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A distinguishing feature of many ecological networks in the microbial realm is the diversity
of substrates that could potentially serve as energy sources for microbial consumers. The
microorganisms are themselves the agents of compound diversification via metabolite
excretion or overflow metabolism. It has been suggested that the emerging richness of
different substrates is an important condition for the immense biological diversity in
microbial ecosystems. In this work, we study how complex cross-feeding networks
(CFN) of microbial species may develop from a simple initial community given some
elemental evolutionary mechanisms of resource-dependent speciation and extinctions
using a network flowmodel. We report results of several numerical experiments and report
an in-depth analysis of the evolutionary dynamics. We find that even in stable
environments, the system is subject to persisting turnover, indicating an ongoing co-
evolution. Further, we compare the impact of different parameters, such as the ratio of
mineralization, as well as the metabolic versatility and variability on the evolving community
structure. The results imply that high microbial and molecular diversity is an emergent
property of evolution in cross-feeding networks, which affects transformation and
accumulation of substrates in natural systems, such as soils and oceans, with
potential relevance to biotechnological applications.
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1 INTRODUCTION

Microorganisms have successfully inhabited both aquatic and terrestrial ecosystems on earth for
millions of years, and continuously evolved to an enormous diversity (Pedrós-Alió, 2006; Azam and
Malfatti, 2007; van der Heijden et al., 2008; Sunagawa et al., 2015; Thompson et al., 2017). This
immense ecological success is related to the observation that microorganisms are able to modify their
abiotic environment through the production of organic compounds. Thereby, due to their metabolic
activity, microbes act as ecosystem engineers and over the millennia have been able to completely
transform and alter the chemical environment on the planetary surface, with drastic consequences
for conditions of life and biogeochemical cycles (Falkowski et al., 2008). In the marine environment,
for example, microbial transformation of organic compounds is considered to have played an
important role in the production of refractory matter, creating a pool of dissolved organic material
that resists biodegradation over thousands of years and has accumulated in the oceans to a current
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reservoir of 700 Petagram carbon—with strong implications for
the global climate system (Dittmar and Stubbins, 2014; Dittmar
et al., 2015; Dittmar et al., 2021).

Based on their enormous diversity, and mediated by the
exchange of metabolites, microbial communities are forming
incredibly complex networks of ecological interactions
(Lozupone et al., 2012; Nannipieri et al., 2017). In many cases,
a substance that a species may or must use for its growth, is
excreted by another species as a byproduct, yielding syntrophic or
cross-feeding relationships (Hibbing et al., 2010; Morris et al.,
2013; Seth and Taga, 2014; Gralka et al., 2020). Recent evidence
suggests that such cross-feeding interactions should be a generic
feature of microbial ecology (Goldford et al., 2018) and it is
believed to be partly responsible for difficulties of cultivating a
large portion of microbial species occurring in natural habitats
(Tyson and Banfield, 2005). The full importance of cross-feeding
for microbial biodiversity is, however, still a matter of debate
(Foster and Bell, 2012).

One other defining characteristic of microbial communities
is their potential for fast evolution. Due to fast turnover times
and the possibility of lateral gene transfer (Jamieson-Lane and
Blasius, 2020) new mutations occur frequently even on
laboratory time scales (Craig MacLean, 2005). The potential
for rapid evolution of metabolic cross-feeding interactions was
convincingly demonstrated in a series of long-term
experimental studies with microbial populations (Helling
et al., 1987; Rosenzweig et al., 1994; Friesen et al., 2004).
This was also confirmed in model studies, showing that
cross-feeding should naturally emerge if waste products or
less valuable compounds are generated during the
metabolization of a primary resource (Doebeli, 2002; Pfeiffer
and Bonhoeffer, 2004). Additional evidence for naturally
occurring rapid evolution of new metabolic pathways comes
from observations of microbial degradation of organic
pollutants that have been introduced by humans only
decades ago (Copley, 2009). For instance, in the marine
environment, the increased introduction of plastic waste
created a new ecological niche, the “plastisphere”, which
serves as colonization habitat for diverse microbial
communities, with some of them already having developed
enzymatic pathways that can hydrolyze and degrade certain
plastic polymers (Sudhakar et al., 2008; Zettler et al., 2013; Paço
et al., 2017; Amaral-Zettler et al., 2020).

In diverse microbial communities, such evolutionary
inventions will scale up, giving rise to ongoing alteration of
metabolic transformations. This dynamic is further
complicated by the fact that an altered chemical environment
will affect the fitness of individual organisms, leading to
extinctions of microbes that have lost essential substrates,
while the production of new metabolites provides niches for
either speciation or invasion of new microbial consumers—again
altering the chemical environment and yielding successive
extinction and invasion events. In this way, microbial and
molecular diversity mutually sustain each other, in the sense
that microorganisms diversify compounds by metabolite
excretion and overflow metabolism, and a diverse set of
metabolites offers new niches for evolving microbes.

From a theoretical point of view, the resulting closely
intertwined dynamics of microbial community structure and
the chemical environment can be understood as an adaptive
co-evolutionary network. Adaptive networks combine the
topological evolution of the network with dynamic changes in
the states of the network nodes. They are known to be capable of
self-organizing towards critical behavior, spontaneous division of
labor, and the formation of complex topologies (Gross and
Blasius, 2008) and arise in a large number of areas, including
biological and epidemiological systems (Gross et al., 2006). In
order to gain an understanding of the resulting complex co-
evolutionary dynamics in such systems, theoretic approaches
have proven to be a powerful method. One of the most
influential conceptual models of large-scale biological co-
evolution in this context is a model introduced by Bak and
Sneppen (Bak and Sneppen, 1993), which directly assigns a
new random value for the fitness of the least fit population
and all interacting populations, mimicking the replacement of
the former and the alteration of its interactions. Later, Solé and
Manrubia proposed a similarly simple model of an ecological
network, considering a more continuous drift of properties, and
ancestral relations between populations (Solé, 1996; Solé and
Manrubia, 1996). Just as the Bak-Sneppen model, it assumes a
fixed number of species, but also models the pairwise interactions
between species. Nunes Amaral and Meyer (Nunes Amaral and
Meyer, 1999) then considered foodweb models and allowed their
size and depth to vary, driven by the processes of extinction and
speciation.

These conceptual models, based on simple statistical rules,
focused on determining the distribution of extinction cascade
sizes. They did not, however, allow to simulate the time
dependence of consumer, and resource densities. This is
possible in another class of models that extend classical
consumer-resource models (Tilman, 1982). Besides including
resource consumption, models of this class also consider the
exudation of compounds by different consumer populations. In
turn, these products provide resources available to other
populations, which possess metabolic capabilities for
consumption. We denote the resulting bipartite network of
consumers and resources, in which resource-to-consumer links
represent consumption and consumer-to-resource links
represent production, as cross-feeding networks (CFN).

The analysis of CFN models received an increasing attention
in the past few years (Germerodt et al., 2016; Butler and O’Dwyer,
2018; Goldford et al., 2018; Goyal and Maslov, 2018; Marsland
et al., 2019; Mentges et al., 2019; Marsland et al., 2020a; Oña and
Kost, 2020). The usual approach for assembling a model
community in CFN models is the creation of a meta-
population pool, holding the full entirety of existing species. In
this step, structural assumptions regarding feasible substrate
transformations and consumer traits take effect. Here,
energetic and stoichiometric relationships between different
compounds or correlations between different metabolic
capacities may be considered. This step is then followed by
placing a subset of species in a given environment and
applying environmental filtering to determine a resulting CFN,
which then could represent observed patterns in natural systems
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(Goldford et al., 2018; Marsland et al., 2019; Mentges et al., 2019;
Marsland et al., 2020b).

