS (both total and
motor).

All patients had high-frequency digital signals recorded
throughout their ICU stay. ABP was obtained through radial
or femoral arterial lines connected to pressure transducers
(Baxter Healthcare Corp. CardioVascular Group, Irvine, CA,
or similar devices). ICP was acquired via an intra-
parenchymal strain gauge probe (Codman ICP MicroSensor;
Codman and Shurtlef Inc., Raynham, MA). All signals were
captured simultaneously, synchronized and digitized via an
A/D converter (DT9804; Data Translation, Marlboro, MA),
sampled at a frequency of 100 Hertz (Hz) or higher using the
Intensive Care Monitoring (ICM+) software (Cambridge
Enterprise Ltd., Cambridge, United Kingdom, http://icmplus.
neurosurg.cam.ac.uk). Signal artifacts were removed using
manual methods before further processing and analysis. This
ensured that all analyzed blood pressure had the distinct full wave
beat, with all other data removed.

2.4 Signal Processing
2.4.1 Cerebrovascular Reactivity
Post-acquisition processing of the above signals was conducted
using ICM+, in keeping with our previously published
methodology (Froese et al., 2020b; Froese et al., 2020c). First,
10-s moving averages (updated every 10 s to avoid data overlap)
were calculated for all recorded signals: ICP and ABP (which
produced MAP). PRx was derived via the moving correlation
coefficient between 30 consecutive 10-s mean windows of the
parent signals (ICP and MAP), updated every minute according
to previously validated methods (Czosnyka et al., 1997;
Sorrentino et al., 2012; Zeiler et al., 2018b; Donnelly et al.,
2019; Depreitere et al., 2021).

2.4.2 Autonomic Response Variables
To determine autonomic functionality, we used three categories
of autonomic response that can be derived from a continuous
ABP waveform. The categories were heart rate variability (HRV),
blood pressure variability (BPV) and the baroreflex sensitivity
(BRS). Each of these autonomic response variables (ARVs) were
determined for each minute, calculated over both a 5 and 15-min
window. These time windows were chosen because 5 min is a
common time window for HRV (30) and a 15-min window is the
minimum for a short BPV (Mena et al., 2005; Höcht, 2013; Parati
et al., 2013). For spectral BPV the Lomb-Scargle periodogram was
used to calculate spectral power of the ABP waveform over the 5
and 15-min window to derive the subsequent minute-by-minute
updated ARV values (note these result in the power of mmHg2)
(Sykora et al., 2016; Szabo et al., 2018). For HRV, the original ABP
was processed through a peak detection algorithm based on Pan-
Tomkins method (Pan and Tompkins, 1985; Sykora et al., 2016;
Szabo et al., 2018). This results in an irregularly sampled peak-to-
peak time series value over the 5 and 15-min window. From this
the Lomb-Scargle periodogram was used over the window to
calculate spectral power values for the resulting HRVs, updated
every minute (note these result in the power of milliseconds2)

(Electrophysiology, 1996; Sykora et al., 2016; Szabo et al., 2018).
Thus, each variable can be time series linked to the minute-by-
minute update interval of PRx and allows the implementation of
times series methodologies of these spectral variables.

Due to the similarity in the final results between the time
windows, all further data demonstrated will be of the 15-min
windows.

HRV was derived from ABP by finding the power in 3
bandwidth categories; very low frequency (HRV_VLF;
frequency less than 0.04 Hz), low frequency (HRV_LF;
frequency of 0.04–0.15 Hz) and high frequency (HRV_HF;
frequency of 0.15–0.4 Hz) (Electrophysiology, 1996; Berntson
et al., 1997; Shaffer and Ginsberg, 2017). The interpretation of
these frequencies is still up for debate (Electrophysiology, 1996;
Berntson et al., 1997; Hayano and Yuda, 2019), although
common interpretations are; HRV_VLF reflects slow
mechanisms of sympathetic activity (though this warrants
further elucidation), HRV_LF is a marker of sympathetic
modulation or parameter that includes both sympathetic and
vagal influences, and HRV_HF reflects parasympathetic (vagal)
activity (Electrophysiology, 1996; Shaffer and Ginsberg, 2017).
Due to the nature of spectral analysis of ABP waveforms the
individual variables can be influenced by physiological responses
that are adjunct or entirely separate from autonomic response
(Electrophysiology, 1996; Berntson et al., 1997; Hayano and
Yuda, 2019). Thus, any correlations must be taken as
interpretations more than direct responses.

