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Acute and chronic insomnia have different causes and may require different

treatments. They are investigated with multi-night nocturnal actigraphy data

from two sleep studies. Two different wrist-worn actigraphy devices were used

to measure physical activities. This required data pre-processing and

transformations to smooth the differences between devices. Statistical,

power spectrum, fractal and entropy analyses were used to derive features

from the actigraphy data. Sleep parameters were also extracted from the

signals. The features were then submitted to four machine learning

algorithms. The best performing model was able to distinguish acute from

chronic insomnia with an accuracy of 81%. The algorithms were then used to

evaluate the acute and chronic groups compared to healthy sleepers. The

differences between acute insomnia and healthy sleep were more prominent

than between chronic insomnia and healthy sleep. This may be associated with

the adaptation of the physiology to prolonged periods of disturbed sleep for

individuals with chronic insomnia. The new model is a powerful addition to our

suite of machine learning models aiming to pre-screen insomnia at home with

wearable devices.
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1 Introduction

Reduced or disturbed sleep is increasingly recognised as presenting a significant

health risk, and has been associated with increases in a diverse range of health-related

problems and reduced quality of life (Wickwire et al., 2019). In terms of quality and

quantity, sleep is affected by various sleep disturbances of which insomnia is one of the

most common. According to the Diagnostic and Statistical Manual of Mental Disorders,
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fifth edition (DSM-5), insomnia is defined as dissatisfaction with

the quality or quantity of sleep which can include difficulty falling

asleep, difficulty maintaining sleep (with frequent awakenings or

problems returning to sleep after awakening) and/or waking up

early and being unable to get back to sleep and the resultant

daytime impairments (Edition et al., 2013). Depending on its

duration, insomnia can be classified into acute or chronic. Acute

and chronic insomnia have different underlying causes and may

require different treatments.

Acute insomnia (AI) is a brief episode of difficulty sleeping,

which may last from several nights up to 3 months. It can be

caused by a significant life stress, illness, effects of some

medications or drugs, a pandemic, emotional or physical

discomfort, environmental discomfort, major job or

relationship change (Ellis et al., 2012, 2014; Altena et al.,

2020). Chronic insomnia (CI) is a longer-term pattern when a

person has difficulty sleeping for at least 3 nights a week for

3 months or longer. CI has many potential causes including

chronic stress, depression or anxiety, pain or discomfort at night.

CI has been associated with daytime cognitive deficits,

exhaustion, a range of psychiatric and physical morbidities,

reduced quality of life, as well as increased use of health

services (Wilkerson et al., 2012; Taylor et al., 2013). AI has

been associated with the first onset of depression (Ellis et al.,

2014). Furthermore, if untreated, it can convert to CI with

transition rates of 21.43% for large population samples in the

US and the United Kingdom (Ellis et al., 2012).

Differentiating AI from CI and early diagnosis is essential for

successful treatment. While insomnia’s prevalence and incidence

are high, the condition is under-diagnosed and often untreated

(Williams et al., 2018; Morin et al., 2020). Thus, a considerable

number of individuals with insomnia do not seek medical

attention, and may not even realise that their sleep is unhealthy.

The clinical assessment of AI and CI is usually based on self-

reported symptoms from the individuals and their sleep diaries

(Riemann et al., 2017). However, sleep diaries are subjective and

can be burdensome for the individual. The clinical assessment

could be complemented by polysomnography (PSG) and

actigraphy. PSG is usually performed in a sleep laboratory. Its

primary use is not to assess AI and CI but to rule out other sleep

disorders, such as sleep apnoea or restless leg syndrome. As

individuals with insomnia usually demonstrate night-to-night

variability in their sleep, one or two nights of PSG are unlikely to

be representative (Buysse et al., 2010). Besides, these individuals

often sleep well in the laboratory outside their home environment

(Baglioni et al., 2014).

Actigraphy provides cheap and non-invasive means for

continuous monitoring of human rest/activity patterns and is

increasingly used for sleep monitoring over long periods of time.