These studies, however, did not consider evolutionary
dynamics. In turn, most of the experimental and modeling
studies concerned with the evolutionary emergence of cross-
feeding were restricted to situations where only two
consumers species interact (Doebeli, 2002; Pfeiffer and
Bonhoeffer, 2004; Preussger et al., 2020). An exception is
the study of Goyal and Maslov (Goyal and Maslov, 2018),
who modeled how a trophic structure involving many, mostly
hierarchically organized, consumers can arise from metabolite
leakage. In their model, a one-to-one relationship is assumed
for consumer species and resources, which restricts the degree
of reciprocate interaction in the generated networks. In the
progress of the evolution, larger changes become rarer and
rarer in the model, as the system develops towards a saturated
or optimized state. Besides the work of Goyal and Maslov, the
effect of evolutionary processes on complex CFNs
has—according to our state of knowledge—not been studied
in detail yet.

Given the commonness of CFNs in natural systems (Seth and
Taga, 2014), understanding the evolutionary dynamics of CFNs
and separating between internal and external variability is crucial.
Is the continuous saturation observed in the model of Goyal and
Maslov an inherent property of the evolution of CFNs? Or is it a
result of the models simplifications, such as the limitation of the
trophic dependencies of a consumer to a single resource? In natural
environments, microbial consumers thrive on a variety of different
substrates, and implying a higher in-degree of the consumer nodes in a
network representation than assumed in (Goyal and Maslov, 2018).

In our work, we consider the dynamics of an evolutionary
CFN model allowing higher diversities of the consumed and
released resources. Without considering the underlying
biochemical foundations, we study the emerging network
structures, and the time course of their evolution. Our
protocol is capable of describing the appearance of novel
resources and the corresponding rise of novel metabolic
capabilities to exploit these. We report results of several
numerical experiments and provide an in-depth analysis of the
evolutionary dynamics. Further, we compare the impact of
different parameters, such as the assumed metabolic efficiency,
versatility, and variability on the evolving community structure.
Our findings show that a complex ecological system, which is
subject to persisting turnover even in stable environments, can
arise from simple assumptions.

The paper is organized as follows. In Section 2, we introduce
the model, which comprises a formalism for the calculation of
stationary flows in a CFN and a protocol describing the
evolutionary development of the network. In Section 3, we
provide theoretical results on the maximal system capacity and
a numerical analysis of the evolutionary process. In particular, we
determine the parameter dependence of stationary flow patterns,
as well as structural properties, and biodiversity measures of the
evolving system. In the final Section 4, we discuss the relation of
our model and its displayed characteristics to previous
experimental and modeling studies.

2 MATERIALS AND METHODS

2.1 Stationary Flow in Cross-Feeding
Networks
Cross-feeding networks are directed bipartite networks
composed of two different types of nodes: consumers and
resources, cf. Figure 1. Thus, two different link types and,
correspondingly, two different types of resource flow exist in
the network. Links directed from resources to consumers indicate
the uptake of a resource by the corresponding consumer, whereas
a link from a consumer to a resource describes the release of the
resource by the consumer. Deliberately, we do not specify a
physical unit for the flow, since the model is generic with
respect to different choices thereof. For instance, as a
physiological equivalent of the network flow, one may
consider moles of carbon transferred from one node to the
other, and or being exported to inorganic or accumulating
reservoirs. Although we employ this notion of mass flow
throughout this work, one could likewise consider the energy
bound in the chemical composition of compounds to constitute
the unit of measurement (Goyal and Maslov, 2018). We refer to
the flow from resources to consumers as “uptake” and to the flow
from consumers to resources as “release”. More formally, in a
given CFN we denote the set of all resources byM and the set of
all consumers by N . The uptake rate of resource j ∈ M to
consumer i ∈ N is then denoted by Jj→i and the release rate of
resource j from consumer i as Fi→j, see Figure 1B. The total
uptake rate at consumer i is the sum of all individual uptake rates.

Jini ≔ ∑
j∈M

Jj→i (1)

Besides the release originating in consumers, we allow external
supply flows sj at each resource, such that the total inflow rate at
resource j is

Fin
j ≔ sj + ∑

i∈N
Fi→j. (2)

Our modeling approach assumes a given set of consumers at
each moment in evolutionary time. Consumers have specific
metabolic profiles, which determine their interaction with the
present resources. Each consumer i is equipped with a vector of
resource affinities ui,j, j ∈ M and a vector of release proportions
ϱj,i, j ∈ M, with ∑j∈Mϱj,i � 1.

The share σ i,j ∈ [0, 1] of resource j acquired by the i-th
population is considered proportional to its affinity for that
resource under the requirement that ∑i∈N σ i,j � 1. This gives

σ i,j � ui,j∑k∈Nuk,j
. (3)

If no consumer exists for a specific substrate at a given time,
i.e., ui,j ≡ 0 for all i ∈ N , we set σi,j to zero for all i. In general, a
certain fraction γi,j ∈ (0, 1) of a consumed resource is
remineralized during respiration, while a fraction ηi,j = 1 − γi,j
maintains an organic form, which subsequently re-enters into the
resource cycle. For simplicity, we assume homogeneous recycling
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fractions ηi,j ≡ η, and thus obtain the resulting uptake flow Ji→j

from resource j to consumer i as

Jj→i � ησ i,jF
out
j , (4)

where Fout
j is the total consumption rate of resource j. In the

following, we consider stationary flows, where for each node,
the inflow and the outflow balance, such that Fout

j � Fin
j , cf. (2).

Therefore, we omit the superscripts in the following and simply
write Fj, resp. Ji, for the stationary flows through resources, resp.
consumers. Using Eq. 1 and Eq. 4, the flow at consumer i is

Ji � η ∑
j∈M

σ i,jFj. (5)

The composition of release by consumer i is assumed to follow
the release proportions ϱj,i, j ∈ M. We assume that the flow Fi→j

is proportional to the stationary flow Ji through consumer i
multiplied by the proportion ϱj,i released to resource j, i.e.,

Fi→j � ϱj,iJi. (6)
Here, we assume the products to be independent of the composition
of the consumption. Combining Eq. 2, Eq. 5, and Eq. 6, we find

Fj � sj + ∑
i∈N

ϱj,iη ∑
k∈M

σ i,kFk.

Or in vector, resp. matrix, notation:

F � s + η R◦S( )F, (7)
with vectors F � (Fj)j∈M, s � (sj)j∈M, and matrices R �
(ϱj,i)j,i∈M×N and S � (σ i,j)i,j∈N×M. The concatenation T≔R◦S
of uptake and release partitioning represents the resource
transformation matrix in the projection of the bipartite system
to the unipartite resource space.

Solving for F yields

F � Id − ηT( )−1s (8)
Since the mapping T represents merely a redistribution of the
flow across the resource network, it will never increase the total
flow, i.e.,

Tv‖ ‖1 ≤ v‖ ‖1, (9)
for all v ≥ 0, where ‖v‖1 � ∑j|vj| denotes the L1-norm of v.
Because 0 < η < 1 holds, the inverse of Id − ηT exists and we may
rewrite (8) as

F � ∑∞
n�0

ηnTns. (10)

Thus, the internally generated network flow is obtained by the
iterative transport of the supply flow through the network. Note
the formal relationship of Eq. 7 to the definition of the weighted
Katz centrality (Katz, 1953; Newman, 2010) associated with the
resource transformation matrix T. This has a simple
interpretation: the stationary resource flow through consumer
i is proportional to the weighted sum of flows through the
network neighbors of i plus the input flow from the external
source.

2.2 Evolutionary Generation of
Cross-Feeding Networks
While in the previous section we determined the stationary
resource flow for a given CFN, we now define the rules that
lead to evolutionary changes in the CFN. In our protocol, the
change of the CFN within one evolutionary time step is
determined by two stages: 1) The randomized generation of a
new consumer species with an ancestor in the resident

FIGURE 1 | Conceptional diagram of the CFN model, describing the flow of organic matter (arrows) between pools of resources (red rectangles), and microbial
consumers (blue circles). (A): Aggregated flows between different pools. Organic matter is supplied from an external source to the resource pool. A fraction η of
consumed resources is assimilated for microbial growth, while the remainder is lost from the system and remineralized to inorganic carbon. Assimilated resources are
eventually recycled and enter the resource pool in transformedmolecular composition. (B): Fine grained scheme of the bipartite network of assimilation [red arrows,
cf. Eq. 4] and release [blue arrows, cf. Eq. 6].
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community, and 2) the calculation of the impact of its
introduction on the CFN, including eventual extinctions and a
modification of the network flow pattern.