We also calculated the ratio between low and high frequency,
(HRV_LF_HF; HRV_LF divided by HRV_HF) which represents
minor sympathetic vagal balance or sympathetic modulations
(though further investigation is still required) (Electrophysiology,
1996; Hayano and Yuda, 2019). The root mean square differences
between consecutive heart beat period a heartbeat waveform
(HRV_RMS) was found, which estimates the vagally mediated
changes in autonomics (Electrophysiology, 1996; Hasen et al.,
2019; Hayano and Yuda, 2019). The total power (HRV_TOT;
which is the sum of the three spectral bands power) is a non-
specific variable that reflects the overall autonomic activity
(Electrophysiology, 1996; Shaffer and Ginsberg, 2017).

There were twomethods of BPV found; the standard deviation
of BPV in the time domain and the spectral domain analysis of
BPV. The standard deviation of BPV was found in three main
groups; mean blood pressure (BPV_M), systolic blood pressure
(BPV_S) and diastolic blood pressure (BPV_D) over the moving
time window (Höcht, 2013).

Furthermore, we assessed the spectral domain of the systolic
blood pressure variability in three domain frequency ranges: low
frequency (SBPV _LF; frequency of 0.077–0.15 Hz), high
frequency (SBPV _HF; frequency of 0.15–0.4 Hz) and total
(SBPV _TOT; total power over the full frequency range)
(Höcht, 2013). Though these variables have a limited
understanding, current assessments show the following:
SBPV_LF variability is modulated by the sympathetic/
baroreflex of vascular/vasomotor tone, total peripheral
resistance and the Mayer wave (Stauss, 2007; Aletti et al.,
2009; Aletti et al., 2012; Aletti et al., 2013) and SBPV_HF
variability is mainly influenced by changes in cardiac output,
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parasympathetic and respiration action (Janssen et al., 1995;
Aletti et al., 2009; Aletti et al., 2013).

Finally, the baroreflex sensitivity (BRS) was calculated using a
modification of the sequential cross-correlationmethod. ABPwas
used to find systolic peaks and the heart beat period, then a linear
regression between the 10-s series of heart beat period and the
corresponding 10-s series of systolic blood pressure over the time
window results in the BRS (Westerhof et al., 2004). BRS may
provide a useful synthetic index of neural regulation at the sinus
atrial node, though limitations still exist with this interpretation
(Kardos et al., 2001; La Rovere et al., 2008; Pinna et al., 2015).

2.5 Time-Series Analyses
We implemented a wide variety of time-series tests and models to
assess both functionality and associated causality between the
individual ARVs and PRx. To help elucidate the uses of these
methods as well as the limitations and pitfalls of such techniques,
we will give an overview of the methods. However, a full
conceptual understanding of these individual methodologies
can be found from their respective literature (McQuitty, 1966;
Granger, 1969; Lütkepohl, 2005; Rokach et al., 2005; Murtagh and
Legendre, 2014; Kilian and Lütkepohl, 2017; Chatfield and Xing,
2019; Thelin et al., 2019).

The three major methods used were: vector autoregressive
integratedmoving average (VARIMA) impulse response function
plots (IRF), Granger Causality Testing and Hierarchical
Clustering. These methods were chosen for their exploratory
nature and their use in previous analyses of temporal physiology
within TBI (Zeiler et al., 2018c; Zeiler et al., 2018d; Thelin et al.,
2019).

2.5.1 Vector Autoregressive Integrative Moving
Average Impulse Response Functions Analysis
IRF are used to graphically demonstrate the causal effect of an
impulse on a system. For our uses we created VARIMAmodels to
represent the relationship between PRx and each ARV. Then we
created a simulated impulse on the VARIMA model from each
respective ARV on PRx and vice versa. In this way we graphically
demonstrated the patient specific interaction between each ARV
and PRx.

2.5.1.1 Autoregressive Integrative Moving Average Structure
Analysis
In order to derive a VARIMA model in an effective manner (due
to the heavy computational requirements of such a method) but
also to evaluate the accuracy of a VARIMA model, we performed
a Box-Jenkin’s autoregressive integrative moving average
(ARIMA) model for each patients’ PRx and all ARVs
(Lütkepohl, 2005; Zeiler et al., 2018c; Chatfield and Xing, 2019).