Actigraphic devices can infer sleep characteristics from the

physical activity (Nakazaki et al., 2014) and are widely used to

measure sleep in a home environment over several nights. This is

particularly suitable for monitoring AI and CI as it can monitor

sleep in a natural home environment over multiple nights

(Angelova et al., 2020a; Hamill et al., 2020; Walters et al.,

2020; Kusmakar et al., 2021).

In a series of papers (Holloway et al., 2014; Fossion et al.,

2017; Angelova et al., 2020a; Kusmakar et al., 2021), several

markers were investigated for AI and CI using 7 nights of

continuous actigraphy monitoring. Automatic models were

proposed for the classification of acute insomnia from normal

sleep (Angelova et al., 2020a) and chronic insomnia individuals

from their bed partners (Kusmakar et al., 2021) without the need

of sleep diaries.

Fractal analysis techniques were implemented for the

first time (Holloway et al., 2014) to study acute insomnia

using actigraphic data. Power spectrum and detrended

fluctuation analysis (DFA) were used to search for 1/f

scaling, meaning that the power in the signal is dominated

by an inverse power law with the frequency f. 1/f scaling is

associated with a long-range correlation of the time series

and high complexity (Wagenmakers et al., 2004), measured

by the complexity parameter ~ 1. It was concluded that the

variations in 1/f − type of scaling in the nocturnal signal of

individuals with acute insomnia compared to healthy

controls is in the range 0.75–1.25 corresponding to long-

range correlations in the time series, owing to increased

night-time arousals. The healthy controls displayed a

complexity parameter in the range of 0.5–0.75, associated

with positive but weaker correlations in the time series. The

effect of circadian rhythms was also investigated on the

population of individuals with acute insomnia compared

to healthy controls using complete day-night actigraphy

(Fossion et al., 2017). A later study indicated that a

hyper-vigilance state in people with insomnia may

indicate an increased risk of cardiovascular disease

(Laharnar et al., 2020). The works (Angelova et al., 2020a;

Kusmakar et al., 2021) proposed automatic models to

distinguish acute insomnia from normal sleep and chronic

insomnia from bed partners using actigraphy data. The

models were based on a 2-layer machine learning

algorithm, where the first layer is the classifier and the

second layer is the optimisation. In order to distinguish

insomnia from a healthy sleep, the models first predicted

the quality of each night of sleep for each individual, followed

by the classification of the individuals to insomnia or normal

sleep type. The model differentiated AI from healthy sleep

with accuracy 80%, sensitivity 76%, and specificity 92%. A

second model was developed to distinguish between CI and

their bed partners (Kusmakar et al., 2021).

Motivated by the differences between AI and CI and the

success of our models to classify insomnia from a healthy

sleep, in this paper, we go a step further and develop a robust

model to distinguish AI from CI. We have combined the data

from the two sleep studies together. Taking into account the

limitations and challenges of the data, we hypothesise that:
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Hypothesis 1: Our model can distinguish acute insomnia from

chronic insomnia.

Ultimately, we propose a new automatic model to

differentiate between AI and CI. Furthermore, we demonstrate

the observed changes in CI patterns of actigraphy recordings

are smaller compared to patterns for individuals with AI and

more similar to bed partners and healthy controls. We speculate

that:

Hypothesis 2: Observed changes in patterns of CI and AI

individuals may appear because the homeostatic drive has

adjusted to sleeplessness in the individuals with chronic

insomnia, while for those with acute, the changes resultant

from the acute insomnia are still too raw and the organism

and the respective homeostatic regulation have not adapted to

these changes yet.

The paper is organised as follows. Section 2 describes the

data, descriptive statistics, and methods for the feature extraction

and the design of the machine learning model. The results and

analysis are given in Section 3 and discussed in Section 4, where

our hypotheses are verified, followed by our conclusions in

Section 5.