The procedure assumes that the evolutionary time scale,
where adaptations of the metabolic capabilities and
introductions of new consumer species occur, is separated
from the timescale of ecological processes that lead to an
equilibration of the network flow. Furthermore, we avoid
the calculation of population densities and resource
concentrations by describing the system exclusively by the
network flow.

In the first stage, a new consumer species i is introduced into
the community. It is assigned an ancestor a in the resident
community, which is chosen at random, but with a probability
weight proportional to Ja. The descendant k’s characteristics are
then altered on the basis of the ancestor’s. More precisely, given
the affinities ua,j and release fractions ϱj,a of the ancestor, the
corresponding characteristics of the descendant are set
proportional to

~uk,j ~ max 0, ua,j 1 + εj,1( ) + εj,2( ), and ~ϱj,i
~ max 0, ϱj,a 1 + δj,1( ) + δj,2( ), (11)

where εj,1 and δj,1 are independently, uniformly distributed in
(−α, α) and small equalizing drifts εj,2 ≥ 0 and δj,2 ≥ 0 act upon the
present values, i.e.

εj,2 � ε*> 0, for ua,j > 0,
ε* � 0, for ua,j � 0,{

and

δj,2 � δ*> 0, for ϱj,a > 0,
δ* � 0, for ϱj,a � 0,{

with random variables ε* and δ* drawn from a uniform
distribution U(0, β) with drift intensity β. The definite values
for the characteristics of the new consumer are generated by
drawing them according to Eq. 11 and normalizing the resulting
totals as

uk,j � �u · ~uk,j∑j~uk,j
, and ϱk,j �

~ϱk,j∑j~ϱk,j
.

Limiting the total affinity may be considered to represent the
limited investment each consumer may place on transporter
enzymes and other metabolic machinery associated with the
utilized resources (Posfai et al., 2017; Mentges et al., 2019).

A second possible substep of the first stage, is executed with a
probability pu. Here, we allow for a qualitative change of the new
consumer’s metabolism by substituting one utilized resource j, i.e.
ui,j > 0, for another j′ with ui,j′ = 0. That is, after the substitution
resource j′ takes the affinity formerly assigned to j, resulting in ui,j= 0
and ui,j′ > 0. In contrast to the gradual changes of affinities and release
fractions in Eq. 11, this qualitative adjustment of metabolism mimics a
mutation allowing the species to exploit a novel resource. Similarly, with
a probability pϱ, we alter the release configuration to substitute an old
product for a new one, drawn at random from a global resource poolG,

representing the entirety of possible organic compounds produced in
metabolic processes. This step may introduce resources into the system
thatwere not present before.As a result, a potential nichemaybe created
for future species to settle.Note, that this procedurefixates thenumberof
positive affinities nu � # ui,j > 0{ } and of nϱ � # ϱi,j > 0{ } for all
consumers of an ancestral lineage. Hereafter, we assume these
numbers to be equal for all consumers, and refer to them as “uptake
diversity” and “release diversity,” further considering them as model
parameters.

In the second stage of an evolutionary time step, we add the
newly generated consumer species to the resident community N
to obtain an extended community N ′. In order to measure the
fitness of the present consumers species, we calculate the
stationary uptake flows J � (Ji)i∈N ′ using Eq. 5 and Eq. 10.
We assume that a species, whose uptake flow falls below a
threshold μ > 0, faces an acute risk of extinction. That is, if
one or several species exist, such that

Ji < μ, (12)
the species with lowest Ji below μ is considered extinct and is
removed fromN ′, implying an alteration of the flow pattern. The
proposed protocol then successively updates the stationary flow
and removes the consumer with lowest flow. This procedure is
iterated until all uptake flows are larger than μ. The resulting CFN
is considered to represent a stable community, which now serves
as the initial point for the subsequent evolution step. Accordingly,
the community evolves in discrete time steps, yielding a sequence
of stable CFNs C0, C1, C2, . . ., where each step introduces a new
consumer species and evaluates whether it can successfully
establish.

Figure 2 illustrates an evolving CFN at different steps in
evolutionary time. It is obtained from the stepwise evolution
starting at a single species at t = 1 up to N = 95 species at t =
400. The evolutionary algorithm operates with parameters nu =
nϱ = 3 and pu = pϱ = 0.2, and a single resource is externally
supplied. Note that the single founding consumer species (blue
dot in the leftmost graph) is also capable to consume nu = 3
different resources, although only one supplied resource is
present and depicted, initially. In the subsequent steps,
additional consumers are generated. As metabolic novelties
evolve, new compounds (red squares) are released and
metabolized by the growing community. Clusters of
consumer nodes can be observed, which share similar
metabolic properties. In Section 3.4, we study the clustering
in more depth.

3 RESULTS

3.1 Theoretical System Capacity and Total
Flow
Due to respiration losses and the finite external supply rate, the
number of consumers, which can be sustained in the CFNmodel,
is finite. To determine an upper bound for the number of
consumers, let us consider the total flow rate �F ≔ ‖F‖1 for a
given total supply rate �s ≔ ‖s‖1. By Eq. 10 we have
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�F � ∑∞

n�0η
n R◦S( )ns

����� �����1
≤ ∑∞

n�0
ηn R◦S( )ns‖ ‖1

Then, (9) implies

�F≤ ∑∞
n�0

ηn�s � �s

1 − η
� : Fmax. (13)

Note that by definition ‖Rw‖1 � ‖w‖1 for all w ≥ 0, because all
flow assimilated into consumer pools is released into resource
pools again. Thus, the inequality Eq. 13 may become strict, if
‖Sv‖1 < ‖v‖1. This would mean that not all of the resource flow is
consumed. A resource j without consumers but positive inflow Fj
> 0 will eventually accumulate and be involved in other processes.
This may either be an external degradation, which we do not
consider here, or an integration into the recycling process by the
arrival of a consumer, which is able to utilize the resource j. These
accumulating resources are treated as sinks in the model. The
same holds for flow entering the inorganic pool through
respiration, cf. Figure 1. Denoting the set of accumulating
resources by A, the total accumulation flow is then

A ≔ ∑
j∈A

Fj. (14)

If all resources were consumed, an additional flow of ηA would
enter the system via the consumption of the accumulating
resources and generate an amount

Fmax − �F � ηA

1 − η

of additional flow until its complete respiration. Taking this into
account, we can state more precisely:

�F � Fmax − ηA

1 − η
� �s − ηA

1 − η
. (15)

By definition, the total uptake flow �J ≔ ∑i∈N Ji is given by

�J � η �F − A( ) � η

1 − η
�s − A( ). (16)

Because a consumer population is only considered persistent if
Eq. 12 holds, the total number of consumers cannot exceed �J/μ.
That is,

N
∣∣∣∣ ∣∣∣∣<Nmax ≔

η

μ 1 − η( ) �s − A( )⌊ ⌋, (17)

where �x� denotes the integer part of x ∈ R+. To obtain an
estimate independent of the network structure, one may formally
set A = 0 in Eq. 17.

3.2 Simulation Results
In the following, we consider the simulation of the evolution of
a CFN according to the protocol defined in Section 2 with
parameters as defined in the caption of Figure 3. We assume
that the external supply enters the pool of resource j = 0 at a
fixed rate s0 ≡ 1.0, mimicking a static environment, which
allows us to study the internal dynamics of the CFN. Panels
A–F of that figure show the evolution of several measures for
an evolving CFN initialized with a random founding species,
which has positive affinities for the supplied substrate (and two
other substrates not present at the beginning of the
simulation). Its release diversity is set to nϱ = 3 and is
inherited to all its descendants. The time series are split up
into a magnified view of the initial phase and a larger, later
interval when the system exhibits statistically stationary
fluctuations.