Initially, PRx and ARVs were evaluated for time stationarity
using the: autocorrelation function (ACF) plots, partial
autocorrelation function (PACF) plots and
Kwiatkowski–Phillips–Schmidt–Shin (KPSS). The augmented
Dickey-Fuller (ADF) was used to test for root trend. Note we
assume that all variables have some aspect that is both
interdependent and linear, due to the interconnection of
circulatory/vascular function.

Next, the optimal ARIMA structure for PRx and ARVs were
derived for each patient. Initially, the auto.arima (a pre-built R
function) was used to determine the upper order limit for tested
ARIMA models (auto.arima, 2021). Based on this, autoregressive
order (p) was varied from 1 to 10, and the moving average order
(q) was varied from 0 to 10, while the integrative order (d) was
held at 0. The integrative order was held at 0 as the tests of ACF,
PACF, KPSS, and ADF suggested that all the signals were
stationary. This is in keeping with previous time-series work
in TBI literature (Zeiler et al., 2018c; Zeiler et al., 2018d; Thelin
et al., 2019). All the permutations of the ARIMA orders were
assessed using the Akaike Information Criterion (AIC), and Log-
Likelihood (LL) recorded for every model.

Using the AIC and LL, the optimal ARIMA structures for PRx
and ARVs were compared in the datasheets, with the lowest AIC
and highest LL values indicating superior models. A general Box-
Jenkin’s ARMA model for PRx can be found in Supplementary
Appendix SA1.

A patient example of the serial ARIMA model testing with
AIC and LL outputs can be found in Supplementary Appendix
SB in Supplementary Material. Similarly, an example in Figure 1
is given of the raw signal ACF and PACF plots, followed by the
plots for the residuals of the optimal ARIMA model (found
through LL and AIC), indicating that the autocorrelative
structure has been adequately accounted for.

2.5.1.2 Vector Autoregressive Integrative Moving Average
(VARIMA) Models
Next, we derived multi-variate VARIMA models to evaluate the
impulse response of ARVs on PRx and vice versa. These models
explore the behavior of two-time series variables, recorded
simultaneously, and are derived through the extension of the
standard Box-Jenkin’s models into multi-variate systems (further
descriptions can be found in the references) (Lütkepohl, 2005;
Kilian and Lütkepohl, 2017; Chatfield and Xing, 2019). A formula
representing the vector autoregressive moving average model
(VARMA) of PRx and an ARV can be found in
Supplementary Appendix SA2, which is a VARIMA with the
integrative order held at 0.

Since the ACF and PACF did not indicate any cyclical trends in
the variables, with ADF and KPSS indicating that all variables were
stationary, we employed basic VARMA models with autoregressive
order of four and moving average order of four. This was based on
the findings from individual patient ARIMA models of ARVs for
each patient and past work evaluating the ARIMA models of ICP
andMAP (Thelin et al., 2019; Zeiler et al., 2020c; Zeiler et al., 2020d).

A VARIMA model autoregressive order of four was chosen
given the optimal ARIMA models for many ARVs was less than
two, as well as previous studies found that most patient’s ICP and
MAP had an autoregressive order of two (Thelin et al., 2019;
Zeiler et al., 2020c; Zeiler et al., 2020d). Thus, as suggested by
Helmut Lutkepohl, taking the product of the ARIMA
autoregressive orders for VARIMA modelling is a method to
ensure adequate model structure (Lütkepohl, 2005), and thus the
order of four. For the moving average order for the VARIMA
model, a value of 4 was chosen based on the previous study of ICP
and MAP (52,59,60) and ARVs optimal order being below two in
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many patients. Thus, the sum of the two ARIMA moving average
orders was used to get a final VARIMA moving average
order of 4.