2 Methods

2.1 Data

Our analysis of individuals with acute insomnia (AI) employs

actigraphy time series data from publicly available data sets

(Holloway et al., 2014). The data collected for the original study

was approved by the University of Glasgow Ethics Committee. The

chronic insomnia (CI) data set was obtained from a larger clinical

trial (Project REST; Australian New Zealand Clinical Trials Registry

Registration: ACTRN12616000586415) and approved by Monash

University’s human research ethics committee (Mellor et al., 2019) to

investigate behavioural interference because of sleep partner (Mellor

et al., 2019; Walters et al., 2020). The subset of data from the

individuals with chronic insomnia and their bed co-inhabiting

partners used here is publicly available (Angelova et al., 2020b).

Often, older adults with age > 60 years have an earlier

bedtime and wake-up time, as their circadian rhythm is

advanced. Sleep architecture changes include spending a

greater proportion of time in different stages of sleep,

indicating a reduction in deep, rejuvenating sleep and an

elevation in superficial and transient sleep (Rodriguez et al.,

2015). Moreover, older adults tend to sleep for a shorter

period of time than their younger counterparts. In order to

exclude the effects of ageing on normal sleep and insomnia,

we included only data from adults with ages ≤ 60 years in our

analysis.

The first data set has 49 adults (age: 18–60 years) including

the 22 asymptomatic healthy controls (HC) (average age:

27.82 ± 5.55 years) and 27 individuals with AI (average age:

30.74 ± 11.16 years). The second data set was collected from

the group of 65 adults (age: 18–60 years) including

32 adults suffering from CI (average age: 43.06 ±

11.81 years) and their respective bed partners (BP) (average

age: 42.73 ± 12.55 years). These two groups were age matched

because of the partner status. Here, we are mainly interested

in the AI and CI groups, but also provide descriptions for

the healthy groups so comparisons can be made where

possible.

In the AI data set, the control cohort was composed of self-

declared healthy subjects with no known problem with

sleeping, and the insomnia cohort (clinically assessed) had

no known co-morbidity. All subjects were requested to remain

in bed between 10 pm and 8 am next day. However, this did

not prohibit the subject from going to bed before 10 pm or

leaving the bed after 8 am. An actiwatch device (AW4,

Cambridge Neurotechnology, pre-2014) was used to collect

data from adults with acute insomnia and healthy sleepers.

Data were collected for 2 weeks, however not all subjects

completed the entire 2-week period. The majority of the

individuals were young adults (age: 18–40 years) for which

the data were completed for 1 week. In addition, the actiwatch

lacked the functionality to detect lights out, which made it

difficult to calculate accurately from the signal two traditional

sleep parameters, namely sleep latency and sleep efficiency,

from the AI data set. Respironics Actiwatch Spectrum Pro and

Actiware software (Respironics, Bend, OR, United States) were

used to collect and pre-process the CI data set. This device had

the functionality to detect lights out. Individuals with CI and

their co-inhabiting bed partners wore the devices at all times

for 1 week.

For this paper, we combined the two data sets and

integrated activity counts over 1 min epochs for seven

nights of actigraphy data. The total number of subjects,

male and female numbers, mean age with standard

deviation (s.d.) and total number of nights recording used

TABLE 1 Total number of subjects, male and female, average age and
its standard deviation (sd) and total number of nights of
actigraphy recordings of the subjects in the two studies used in the
model.

Dataset 1 Dataset 2

Subjects AI HC CI BP

# Subjects 27 22 32 33

Gender Male–5 Male–8 Male–8 Male–22

Female–18 Female–14 Female–24 Female–11

Unknown-4

Mean age 30.74 27.82 43.06 42.73

s.d. (Age) 11.16 5.55 11.81 12.55

# Nights 189 154 224 231
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to build the model are given in Table 1. The data inclusion/

exclusion flowchart is shown in Figure 1.