3.2.1 Richness
Panel A of Figure 3 illustrates the development of the
consumer and substrate richness, Nt � |Mt| (blue, solid
curve) and Mt � |Mt| (red, dash-dotted curve), where the
subscript t references the state at step t. The dashed, blue
curve shows the upper bound Nmax to the total population
size, see Eq. 17. For the consumer and resource richness, we
can observe an initial increase, which slows down until
stationary fluctuations around Nt ≈ 125 and Mt ≈ 65 are
reached. After the initial filling of the system, the consumer
and resource richness exhibit bounded fluctuations around
those values.

FIGURE 2 | A growing cross-feeding network. Starting from a founding consumer (leftmost panel), new consumers (blue dots) are added sequentially leading to an
increasing community size N. As novel metabolic capacities evolve, the number M of different resources (red squares) increases. The symbol sizes are scaled
proportional to the stationary flow passing through the corresponding network node. Uptake links are drawn as magenta arrows, release links as blue.
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3.2.2 Network Flow
As shown in Panel A, the realized richness remains below the
upper limitNmax. This implies that either the uptake rates of some
consumers significantly exceed the subsistence flow, i.e., Ji ≥ μ, or
some of the network flow leaks out of the system into resources,
which are not consumed, i.e., A > 0. Panel B shows that both is the
case, in general. Neither does the accumulation flow A drop to
zero, nor does the “surplus flow” ∑i∈N (Ji − μ). At step 350
(indicated by the orange vertical line), a redirection of
previously accumulating resources back into the system results
in a greatly increased surplus flow, as can be seen by the “jumps”
in both quantities in that step. This corresponds to the entrance of
a new consumer with the metabolic ability to degrade a resource
previously contributing to the accumulating fraction of the flow.
Similar events occur regularly also in the evolved states at
later times.

3.2.3 Evolutionary Potential
The fraction of flow into accumulating resources represents a
measure for the potential of novel metabolic capabilities to
allocate additional resource flow for their bearer. Further, the
fraction of surplus flow corresponds to the fraction of flow which
can be consumed by additional consumers without inducing a
displacement of present consumers. However, if the surplus flow
of a specific consumer i falls towards zero, it faces the risk of being
displaced by another consumer, which has a superior
combination of affinities. Any offspring k, whose affinities
would increase the uptake in comparison to consumer i has
the potential to do so. Let us assume the substitution of consumer
i by a similar consumer k. Ignoring nonlinear effects and impacts

from changing network flow patterns, a first-order estimate can
be given for the total uptake flow Jk acquired by consumer k in
terms of the affinity differences δj≔uk,j − ui,j, by

Jk ≈ Ji + ∑
j∈M

δj
dJi
dui,j

. (18)

Thus, to measure the potential for increasing the fitness of
consumer i, one may consider the redistribution of its
affinities ui,j which maximizes Eq. 18. Recall, that the
admissible variation of the affinities is constrained to preserve
the total affinity �u � ∑j∈Mui,j. For simplicity, let us assume that
the variation keeps the set of uptake capabilities fixed, that is, only
ui,j with ui,j > 0 are allowed to vary. Then, the highest potential
increase in the uptake rate by such a redistribution is achieved by
shifting the preference from ui, min with minimal dJi

dui,min
to ui, max

with maximal dJi
dui,max

. Accordingly, an indicator for the potential
evolutionary improvement would be the quantity

ΔJi � dJi
dui,max

− dJi
dui,min

. (19)

We call ΔJi the “evolutionary potential” of consumer i and we
report its average over the whole ensemble N in Figure 3C.

A straightforward calculation shows that

dJi
dui,j

� η 1 − σ i,j( )Rj,

where the value Rj = Fj/∑nun,j.
The convergence of ΔJi to zero would indicate an evolution

towards an optimal, saturated system state where the present

FIGURE 3 | (A–E): Different community measures over the course of a simulated evolution. The initial time interval of steps 0 to 500 is magnified, with a dashed
orange vertical line indicating step 350. An interval [500, 9.5 × 104] is skipped and the interval [9.5, 10] × 104 is displayed at the right side. See the main text for the
definition of the shown quantities. System parameters are nu = nϱ = 3, η = 0.7, μ = 0.01, pu = pϱ = 0.2, α = 0.2, δ* ~ U(0, α/nϱ), ε* ~ U(0, α/nu), �s � 1.0 (with only one
resource being supplied), and #G � 250. A single founding consumer was inserted at initialization.
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ensemble of consumers can hardly be invaded. However, in our
simulations, it fluctuates around finite values, indicating an
ongoing co-evolution, which constantly creates new niches,
and results in a persistent community turnover with time.
Thus, despite a constant supply flow, the system does not
reach an evolutionary stable community.

3.2.4 Diversity
Figure 3D in Figure 3 shows measures for the genotypic and
functional diversity of the consumer community. We calculate
these diversity indices based on the pairwise species similarities
zi,k, i, k ∈ N , as proposed by Leinster and Cobbold (2012). To
determine the pairwise similarities, we calculate the cosine
similarity of either the species’ affinities (ui,j)j∈M to obtain a
genotypic quantity, or of the realized uptake flows (Jj→i)j∈M,
which gives a measure of functional diversity. Given the pairwise
similarities, the ordinarity of a species i ∈ N is defined as

�zi ≔ ∑
k∈N

zi,k. (20)

The diversity D for the whole community is calculated as the
inverse of the average ordinarity, i.e.,

D ≔
N∑i∈N �zi

. (21)

We note that 21 corresponds to the diversity of order q = 2 as
defined by Leinster and Cobbold (Leinster and Cobbold, 2012).

In the simulation run shown in Figure 3, both diversity
measures fluctuate relatively synchronously around an
average value of about 2.1. This relatively low value,
compared to the average consumer richness of about 125
(see Figure 3A), can be explained by the fact that a large
cluster of consumers concentrates its efforts on the
consumption of the only supplied resource j = 0, which has
the highest inflow of F0 ≳ 1.0, and a few produced resources,
which have higher availability. On average, two thirds of the
consumers exhibit an uptake flow, which is composed to more
than one half from the supplied resource. See also Figure 4A,
which describes the relationship of evolved affinities and
substrate flows, and is discussed below.

Figure 3E shows the evolution of the average uptake diversity
of individual consumers. As a measure of consumer i’s position
on a range from being a single resource specialist or a generalist,
we calculate the effective richness (Leinster and Cobbold, 2012)

Reff
i � exp − ∑

j∈M

ui,j

�u
ln

ui,j

�u
( )⎡⎢⎢⎣ ⎤⎥⎥⎦,

of its relative affinities pj � ui,j
�u , j ∈ M, or inflows pj � Jj→i

Ji
,

respectively. A value of Reff
i ≈ 1 indicates that consumer i is a

single resource specialist while higher values indicate that the
consumer does, or may, thrive on different resources. The
maximal possible value for Reff

i equals the uptake diversity
nu = 3. In the shown simulation, a community average of about
2 establishes, indicating that, besides the fraction of consumers
specializing on the supplied resource, others exhibit more

generalist properties. See also Figure 4B, where we show
the distribution of the average affinities of consumers over
specific resources.

The relation of the total effort dedicated to the competition for
a resource and its availability is illustrated by the statistics shown
in Figure 4A. Here, each red dot shows the relation of the total
affinity

Uj ≔ ∑
i∈N

ui,j (22)

to the stationary flow Fj for a specific resource j at a specific time
step t from a sequence of community states (N t)t∈T at 201
equidistant steps

T � 50 000 + k · 250 | k � 0, 1, . . . , 200{ } ⊂ 5, 10[ ] × 104. (23)
The overlaying boxplot summarizes the distribution of points for
the corresponding bins, indicating the median and the 25–75%
quantile range within the box and the 5–95% range within the
whiskers. A linear regression to the double log data restricted to
resources with Fj > 0.001, yields an exponent ≈ 1.0 for the
dependence of total affinity on total flow, indicating a strong
linear correspondence. This means that the total effort,
i.e., affinity, in the community, dedicated to the uptake of a
resource is linearly proportional to its availability. Note, that in a
dynamical consumer-resource model with specific uptake rates
ui,j, this linear distribution would correspond to a homogeneous
distribution of stationary concentrations Rj* � Fj/Uj.