2.5.1.3 Impulse Response Function Analysis
Next, the coefficients derived from these VARIMA models were
employed to derive the IRF plots between PRx and an individual
ARV. The IRF plots provide a descriptive graphical
representation of the impact of PRx on an ARV, and an ARV
on PRx, by using the previously generated VARIMA models and
modelling a one unit orthogonal impulse of one variable on the
other, and vice versa (Kilian and Lütkepohl, 2017). Depicted in
the plot is how much one variable will fluctuate as a response to
the impulse from the other variable. A bootstrapping method was
used to derive the confidence interval of the population using
sampled data. Bootstrapping involves using only part of the
sample data for a run, then comparing all the runs, in this
design a standard percentile bootstrap interval of 100 runs was
used (Efron and Tibshirani, 1993).

Due to the high variability in the IRF plots and the difficulty that
arises with simple graphical interpretations of large datasets, a
simple method to help separate models into two categories (“more
responsive” verses “less responsive”) was used. To do this the
impulse response was normalized with respect to its original
variable data. Then identified if the response was greater than
an absolute value of 0.001 threshold (chosen as at least a 0.1%
change in the normalized response) after 10min (one complete
cycle of PRx after the initial impulse, i.e., 5 min post PRx
calculation window). In this way, we could infer if the impulse
created a stronger response within the subsequent variables and
differentiate responses.

2.5.2 Granger Causality Testing
Granger causality testing is used to identify the assistance of one
interdependent variable to predict another interdependent

variable, beyond the degree to which the variable predicts
itself (Barnett et al., 2009). In this case, the ability for PRx to
predict an ARV (beyond the ability for the ARV to predict itself)
and vice versa. Thus, with the minute-by-minute time series
linked ARV data to PRx we could perform a Granger causality
test between these interdependent variables.

For the Granger causality test, we recorded the response for
every patient, both F-test statistic value and p-values for all ARVs
vs. PRx (Granger, 1969). The Granger causality responses were
assessed to identify the reciprocal influences between PRx
and ARVs.

2.5.3 Co-Variance Cluster Analysis
Finally, to confirm our findings regarding the relationship
between ARVs and PRx, a hierarchical clustering method was
used on each patient to identify which ARVs and PRx was most
closely associated. Using a divisive method, we separated the
variables using the Euclidean distance of the normalized variables
and the hclust (a prebuilt R function) (McQuitty, 1966; Rokach
et al., 2005; Murtagh and Legendre, 2014).

2.5.4 Sub-Group Analysis
The entire database was subdivided based on some simple
parameters and re-evaluated to see if the VARIMA IRF analysis
or Granger causality test displayed any outlying groups. Parameters
included were age (<60 vs. age ≥60; moderate vs old age), Glasgow
outcome scale extended (GOSE) at 6 months (<2 vs. ≥ 2; dead vs
alive), Marshall computer tomography (CT) score (<4 vs. ≥ 4; mass
lesion vs diffuse injury), sex (male vs. female), the first 24 h only and
the first 72 h only. Due to the similarity between the first 24 h only,
72 h only and the full time; all data presented will be of the full time.

2.6 Statistics
All statistical analyses were conducted using R (R Core Team
(2016). R: A language and environment for statistical computing.

FIGURE 1 | The Residuals, ACF, PACF of the PRx and PRx ARIMA Model. The figures demonstrate the minute-by-minute PRx data and an optimal ARIMA model
(autoregressive order of 2, integrative order of 0 andmoving average order of 0) obtained from the Akaike Information Criteria and Log Likelihood. The reduced significant
lags in ACF or PACF of the ARIMAmodel shows that the ARIMAmodel in part accounts for the residual relationship between the PRx data. ACF, autocorrelation function;
PACF, partial autocorrelation function; PRx, pressure reactivity index; ARIMA, autoregressive integrated moving average.
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R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/). The alpha was set at 0.05 for
significance. No multiple error correction test was performed
at this time as the analysis is in the preliminary exploratory phase.
The patient population was summarized using simple descriptive
statistics, including median/mean and standard deviation/IQR
where applicable.

For the Granger causality test, we performed aMann-Whitney
U comparison test between the F-statistics of PRx on an ARV and
an ARV on PRx over the entire population. As well we bar plotted
the number of significant p-values for each variable. This gives the
overarching relationship between the PRx and each ARV.