2.2 Data pre-processing

Night-actigraphy data (from 10 pm to 8 am) are used for the

analysis presented in this paper, as the focus is on the night

activities only. This also excludes noisy unlabelled daily activities

the individuals were involved in, and subjective bias, as the data

for the studies were collected in an uncontrolled environment.

Missing data (approximately 1%) in each actigraphy time series

were handled using the moving median method with the sliding

window of 30 min. The logarithmic transformation (log2) was

applied on the actigraphy time series for further analysis to

reduce the effect of skewed distribution on feature extraction.

In addition, since two different devices from two different

vendors were used to record the actigraphy data, the

logarithmic transformation also helped to bring the recordings

in a similar range.

Figure 2 presents the raw and log2-transformed nocturnal

actigraphy signal for 22 individuals (the minimal number of

subjects available per group) in each group CI (purple), BP

(green), AI (red) and HC (blue) respectively. So the length of

the horizontal axis, presenting the length of the data in hours

for 7 nights of recording from 22 subjects for 10 h per night, is

22 × 7 × 10 = 1,540 h. The solid black line plotted in Figure 2

depicts the mean, while the dashed lines determine the 25th

and 75th percentiles of the plotted data. From visual

inspection of the plot across 22 subjects, it is obvious that

the log-transformed activity counts showed the same range for

each group CI (adults with chronic insomnia), BP (bed

partners of CI), AI (adults with acute insomnia) and HC

(healthy control). Therefore, the study design is not affected

by the measurement devices and for the purpose of this work,

we merged BP and HC groups into one healthy group (HC +

BP). In the remaining of this paper, we will use HC + BP for

presenting this combined healthy control group.

2.3 Design of experiment

The experiment was designed to include the following steps

in the data analysis cycle: input of the raw data, pre-processing of

data, feature extraction, machine learning model and

classification. The workflow of the proposed model for the AI

and CI classification is shown in Figure 3. Similar models were

designed for other pairs of groups: AI and HC + BP, CI and HC +

BP, insomnia (AI and CI) v/s HC + BP.

2.4 Feature extraction

To analyse the night actigraphy we extracted statistical

and dynamical features from the night time signals. The

following features were calculated: arithmetic mean,

standard deviation, complementary cumulative distribution,

intradaily variability and stability, complexity parameter α

calculated using DFA, power law index β from power law,

Higuchi fractal dimension (HFD) obtained from Higuchi

algorithm, and Shannon entropy (ShE). Furthermore, three

sleep parameters were used, total sleep time (TST), wake after

sleep onset (WASO), and sleep-wake ratio (SWR), which can

be extracted from all signals.

Since there is no specific threshold for the amplitude of the

actigraphy signal for wake detection (Natale et al., 2014), we have

used an amplitude equal to zero to identify sleep and an

amplitude threshold greater than zero to identify wake.

FIGURE 1
Data inclusion/exclusion flowchart.
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Statistical Analysis: Statistical analysis is performed to

determine the overall view of both data sets. Mean and

standard deviation are calculated from the transformed data

to ascertain the average variance and magnitude of the night

time signal of adults suffering from chronic insomnia and their

respective bed partners as well as people with acute insomnia and

same age healthy controls.

Intradaily Variability (IV) calculation is non-parametric and

gained popularity in physiological and actigraphic time series

analysis (Witting et al., 1990; Gonçalves et al., 2015). IV is applied

FIGURE 2
Raw actigraphy signals (top 4 panels) and log2-transformed actigraphy signals (bottom 4 panels) for 7 nights of actigraphy for 22 participants in
each group: CI (purple), BP (green), AI (red) and HC (blue). The solid black line (bottom 4 panels) represents themean of the signal, while dashed lines
represent 25 and 75 percentiles of the signal.
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to time series Xi, i = 1,... N, sampled at 60-min intervals, and

defined as:

IV � N∑N
i�2 Xi −Xi−1( )2

N − 1( )∑N
i�1 Xi − �X( )2, (1)

where �X is the arithmetic mean taken over all data X. IV provides

the significant information about the amount of variance present

in time series and can be used to demonstrate the variation in the

activity patterns.