Similarly, as visible in Figures 4C,D, the number of consumers
increases with the availability of the resource, and the availability
of a resource increases with the number of associated producers.
For the latter relation, the supplied resource forms an exception,
as its inflow is high without necessarily having a large number of
producers.

In Figure 4B, we show the distribution of the average affinities
of consumers over specific resources. We observe an interesting
pattern of transition from high to low average affinities
depending on the resource flows Fj. For the supplied resource
the average affinity is close to one, indicating specialist
consumers. On the other hand, for resources with low inflow,
we observe mainly low affinities. In the mid range, though,
substrates may bear both, specialists and generalists.

In Figure 4F we show the distributions of logarithmic in-
degrees and out-degrees of the resources node, i.e., of the number
of consumers and producers associated with present resources.
Here, we observe an approximate power law scaling of relative
frequencies with exponents ≈ − 1.28 (for in-degrees) and ≈ − 1.08
(for out-degrees) up to degrees ≤ 50. The appearance of higher
frequency of out-degrees in the range ≈ [70, 120] corresponds to
the persistently high number of consumers associated with the
supplied substrate.

Figure 4E shows an exemplary diagram of rank vs stationary
flow in the last community N t of the simulation run shown in
Figure 3. It is worth noting that the fractions of flow allocated to
the different consumers are very evenly distributed with Ji ≳ μ for
all i ∈ N t (the Pilou evenness is ≈0.993). This corresponds to a
relatively high degree of saturation in the system, where almost all
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present consumers are easily driven across the extinction
threshold at Ji = μ by newly arriving consumers. Figure 5C
shows that this does not lead to extinction cascades of arbitrary
sizes, though, as consumers fulfilling Eq. 12 are not removed at
once. Instead, the removal is performed successively and the
stationary flows are updated after each removal. This reduces the
competition gradually until Ji ≥ μ for all remaining consumers.

3.3.5 Displacement
During the simulation run shown in Figure 3, the consumer
richness saturates after an initial growth phase of the network and
fluctuates around finite values of Nt ≈ 125 < Nmax, where
Nmax(A � 0) � 233, cf. (17). This constraining of the richness
below its maximal theoretical value corresponds to a balance of
successful establishments of new species and extinctions of
previous residents. Figure 5A shows that the average
establishment success rates for different values of the
consumer richness is slightly decreasing. However, it is larger
than 0.5 for all community sizes observed in the simulation,
indicating that at least every second newly generated consumer is
able to establish for any of the observed community sizes. Hence,
the ratio of average extinction to establishment rate must increase
with larger resident community sizes N. Because extinctions can
only occur as a consequence to a new establishment, this is
equivalent to the extinction rate conditional to species
establishment exceeding one. See Panel B to observe, that this
conditional extinction rate (black curve) is relatively close to one
for a range of community sizes N ∈ [95, 150], which indicates
that the consumer richness drifts up and down within this
region. However, an increase of the average extinction rate
around N = 160 sets an upper limit to these fluctuations.
Here, only a few samples exist for N > 160, which causes
enlarged 95% credibility intervals (shaded hull of the
extinction rate curve).

For the observed extinction events, we may differentiate
between two types of extinctions. Firstly, we classify events as

competitive exclusion if the extinct consumer is a direct
competitor to the newly introduced consumer, i.e., extinct
and new consumer share at least one resource. Secondly, there
are indirect effects, which may cause extinctions by the altered
resource flow pattern at a different network location. For
instance, reduced resource flows may result due to
extinctions or increased competition for their producers.
We call the category of the latter phenomena “cascade
effects”. Figures 5B and D differentiate between these two
cases, showing the fraction of extinctions attributed to cascade
effects as lighter gray curves. The total fraction of extinctions
attributed to cascade effects in this sense is about 14.8%. It is
larger for steps where more than one consumer goes extinct.
The distribution of the extinction cascade sizes is shown in
Figure 5C. Here, the corresponding bars are shaded by the
fraction of extinctions attributable to the direct competition
with the new consumer. For comparison, these fractions are
annotated for selected bars. Fitting an exponential
distribution, we obtain a decay of cascade size frequencies
with an exponent of −0.27.

3.3 Parameter Sensitivity
In this section, we assess the effect of a number of selected
parameters on the evolution of the CFN. Figure 6 shows
various measures for an array of numerical simulation
experiments with specific parameter sets. Each row contains
information about four different experiments, which
implement a gradient for the value of a specific parameter, see
legend on the left. All other parameters were fixed to the values
stated in the caption of Figure 3. The reported quantities are
averaged over the step interval [5, 10] × 104.

3.3.1 Variation of the Recycling Fraction η
In the first sequence, cf. Figure 6A, we tested four different
values for the recycling fraction η, ranging from 0.3 to 0.8.
Recall that the flow scales with (1 − η)−1, cf. (13). This is

FIGURE 4 | Community and network statistics for the simulation run shown in Figure 3, taking into account steps t ≥ 50000. (A–D): Resource flows Fj(t), j ∈ Mt,
plotted against: A—the total affinity (22); B—the average affinity Uj(t)/Cj(t), where Cj(t) ≔ # ui,j >0, i ∈ N t{ } is the number of consumers of resource j; (C)—the number
of consumersCj(t); (D)—the number of producers Pj(t) ≔ # ϱj,i > 0, i ∈ N t{ }. (E): Rank vs. stationary flow diagram for consumers (blue points) and resources (red points)
in the community N t for t = 105. (F): Resource node logarithmic degree distributions: log (in-degree) density, i.e., #{Pj(t) � k}, as red crosses; log (out-degree)
density, i.e., # Cj(t) � k{ }, as blue dots. All community states N t, t ∈ T [see (23)], are aggregated in E.
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resembled by the observed consumer richness, which increases
with η, cf. Figure 6A (i). As a consequence of the higher
consumer richness and the corresponding diversity of
released resources, the number of different resources
increases as well. Less predictable, we also observe a clear
increase in the accumulation and as well in the surplus flow,
cf. Figure 6A (ii). The surplus fraction increases more than the
consumer richness, which means that, on average, a consumer’s
uptake flow has a larger buffering towards the extinction
threshold μ. This is not clearly reflected by any decrease in
the average extinction rate, which instead shows a slight
increase, cf. Figure 6A (vi). On average, the diversity of the
community and also the average evenness of assimilated
resources per consumer increase with rising η [cf. Figure 6A
(iii), (iv)]. This seems to be a consequence of the increasing
number of consumers dwelling on secondary, non-supplied
substrates, since we observe the same pattern of consumer
richness being correlated to community diversity and uptake
evenness across all sequences A–D. An associated effect is the
increase in the resource flow evenness, resulting from a higher
production flow through non-supplied resource pools, see
Figure 6A (v).

3.3.2 Variation of the Release Diversity nϱ
Similar as for the sequence A of varying recycling fraction η,
we find an increase in consumer and resource richness for

higher values of nϱ in sequence B. In contrast to A this
increase is more pronounced in the resource richness. The
latter seems intuitive: as each consumer produces a higher
number of resources, the total pool of resources grows. That
this leads to a higher consumer richness, seems to be a
consequence of a specific flow pattern, different to the one
in case A. While the consumer richness increases [see
Figure 6B (i)], the flow per consumer decreases and
likewise does the fraction of flow into accumulating
resources [see Figure 6B (ii)]. Thus, a higher percentage
of the flow is assimilated and more equally distributed among
consumers for higher values of nϱ. The reason for this more
efficient exploitation of the system’s resources seems to be the
increased stability resulting from the fact that produced
resources tend to be formed by more different producers.
Therefore, a single species’ extinction is less severely affecting
the environmental conditions, allowing the evolutionary
adaptation to keep the pace of environmental change. This
stability is also reflected in the significantly reduced extinction
rates for higher nϱ [see Figure 6B (vi)] and a decreased average
evolutionary potential (by a factor of ≈ 2.34, not shown). This
finding stands in contrast to the classic argument of May (May
2001) relating an increased diversity to a decreased stability, but
is in accord with recent findings in food web models where the
size of trophic cascades was reduced with the complexity of the
food web (Allhoff and Drossel, 2016).