3 RESULTS

3.1 Patient Demographics
A total of 47 patients were included in this study. The mean age
was 43.5 ± 23.5 years, with 37 (80.9%) being males. The median
admission total GCS score was 6 (IQR: 3.5–9), and motor sub-
scores were 4 (IQR: 1.5–5). Six patients (12.8%) presented with
bilaterally unreactive pupils, and ten (21.3%) unilaterally
unreactive pupils. The median duration of digital signal
recording was 2.67 (IQR: 1.35–5.74) days. Table 1 displays the
patient admission demographics and injury information.
Supplementary Appendix SC shows the median value for
each measured variable over the full data set.

3.2 VARIMA and Impulse Response
To assess the relationship between PRx and ARVs, we employed
VARIMA modelling with an IRF. VARIMA models of
autoregressive order 4 and moving average order 4 were
employed for each patient for the first 24 h only, 72 h only

and the full data. IRF plots provide a descriptive visualization
of the relationship between each ARV and PRx (examples seen in
Supplementary Appendix SD). These IRF plots allowed us to
visually determine the temporal relationship between PRx and
ARVs, assessing the impact of one unit impulse on the respective
variable.

Overall, there was high variability in absolute changes in the
PRx and ARVs. However, ARVs demonstrated a higher
magnitude in impulse response in PRx than the alternative.
This was explored through the number of patients that
exceeded an absolute value threshold of 0.001, with PRx
responses being greater in amplitude for an ARV orthogonal
impulse than the converse.

BRS demonstrated the most consistent number of patients in
the “more responsive” cohort, with BRS impulse on PRx resulting
in 9 “more responsive” patients vs PRx impulse on BRS resulting
in 7 “more responsive” patients. Other ARVs on PRx that had at
least 10% of the population (over five patients) in the “more
responsive” category were; HRV_VLF, SBPV_HF, SBPV_TOT,
BPV_M, and BPV_D. Likewise for PRx on APVs demonstrating
over five patients in the “more responsive” category only had BRS
and HRV_VLF.

3.3 Granger Causality
To assess the directional response between ARVs and PRx, we
performed a Granger causality test comparing data sets for all
patients. The Mann-Whitney U comparisons test between PRx
and ARVs are in Supplementary Appendix SE, with Figure 2
showing the number of patients with significant p-values
(demonstrating a causal connection). In general, across the
population, we found that the Granger causality test was
inconclusive, with bidirectional causal features between PRx
and ARVs seen across the cohort. In addition, some patients
favored PRx impacting ARVs, though some showed the
alternative causal relationship and not all directional
relationships reached significance. Supplementary Appendix
SF provides the Granger test results, including F-test and
p-values, for every patient using the entire data set of full
time. Of note, the causal direction of the relationship was not
significantly changed when evaluating only the first 24 or 72 h
of data.

The only variable that had a significant p-value was
HRV_RMS in the first 24 and 72 h only. From Figure 2
variables of HRV_VLF, HRV_LF_HF, BPV_S and BRS all had
a moderate reduction in p-value significant patients from PRx on
APV to APV on PRx. This may indicate a more impactful
response from PRx in these relationships.

From the VARIMA IRF, PRx impulse most often caused a
decrease in BRS. All other variables failed to have a consistent
common PRx impulse response.

3.4 Hierarchical Cluster
Finally, the hierarchical clustering analysis helped confirm the
connection that the variables had with one another. Though there
was significant heterogeneity in the individual plots, PRx was
most associated with BRS and HRV_LF_HF in a majority of
patients. For an example plot, Figure 3. With the full data

TABLE 1 | 47 Patient demographics.

Demographics Mean (Interquartile range)

Age 38 (28.5–51)
Sex (% Male) 80.9%
Best admission GCS—total 6 (3.5–9)
Best admission GCS—motor 4 (1.5–5)
Number with hypoxia episode 20
Number with hypotension episode 5
Number with traumatic SAH 45
Number with epidural hematoma 5
Pupils —

Bilateral unreactive 6
Unilateral unreactive 10
Bilateral reactive 31

Admission marshall CT —

V 12
IV 8
III 14
II 3
1 month GOSE 6 (4.5–6)
30-Day mortality 27.7%
Average ICU stay (days) 6.34 (5.32–8.25)

CT, computerized tomography; GOSE, extended Glasgow outcome scale; GCS,
Glasgow comma score; ICU, intensive care unit; SAH, subarachnoid hemorrhage.
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cophenetic correlation and dendrogram displayed in
Supplementary Appendix SG.