Intradaily Stability (IS) is the estimation of how steady the

rhythm of the time series is over several nights. It shows the

similarity in the night patterns. IS is calculated as the proportion

of the difference of the average activity pattern to the overall

variation, according to

IS � N∑P
i�1 Xi − �X( )2

P∑N
i�1 Xi − �X( )2 , (2)

where N is the total number of data points or values, P is the

number of hourly means per day, �X is the mean value for all data

X, Xi is the hourly mean value for the data X, Xi is the individual

data point, i = 1, . . .N. IS varies between 0 and 1. 0 indicates

Gaussian noise. Smaller values of IS indicate higher variation in

signal (Witting et al., 1990; Blume et al., 2016).

Complementary cumulative distribution function (CCDF):

represents the complementary collective distribution feature, a

statistical power estimation technique that can just be performed

on time-domain data. It estimates if the probability P of power of

the given signal F will be above the specified average signal power

level x. CCDF can be written as

�FX x( ) � P X> x( ) � 1 − FX x( ). (3)

CCDF accentuates the peak or maximum values as it

provides the probability of signal power to be above the

certain value. The CCDF highlights power levels at their

maximum or peak. The CCDF is regarded as one of the most

significant statistical measurements, and it is employed in a broad

range of applications.

Power Spectrum Analysis (PSA) is the classical approach to

investigate the properties or features of any signal (Guzman-

Vargas et al., 2011). Its primary objective is to show the dominant

frequencies in order to demonstrate periodicities in the data. PSA

also investigates the existing self-affinity or correlations in real-

time signal or time-series. A power spectrum is derived from the

data using Fourier transform, and then the following dependence

is sought:

S f( )∝f−β, (4)

where S(f) is the power, f is the frequency and β is scaling

parameter. β is calculated from the slope of the graph of the

logarithms of S and f. The slope obtained from the graph provides

an insight of any self-similarity present in the signal.

The value range for β between 0 and 2 is of interest for

physiological and physical motion data, where 0 indicates no

correlation (white noise), 1 represents long-range correlation,

known also as 1/f noise or pink noise, and 2 indicates short-range

correlation or random walk (Brownian noise) (Guzman-Vargas

et al., 2011). The relations between the scaling parameters and

correlations in the signal are given in Table 2.

Detrended Fluctuation Analysis (DFA) is an effective tool

to study statistically the scale of auto-correlation and self-

affinity in a varying signal (Peng et al., 1994). DFA removes

the external stimulated local trends in order to investigate the

irregular correlations (Seely and Macklem, 2004). The method

is based on splitting the time series into shorter parts (boxes)

of the same size and fitting the least squares line for each short

time series. DFA calculates the signal’s mean squared distance

from its local trend line to get a scaling parameter α. The

FIGURE 3
Workflow of the proposed model for AI and CI classification.

TABLE 2 Relations between correlations and scaling parameters.

Description α β HFD

Uncorrelated, white noise ~ 0.5 ~ 0 ~ 2.5

Positively correlated > 0.5 > 0 < 2.5

1/f noise, pink noise ~ 1 ~ 1 ~ 2

Brownian noise, random walk ~ 1.5 ~ 2 ~ 1.5
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complexity of a signal in DFA is analysed using the series F,

defined as follows:

F n( ) �

�����������������
1
n
∑N
k�1

y k( ) − yn k( )[ ]2√√
, (5)

where N is the length of the time-series, n is the size of the box,

y(k) is the integrated time-series and yn(k) represents the local

trend. Each box is then subjected to the same process to establish

a relationship between average local fluctuations. Log-log plots

are then used to determine if there is a linear relationship,

indicating whether self-similar scaling exists, which is denoted

by the parameter α.