FIGURE 5 | Displacement statistics for the simulation run shown in Figure 3; (A–C) take into account steps t ≥ 50000. (A): Average success rate for the
establishment of the new consumer generated in a step t given the community size Nt (green curve); observed distribution of Nt (blue curve). (B): Average rate of
extinctions given a successful establishment of a new species in dependence of the community size Nt. Black curve: total extinction rate; gray curve: extinctions due to
cascade effects. Shaded regions around the average rate curves represent central 95% credibility intervals [beta distribution for establishments in A, gamma
distribution for extinctions in B]. (C): Extinction cascade size distribution. Each bar represents the relative frequency for extinction cascades of the corresponding size; the
lightness level is determined by the percentage of extinctions due to cascade effects, i.e., non-competitive interactions. Exemplary values for these percentages are
stated explicitly. (D): Smoothed time series of consumer establishments (green), extinctions (black), the corresponding subset of non-competitive exclusions (gray), and
the loss rate of resources (red). Smoothing was performed with a Blackman window (size 15 for t ∈ [0, 500], size 100 for t ∈ [9.5, 10] × 104) as described in Ref. (SciPy
contributors, 2017).
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3.3.3 Variation of the Uptake Diversity nu
Regarding sequence C of Figure 6, one might expect, that an
increase of the uptake diversity nuwould have similarly stabilizing
consequences as an increased release diversity nϱ (see case B),
since a consumer could now be able to hedge its necessities across
a higher diversity of compounds. However, in contrast to case B,
the consumer richness decreases, while the average extinction rate
slightly increases. A difference between the parameters nϱ and nu
is that nu controls the dimension of the parameter space’s portion
most directly relevant to the consumer fitness, i.e., the value of its
uptake flow Ji. Thus, we conjecture that this is a potential source
for the increased instability of systems with increased uptake
diversity nu. Since the exploration of the affinity parameter space
is more difficult, this decreases the pace of evolutionary
adaptation. At the same time, the impact on environmental
conditions per extinction is, insofar it is controlled by nϱ, the
same in all considered scenarios of sequence C. Indeed, the mean
value of the average evolutionary potential Eq. 19 is maximal for
the case nu = 10 among all considered simulations and about 5-
fold as high as the value in the reference case nu = 3 displayed in
Figure 3.

3.3.4 Variation of the Global Resource Pool Size G
In Figure 6D, we have varied the size G � #G of the global
resource pool. For any given state of the CFN, an increase of the
global resource pool would lead to a higher expected number
Mt+1 of resources after the introduction of a new consumer.

Indeed, assuming a uniform probability of resources to be chosen
upon mutation, the probability for a new resource to be chosen as
a release product of the new consumer equals 1/G.
Accordingly, the probability that this choice falls into the
part of previously absent resources is (G −Mt)/G. This
suggests that the average resource richness would increase
with G. On the contrary, we observe no significant
dependence of the average resource richness with rising G,
see Figure 6D (i). The naive local analysis offered before fails
due to network effects that must be taken into account. In
fact, the emergence of a new metabolite creates an additional
flow into unused, accumulating resource pools, see Figure 6D
(ii). This accumulation remains until a consumer evolves,
which is capable to utilize the new resource. As new
metabolites emerge more frequently, they also vanish more
frequently in the statistically stationary state [cf. Figure 6D
(vi)]. This elevated turnover provides a less stable
environment. Given less time for adaption, which in turn
leads to a less efficient exploitation. In effect, the decreased
number of producers compensates the effect of increased
resource diversification rate at establishment events and the
resulting resource richness remains approximately constant.

3.4 Cluster Dynamics
In our framework, consumers may be more or less similar, or
even identical, to each other, and if compared on the level of
their metabolic characteristics. To characterize and compare
the structure within different communities and its change over

FIGURE 6 | Parameter dependence of macroscopic measures. The rows (A–D) each refer to the variation of a particular parameter [(A): recycling fraction η;
(B) release diversity nϱ; (C) uptake diversity nu; (D) global resource pool size G � #G]. Different colors indicate different values for the corresponding parameter
(see legends). If not indicated otherwise, all parameters are fixed to the values given in Figure 3. Bar heights in the columns (i)–(vi) show the mean values of different
observables in different simulation runs averaged in the step interval [9.5, 10] × 104, errorbars delineate an interval of two standard deviations around the mean. (i):
Average consumer and resource richness 〈Nt〉, and 〈Mt〉; (ii): Average total surplus flow 〈∑i∈N t

(Ji − μ)〉, and average accumulation flow 〈At〉, cf. (14); (iii) Community
diversity based on affinities and on uptake flows, cf. (21); (iv): Uptake evenness 〈Et,i〉 averaged over consumers and time, where Et,i � − 1

ln(nu )∑j∈Mt
xi,j ln(xi,j), with xi,j � ui,j/�u

(affinity) or xi,j = Jj→i/Ji (inflow); (v) The average ensemble evenness of consumers and resources based on the flows (Ji)i∈N t
, and (Fj)j∈Mt

, respectively; (vi): Average
displacement rates (smoothed over 100 steps as in the second interval of Figure 5D) for consumers and resources.

Frontiers in Network Physiology | www.frontiersin.org March 2022 | Volume 2 | Article 83405711

Lücken et al. Diversity and Turnover in Evolving CFNs

https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles


time, we pursue an approach based on ancestral relations and
similarity clustering of consumers. A cluster in our context
may be considered to correspond to a taxonomic unit
consisting of different variants or closely related strains of a
common taxon.

Based on such an approach, we obtain a representation of
evolutionary change as shown in Figure 7 for different parameter
sets. Every node in the diagram represents a cluster of similar
consumers at a corresponding step in evolutionary time. A link
between two clusters at subsequent time points is postulated if an
ancestral relationship between these clusters exists. We start with
an initial hierarchical clustering of a community at a given initial
step t0. The dendrograms on the left of each timeline show this
initial clustering, which does not take into account any ancestral
information. The subsequent development of clusters through
time is defined as follows. If a new consumer establishes itself in
the community, it is added to the cluster its direct ancestor
belongs to. However, if the diameter of the extended cluster
exceeds a specified threshold ϑ, it is split into two, assigning a
slightly altered color to the part containing the new consumer.
For the initial, as well as for the separative, clustering, we use a

hierarchical approach (Virtanen et al., 2020) based on the
pairwise “genotypic” dissimilarity of two consumers defined as

d i, k( ) ≔ 1
D

wu · ∑
j∈M

ui,j − uk,j

∣∣∣∣ ∣∣∣∣ + wϱ · ∑
j∈M

ϱj,i − ϱj,i
∣∣∣∣∣ ∣∣∣∣∣⎛⎝ ⎞⎠ ∈ 0, 1[ ],

for any pair (i, k) of consumers, where D � 2wu�u + 2wϱ. To
generate the cluster hierarchy (cf. dendrograms in Panels A–D
of Figure 7), we define a dissimilarity between two clusters c1 and
c2 as

d c1, c2( ) ≔ max
i∈c1 ,k∈c2

d i, k( ){ }.