3.5 Age, GOSE and Significant Patients
Sub-group analysis failed to demonstrate any significant findings
or finding that would be consider different from the full data.
Dividing patients into sex, <60 vs. ≥60 age groups and six-month
GOSE of <2 vs. ≥2 did not identify any significant outliers or an
increased percentage of responsive patients. However, nearly all
VARIMA IRF plots with a significant response (either PRx on an
ARV or vice versa) had a Marshall CT score of 4 or higher.

4 DISCUSSION

We compared cerebrovascular reactivity as measured through
PRx with various ARVs like HRV, BPV and BRS. We evaluated
underlying behaviors by employing complex time-series analyses,
like: ARIMA, VARIMA, IRF plots, Granger causality testing, and
hierarchical clustering. Through this evaluation of PRx and
ARVs, some exploratory insights into the association in
physiological responses were illustrated. The preliminary
evidence supports the idea that certain ARVs may have a
clinically relevant association with impaired PRx. Further,
results here help outline the framework for the role that
systemic autonomic response has on cerebral autoregulation.
However, the insights here must be tempered by the following
limitations inherent with the use of any continuous ABP
waveform method but in particular those of a spectral nature.

Foremost is the fact that significant changes to HRV, BPV or
BRS may have occurred due to concomitant incidents outside of

physiological autonomic response. In order to limit this, we
followed the outlined method to achieve an optimal HRV,
which are; signal capturing should allow signal reconstruction
without amplitude and phase distortion, individual subjects
should be recorded under fairly similar conditions and
environments, and complete signals should be carefully edited
using visual checks (Electrophysiology, 1996). Patients were all in
the ICU with TBI, and were sedated, intubated and were on
volume control mode of ventilation, with constant PEEP, during
the course of cerebral physiologic data collection. The
sympathetic nervous system seems to attenuate the CO2-
induced increases in CBF (Jordan et al., 2000), which can be
mediated by ventilation in the ICU. Though it has been noted that
powerful actions of mechanical ventilation induces periodical
modifications of the intrathoracic pressure, modulating venous
return which has shown to alter cardiovascular and
cerebrovascular interactions (Innes et al., 1993; Elstad et al.,
2011; Porta et al., 2021). With literature assessing the
relationship between PEEP and cerebral reactivity in pigs,
demonstrating that static PEEP improved the assessment of
impaired/intact cerebrovascular reactivity (Brady et al., 2012;
Fraser et al., 2013). Furthermore, the ABP changes slower then
30 s were linked to PRx, with improved consistency, when PEEP
was constant (Fraser et al., 2013). Taken together, this highlights
the need for more study between respiratory control and vascular
influences. Finally, when the rate of change in blood pressure or
cardiac output is rapidly altered, cerebral autoregulation has a
reduced ability to regulate CBF (Levine et al., 1994; Zhang et al.,
2002; Ogoh et al., 2005; Ogoh et al., 2007). Though it is impossible
to limit all situations of extreme systemic circulatory response in
the ICU, as part of critical TBI targets, ICP and cerebral prefusion

FIGURE 2 |Granger Causality p-value Comparisons (n = 47). The bar graphs show the number of significant Granger Causality p-values of PRx on an ARV and an
ARV on PRx, in this way the impulse that has more significant responses may be considered to have a greater influence on causality. Image (A) shows all BPV and
Baroreflex, (B) shows all HRV. ARV, autonomic response variable; BPV_D, standard deviation of diastolic blood pressure variability; BPV_M, standard deviation of mean
blood pressure variability; BPV_S, standard deviation of systolic blood pressure variability; HRV, heart rate variability; HRF_HF, heart rate variability high frequency;
HRV_LF, heart rate variability low frequency; HRV_LF_HF, heart rate variability ratio between low/high frequency; HRV_RMS, heart rate variability root mean square;
HRV_TOT, heart rate variability total; HRV_VLF, heart rate variability very low frequency; PRx, pressure reactivity; SBPV_HF, spectral blood pressure variability high
frequency; SBPV_LF, spectral blood pressure variability low frequency; SBPV_TOT, spectral blood pressure variability total.
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pressure are kept in moderate ranges (Carney et al., 2017). With
this in mind the results can be summarized as the following.