Figures 7A–D shows four representative cases of community
dynamics with different features for the step interval
[9.5, 10] × 104. The depicted cases correspond to variations in
cluster stability and diversity. Figures 7E–H show several statistics
for the system’s evolution in cases A–D. Figures 7E,F show the
turnover of consumers and clusters against time, where the
turnover between two sets A and B [which contain consumers
in E and clusters in F] is calculated as (Diamond and May 1977)

FIGURE 7 | Dynamics of similarity clusters of consumers. (A–D): alluvial diagrams of cluster lineages. The link weights between two ancestrally related clusters at
steps t and t + 1 are computed proportional to the relative size of the cluster at step t + 1. Dendrograms to the left show the initial clustering of the community at step
t = 95 000 used as a basis for the remaining evolutionary tree. We use parameters ϑ = 0.4, wu = 1.0, wϱ = 0.2 (see main text); other parameters as in Figure 3 or
indicated in the legend. Visualization with plotly (Plotly Technologies Inc., 2015). (E, F): Average turnover statistics comparing communities N t and N t+I (in E)
and present clusters (in F) for different step intervals I, cf. Eq. 24, and t ∈ [5, 10] × 104. Error bars show the standard deviation over all turnover values measured at
the corresponding intervals. (G) shows the densities of the logarithmic cluster sizes for the different cases. (H) displays the densities of logarithmic cluster lifespans
with and inset of the observed number of cluster (the boxplot indicates the 5, 25, 50, 75, and 95% quantiles of the distribution).
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T � AΔB| |
A| | + B| | ∈ 0, 1[ ], (24)

whereAΔB denotes the symmetric difference ofA and B. Panels G
and H show the densities of the logarithms of the cluster sizes (in
G) and of the cluster lifespans (in H). The latter are computed as
the number of steps between a cluster’s first appearance and its
disappearance when its last member goes extinct.

Figure 7A displays a case of high diversity and high stability,
corresponding to the parameter variation of high release diversity
nϱ = 10, which is also reported inFigure 6 as part of the sequence B.
For this case, the turnover on consumer level as well as on cluster
level is the lowest among all depicted cases (cf. Figure 7E,F), while
the average lifespan of clusters is the highest, cf. H. Due to their
relatively high number, the individual clusters are smaller than in
most other cases, cf. G and H.

Cases B and C correspond to the parameter variations of
small global resource pool size G = 100 and of high uptake
diversity nu = 10. Both cases exhibit intermediate turnover rates on
consumer and cluster level, which can be associated with the
intermediate consumer displacement rates reported in
Figure 6C (vi), B (vi) for both cases. Interestingly, we see a higher
consumer turnover for nu = 10, while the cluster turnover is
approximately equal for both cases. At first glance, one might
think that the decreased resource pool turnover for the case
G = 100 [cf. Figure 6D (vi)] could stabilize the environmental
conditions, allowing for a more gradual shift in the community
composition. Such gradual shifts would correspond to more
constant clusters, because a cluster could gradually follow the
environmental shift without splitting up. On the contrary to
these considerations, we find a relative decrease of the cluster
turnover for nu = 10, i.e., the ratio of cluster turnover to consumer
turnover is smaller for this parameter variation. Note that the case
G = 100 exhibits a higher richness and diversity [see Figure 6D(i),
D(iii)], and on average more clusters [cf. Panels B and G], which
might be responsible for relative increase in the cluster turnover.

An even smaller ratio of cluster to consumer turnover [cf. Panels
E and F] is displayed by the parameter variation η = 0.3, where we
find the highest consumer turnover rates, while the cluster turnover,
especially for longer time intervals, is even lower than for the cases B
and C. The distinguishing characteristic of the cluster structure for
the case η = 0.3 is the concentration of almost all consumers in a
single, large and stable cluster, which leaves its trace in the cluster size
distribution as a bump around a value of 120, see Panel G. This low
cluster diversity emerges from the low diversity of resources and
consumers for low recycling fractions η—cf. Figure 6A and the
corresponding discussion in Section 3.3. Due to the scarcity of
different niches, only a few branchings from the main cluster of
supply consumers take place. Smaller clusters disappear in the
majority of cases, indicating a gradual evolution rather than large
innovative steps.

4 DISCUSSION

4.1 Model Assumptions and Limitations
Several idealizations or simplifications were assumed in the
derivation of the model. Perhaps, the crudest simplification

may seem to be the limitation of the number of different
organic compounds to a maximal global resource pool size G,
which lies orders of magnitude below the number observed in
natural systems. For instance, the oceanic DOM was estimated to
be composed of more than 100, 000 different compounds (Zark
and Dittmar, 2018). However, the effect of larger resource pool
sizes in our model is that the probability for each newly evolved
release substrate to be already present in the system tends to zero.
Apparently, this limit is already well approximated by a resource
pool of size G = 500 in our setup, which does not lead to
significantly distinct behavior compared to G = 1,000, cf.
Figure 4D. The size, where an increase of G does not lead to
significantly different evolutionary dynamics, may increase with
the number of consumers and the diversity nϱ of released
resources per consumer species, but whether this could lead to
qualitative differences in parameter dependencies is questionable.

As another simplification, we assumed no particular
properties for any of the resources aside of the designation of
a supply point. No preferential attachment or evolutionary drive
towards the most abundant resources was assumed beyond that.
Further, each resource had the same nutritional value for each
consumer. Indeed, neither the assimilation efficiency was varied,
i.e., ηi,j ≡ η, nor was the total affinity �u assumed to depend on the
consumed resources, which might correspond to different
maximal uptake rates for the different resources. Moreover, we
neglected any abiotic degradation of substrates. This is relevant in
the sense that, when abiotic degradation is disregarded, released
but unconsumed resources would accumulate to infinity if the
resource concentrations were to be determined. Such singularities
then could simply be avoided by integrating a term for abiotic
degradation in the formalism of Section 2.1, resulting in a slightly
modified expression for the transformation matrix T. For the sake
of interest in this paper, though, these issues are not important,
since even with the omission of abiotic degradation no
singularities arise in the network flow, while resource
concentrations are not assumed to affect the development of
new consumption capabilities.

The most important characteristic displayed by the model,
i.e., the ongoing co-evolution, is not affected by the above
simplifications, because the fundamental mechanism, driving
the continuous turnover of the presented CFN, and does not
rely on any of these simplifications. This mechanism is the
appearance and disappearance of produced metabolites, which
is subject to an undirected evolutionary drift, that constantly
alters the environmental restrictions of its beneficiaries,
i.e., consumers living on that products. The drift of release
configuration is undirected, because the producer’s own
fitness, that is its associated inflow Ji, is largely independent of
the exact configuration of its products.

The evolutionary dynamics displayed in our model do not
stably reproduce all types of resource-mediated ecological
relationships. For instance, there is no stabilizing mechanism
for reciprocal cross-feeding, which is frequently observed in
microbial communities (Morris et al., 2013; Seth and Taga,
2014; Preussger et al., 2020). To see that, consider the simple
scenario of a pair of consumers i and k, consuming each other’s
products. In this situation any consumer i′ with affinities leading
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to a total uptake of Ji’ > Ji has the potential to displace consumer i,
even if it does not produce any of the resources consumed by k.
This is a variant of the tragedy of the commons (Hardin, 1968),
since each produced resource in our model is in principle
accessible to each consumer. The development of stable
reciprocal cross-feeding in natural microbial communities is
believed to be a stepwise process (D’Souza et al., 2018;
Preussger et al., 2020). The first step is an accidental
bidirectional exploitation of metabolic waste products as it
also may arise in our model. However, the stabilization and
optimization of the syntrophic relationship involves processes
beyond the scope of our model. For instance, a spatial association
may stabilize a pair of cooperative strains as has been
demonstrated recently (Germerodt et al., 2016; Pande et al.,
2016). Under which circumstances such a stabilization could
counteract the perpetual turnover exhibited by our model is not
obvious and could be a subject for further studies.

A distinctive feature of our model is that we assume fixed
resource affinities for the different consumers. That is, we do not
explicitly model a variable population density for each consumer,
but instead simply account for its presence or absence by
comparing total uptake against a threshold value μ, cf. Eq. 12.
In a usual population dynamic model, resource uptake would be
variable, increasing with the consumer’s densities. The parameter
μ would take the role of a mortality rate and the difference Ji − μ
would describe the instantaneous per capita growth rate of the
corresponding consumer. In that framework Eq. 12 would result
in a negative growth rate, potentially leading to extinction of the
consumer. Our model is, however, able to ‘mimic’ such variable
population densities, since consumers tend to produce similar
descendants and thus, a cluster of similar consumers quickly
populates any available resource. Translating a cluster into a
framework of variable population densities, it corresponds to a
population with an internal variability. Although the quantized
representation of population densities is a simplification with
respect to continuous representations, it reflects the intraspecific
variation inherent to the concept of a taxonomic unit (Sokal and
Sneath, 1963).