First PRx, appears to causally impact ARVs as displayed
through Granger causality, with the IRF plots of ARVs on
PRx demonstrating a greater change then the inverse. This
implies that derangements in cerebrovascular reactivity may,
in turn, cause fluctuations in systemic circulatory autonomic
responses. However, based on IRF results, any fluctuations in
systemic circulatory autonomic responses result in larger
derangements to cerebrovascular reactivity than the inverse. In
a past study that assessed MAP and CBF, there is a slight
bidirectional interaction between MAP and CBF but MAP
mostly had a unidirectional impact on CBF (assessed over
~2 min windows) (Schiatti et al., 2014). Further in patients
either in a normal or tilt table posture, there was association
between MAP and CBF (Bari et al., 2017). Thus, underlying
patient characteristics could influence the directionality of the
relationship between cerebrovascular reactivity and autonomic
function.

Second, certain ARVs like BRS, HRV_LF_HF and HRV_VLF
demonstrated a directional impact on PRx as assessed through
Granger causality and a strong impulse response in PRx, in over
10% of patients (n > 5). This implies that autonomics may, in fact,
be responsible for causing derangements in cerebrovascular
reactivity and may be important in achieving optimal CBF.
Furthermore, from the associated nature of BRS, HRV_VLF
and HRV_LF_HF, the sympathetic autonomic efferent
response may be the primary autonomic factor associated with
PRx response (Lindvall et al., 1978; Karemaker, 2017). This
however is still up for debate as previously stated the direct
interpretation of ARV response is limited, with the ARV being
most commonly associated with sympathetic response
(HRV_LF) remaining similarly connected to PRx as other
ARVs. This may be due to the limited number of patients and
requires further evaluation.

Despite this, previous literature has linked PRx to HRV_LF
(Sykora et al., 2016), with other studies that demonstrated
HRV_LF and PRx independently correlated with outcome

FIGURE 3 | Example of Hierarchical Clusters of Two Patients. Hierarchy cluster example from two patients, the data is normalized, and the distance between the
variables is Euclidean. The distance between two variables shows the height of the dendrogram where the two branches merge into a single branch, thus two variables
that diverge on the last branch may be more closely linked. BPV_D, standard deviation of diastolic blood pressure variability; BPV_M, standard deviation of mean blood
pressure variability; BPV_S, standard deviation of systolic blood pressure variability; HRF_HF, heart rate variability high frequency; HRV_LF, heart rate variability low
frequency; HRV_LF_HF, heart rate variability ratio between low/high frequency; HRV_RMS, heart rate variability root mean square; HRV_TOT, heart rate variability total;
HRV_VLF, heart rate variability very low frequency; PRx, pressure reactivity; SBPV_HF, spectral blood pressure variability high frequency; SBPV_LF, spectral blood
pressure variability low frequency; SBPV_TOT, spectral blood pressure variability total.
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(Lavinio et al., 2009; Gao et al., 2016). Moreover, sympathetic
nerves modulating resistance vessels tone has been demonstrated
(Baumbach and Heistad, 1983). As well the sympathetic tone
during spinal cord stimulation confirmed indirectly its role in
mediating the CBF (Visocchi, 2006; Visocchi, 2008). Likewise
CBF autoregulation is shifted towards higher blood pressure
levels during sympathetic activation (Bill and Linder, 1976;
Sadoshima et al., 1985). Furthermore, two independent studies
suggested that stimulation of the sympathetic nerves can extend
the limit of autoregulation (Fitch et al., 1975; MacKenzie et al.,
1979). Thus, derangements of sympathetic autonomics may, in
turn, interfere with cerebral vascular reactivity in certain patients.

However, previous work has demonstrated that HRV_HF can
predict impaired cerebrovascular reactivity (PRx > 0.2) (Lavinio
et al., 2009). Likewise, a study performed by Fedriga et al.
indicated that CBF is maintained by the baroreflex and the
parasympathetic autonomic response (as assessed by the
association of BRS and HRV_HF with the upper limits of ICP
values) during plateau waves of ICP (Fedriga et al., 2021a). In
conjunction with this, HRV_HF and BRS in the past have shown
a connection with ICP and cerebral perfusion pressure (Goldstein
et al., 1998; Ogoh et al., 2007; Kox et al., 2012; Hasen et al., 2019;
Fedriga et al., 2021a). However, the only situations where
HRV_HF (representing the parasympathetic autonomic
response) and PRx are connected is when cerebrovascular
reactivity is already impaired, for example, during extremes of
ICP elevation. In such states where ICP is at extreme levels or
cerebrovascular reactivity is heavily impaired, the natural
homeostasis of cerebral autoregulation is already heavily
deranged, and thus any subsequent variation in systemic blood
pressure (especially those of a higher frequency nature) would be
reciprocated in the ICP response. This may account for why
previous studies have linked the parasympathetic response to
cerebrovascular reactivity and encourages the idea that the
derangement of PRx is linked primarily to the sympathetic
response of the autonomic system. However, we must
acknowledge that the results found in this manuscript are
preliminary and require much further validation.

Finally, nearly all VARIMA IRF plots with a significant
response (either PRx on an ARV or vice versa) had a Marshall
CT score of 4 or higher. This may indicate intracranial injury
burden as a driver of the autonomic/cerebrovascular reactivity
relationships, which is in keeping with recent literature
supporting the strong association between diffuse acceleration-
deceleration injury patterns and the development of cerebral
autoregulation impairment/failure (Hiler et al., 2006; Zeiler
et al., 2018e; Zeiler et al., 2020e).

In summation, there appears to be a directional impact of PRx
on ARVs as assessed through Granger causality and IRF plots in
some patients. Despite corroboration through various statistical
approaches, the outcome of this study should be interpreted as
only a preliminary exploration into the interconnected nature
between ARVs and cerebrovascular reactivity. The responses
themselves are significantly heterogeneous from patient to
patient, with the IRF showing both positive and negative
responses in PRx values. Thus, future work continuously
analyzing PRx and ARVs would benefit from large cohorts

separated into key demographical groups, with the use of
clustering methodology to isolate homogeneous physiological
factors. Key among these groups would be patients with
impaired vs intact cerebrovascular reactivity. The heterogeneity
in patient response, coupled with the small cohort size, leaves
these statistical models quite limited in their overall assessment.

5 LIMITATIONS

As this was an exploratory analysis of the ARVs and PRx, many
overarching limitations could be assessed. First, this is a
retrospective analysis of a relatively small prospectively
collected dataset. As such, our findings should only be
considered exploratory and preliminary. Further, the results
here may not be generalizable to other TBI populations and
requires validation in larger multi-center high-frequency
physiologic datasets. Second, patient injury severity and
treatment heterogeneity could have influenced the physiologic
signal response and is something that will require more tailored
and refined datasets, with the use of clustering methodology to
isolate homogeneous physiological factors. Third, the nature of
these ARVs and their connection with cerebral autoregulation is
severely limited, with the individual variables themselves still up
to interpretation as to which aspect of the autonomic nervous
system they truly represent (Hayano and Yuda, 2019). Thus,
avenues that focus on the more extreme cases of autonomic and
PRx change may provide more useful insights as to the effect of
such variable responses, as demonstrated in the limited previous
literature on plateau waves in moderate/severe TBI cohorts
(Hasen et al., 2019; Tymko et al., 2019; Fedriga et al., 2021a;
Fedriga et al., 2021b). Likewise there is a known influence of
mechanical ventilation on ARV, and thus the evaluation of
patient populations outside of intensive care may allow for
more conclusive results.

Finally, the statistical methodology employed was
computationally tasking and, as such, implementing such
methodologies on larger cohorts would benefit from more
robust central computing services.

6 CONCLUSION

Using statistical methods like ARIMA, VARIMA IRF, Granger
causality and hierarchical clustering, we evaluated the temporal
relationship between ARVs and cerebrovascular reactivity (as
measured through PRx) in moderate/severe TBI patients.
Granger causality testing demonstrated inconclusive results, with
bidirectional relationships between PRx and ARVs in most of the
cohort studied. However, the ARVs of BRS, HRV_LF_HF and
HRV_VLF all demonstrated a stronger connection to PRx than
other ARVs, indicating that the sympathetic autonomic response
may be connected to cerebrovascular reactivity derangements.
Finally, BRS was consistently one of the most responsive ARVs
to PRx, possibly demonstrating a unique connection. However, this
work is exploratory and preliminary, with further examination
required to extract any underlying relationships.
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