4.2 Resource Diversification and
Community Turnover
Our CFN self-organizes towards a high level of diversity in both
substrates and microorganisms, even after starting with a single
microorganism in the in silico experiment. Diversification in our
model occurs in two aspects, which are both in line with empirical
evidence: first, microorganisms transform and release
compounds that can serve as substrates for other
microorganisms (i.e., they diversify compounds) and second, a
diverse set of compounds in turn can support a diverse microbial
community. Indeed, the exometabolome of heterotrophic
microorganisms shows a remarkable diversity, even when
grown on a single substrate (Ogawa et al., 2001; Wienhausen
et al., 2017; Noriega-Ortega et al., 2019), providing potential new
niches for other microorganisms. In this context, the role of
enzyme promiscuity has been highlighted as a possible
mechanism to potentiate the number of transformed resources

and has been suggested to contribute to the huge diversity of
organic compounds dissolved in seawater (Dittmar et al., 2021).
This ability of enzymes to produce new, promiscuous products
and to work on substrates besides their canonical substrate
spectrum, may trigger the evolutionary development of new
metabolic pathways (Tawfik and Tawfik, 2010). Evolutionary
diversification of substrate associations has been observed in a
laboratory experiment, in which E. coli was grown on glucose as a
single substrate under static environmental conditions. After
more than 400 generations, strains evolved that did not
primarily depend on glucose anymore but rather on
metabolites exuded from E. coli (Helling et al., 1987; Craig
MacLean, 2005). Furthermore, compared to evolution of
isolated strains, bacteria seem to evolve even more rapidly
when interacting with other species (Lawrence et al., 2012).
Our results corroborate the hypothesis that this high diversity
of substrates and microorganisms is self-sustaining and a direct
result of cross-feeding interactions subject to evolutionary
dynamics.

While the high level of diversity remains fairly constant, the
actual microbial and molecular community is constantly turned
over. This process is fueled by the recurrent interaction of
consumers and resources. With each appearance or
disappearance of a new substrate, the fitness of individual
microorganisms is modified, leading to changes in the
consumer community. On the other hand, each establishment
of a new species impacts the composition of available substrates.
Experimentally, microbial selection and community assembly has
mainly been studied with regard to changing environmental
conditions. Only few studies specifically targeted microbial
community turnover at stable conditions. In line with our
results, a continuous turnover under static conditions has been
directly or indirectly suggested: Danczak et al. (2018) found an
uncoupling between environment and the development of
microbial communities in unperturbed aquifers, leading them
to hypothesize that unperturbed environments house dynamic
communities due to external and internal forces. Similarly,
Konopka et al. (2015) concluded that probably no natural
microbial community truly reaches steady-state, but rather
exists in a constant flux, which is in line with a metaanalysis
by Shade et al. (2013). Our results suggest that an ongoing
evolution of syntrophic or commensal interactions is a
potential internal mechanism, contributing to the observed
constant turnover of microbial community composition.

4.3 Microbial Community Structure
Despite the constant turnover, the community composition in
our simulation experiments shows the emergence of specialist
and generalist consumers. Here, a microorganism in the network
is considered a generalist if the uptake is distributed evenly
among different substrates, whereas specialists mainly rely on
a single resource. Although our model is deliberately set in a static
environment, we observe both strategies non-randomly
distributed in the network. Specialists occur in network
locations around a less diverse but highly concentrated inflow,
i.e., at the constantly externally supplied resource, cf. Figure 4B.
On the other hand, resources within the diet of a generalist
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usually exhibit significantly lower inflows, and fluctuate stronger
when new species establish. These fluctuations result from the
evolutionary drift of the composition of released resources, which
do not directly affect the realized fitness of a consumer. The slow,
constrained evolution of affinities, which optimizes a sub-
community on a persistently supplied resource, is
accompanied by an unconstrained, rather rapidly drifting
combination of products that are formed from the
metabolization of the more persistent resource. In line with
our simulations, the experimental evolution of a bacterium
(Pseudomonas fluorescens) showed that in complex
environments with many substrates, neither narrow specialists
nor complete generalists evolve but rather overlapping imperfect
generalists, which have adapted not to all but a certain range of
substrates (Barrett et al., 2005). Several examples of
heterogeneous microbial communities seem to show strategies
of evolving to optimize bet-hedging for substrates (Beaumont
et al., 2009; Grimbergen et al., 2015; Haaland et al., 2019).
Observations from stability patterns in wastewater treatment
plants show dynamics similar to the emergence of
characteristic patterns resulting from differences in the
resource flows in our model (Werner et al., 2011). Our results
indicate that these patterns may already emerge from the basic
principles of diversification and evolution that our idealized CFN
model is set on. A more decisive exploration of the relation
between fluctuation of abiotic factors and evolving patterns of
resource specialization in CFNs represents an interesting subject
to further research.

Additionally, microbial networks often show a clustered
topology, as was shown, for example, in soils (Barberán et al.,
2012) or oceans (Cram et al., 2015). This is reminiscent to the
clusters observed in our and other author’s models. For instance,
Goyal and Maslov (Goyal and Maslov, 2018) reported that their
model is capable of reproducing a structure of a core community,
containing species of high abundance, combined with peripheral,
less abundant species. For a range of parameter values, such
patterns are reproduced in our model; they correspond to
unequal cluster sizes, which follow the magnitude of flow
associated with the utilized resource pools (most apparent in
Figure 7D). In addition to the results presented in (Goyal and
Maslov, 2018), we found more diverse network structures
depending on the system parameters. Thereby, our numerical
simulations indicate that the diversity of released resources nϱ,
and the fraction of recycled flow η are the most significant factors
for the structure of the resulting communities.

It is worth noting that our—as well as Goyal and
Maslov’s—results do not rely on any inherent biochemical
nature of the different resources. Although the magnitude and
diversity of the externally supplied resource flow influences the
complexity of a resident community, in our model a complex
community emerges from a single, basal resource that is
externally supplied. One may ask: how much of the structure
of natural communities is emergent, and how much is an artifact
of an underlying restriction of resource transformations or, more
general, of the constraints of the chemical Universe? The
molecular space possesses a wealth of molecular structures,

and microbial metabolism is subject to chemical constraints
such as elemental stoichiometry of uptake and release,
energetic gains during heterotrophic metabolic transformations
or preferences of macromolecules such as sugars, lipids or amino
acids (Marsland et al., 2020b). These constraints define possible
combinations of uptake and release configurations (Goldford
et al., 2018; Marsland et al., 2019). As our results show that a
structured CFN may develop without such assumptions, we
conclude that the degree of correlation between resource
availability with respect to the abovementioned constraints,
and the community of microbial consumers is not necessarily
high. Thus, a quantification of the emergent fraction in
community composition represents an important matter of
further research.

In summary, we studied a model for the evolutionary change
of CFNs and presented a numerical analysis of the influence of
several parameters on emerging structural properties. Our model
provides a framework to study natural evolutionary and radiation
processes in microbial ecosystems and shows that, when
combined, these do not lead to a stable microbial community
but rather to a persistent co-evolution and turnover, even when
environmental conditions remain static. We showed that, starting
from one microbial consumer feeding on a single substrate, CFNs
can self-organize into systems with diverse, coexisting
microorganisms producing, and feeding on numerous
substrates. The diversity of the system is self-sustaining
because new microbes produce new substrates, which in turn
allow for the establishments of new microbes. While the
community is constantly turned over, the diversity of
compounds and microbes eventually saturates, where the
asymptotic diversity of resources depends strongly on the
microorganism’s capability to diversify substrates.
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