The scaling parameter β, determined from the power

spectrum, and α, calculated with DFA, are both used to reveal

the correlation in time series (Peng et al., 1995). Notably, the

theoretical parameters are linearly dependent: β = 2α–1,

(Table 2).

Higuchi Fractal Dimension (HFD): Mandelbrot

introduced the term Fractal Dimension (FD) (Mandelbrot

et al., 1983) to describe fractals, which represent self-

similar, infinite and complex pattern objects. FD can be

obtained by measuring the changes in the scaling and is

also used to investigate the complexity of a signal. Among

all the available algorithms to calculate FD, Higuchi algorithm

provided most accurate results (Raghavendra et al., 2009).

According to Higuchi algorithm, from a time series taken at

regular intervals, x(1), x(2), x(3),. . .. . ., x(N), a new time series

is constructed, xk
n, by splitting into equal k time series, defined

as follows,

xn
k � x n( ), x n + k( ), x n + 2k( ), . . . , x n + N − k

k
⌊ ⌋( ){ }. (6)

Here, n = 1, 2, 3, . . ..k (n is the initial time and k is the interval

length) and �.� is an integer function representing the nearest

lower integer value for a real number. The length of the curve L

for each k time series is given as

Ln k( ) � 1
k2 ∑ N−n

k� �
i�1 x n + ik( ) − x n + i − 1( )k( )( )( )

×
N − 1
N − n

k
⌊ ⌋⎛⎝ ⎞⎠ (7)

where N is the length of the full time series, and �N−n
k � is

normalisation factor. The fragments Ln(k) are summed to give

the length of the fractal curve L(k). The value of fractal dimension

D is estimated as the slope of the best linear fit to the calculated

data points (log 1
k, logL(k)){ }.

The calculated value D = 1 means a simple curve while D = 2

represents a plane (Klonowski et al., 2004). In one dimension, for

theoretical fractal motion, the relationship between β and FD, D,

for 1 < β ≤ 3 is given by (Cervantes-De la Torre et al., 2013):

D � 5 − β

2
� 3 − α. (8)

Thus, for white noise, β ~ 0, D ~ 2.5, for pink noise (1/f

similarity), β ~ 1, D ~ 2, while for short range correlations

(Brownian noise) β ~ 2, D ~ 1.5 (Table 2). Real physical motion

time series often deviate from the theoretical fractals and the

relation given by Eq. 8 is used mainly for guidance.

Shannon Entropy (ShE): Shannon introduced the idea of

information entropy to measure the amount of information

transmitted by a message or contained in a signal (Shannon,

1948).

According to Shannon’s method any random variable x(n)

can contain N possible values, and the probabilities of these

values are p1, p2,. . ., pN. ShE is defined according to:

ShE � − 1
logN

∑N
i

pi logpi, (9)

where N is the length of the message or a signal, or total

number of events/values, and pi is the probability of the ith

event/value.

Acigraphy-derived Sleep Parameters: The sleep parameters

TST, WASO and SWR were calculated from the night time

actigraphy signal (Nakazaki et al., 2014) for both datasets. SWR,

sleep-wake ratio (Nakazaki et al., 2014; Kusmakar et al., 2021) is

calculated by following equation:

SWR � TST
WASO

. (10)

For both datasets, we have considered data from 10 pm to

8 am for seven nights. For the CI dataset, where a modern

actiwatch was used, the proprietary software of the watch

determined when the participants went to sleep and ended

their sleep automatically. Time in bed (TIB) was calculated

based on rest intervals generated by the device, WASO—as

the sum of all wake epochs (activity count is non-zero)

between sleep onset (SO) time and sleep end, TST—as the

sum of all sleep epochs (activity count is zero) between SO

and sleep end. For the AI dataset, WASO was calculated with

start (10 pm) and the end of the sleep cycle (8 am) and TIB was

empirically selected as 10 h. SWR was calculated from Eq. 10 for

both datasets.

2.5 Machine learning model

This study proposes a classification model to differentiate

individuals with AI from individuals with CI using the features

extracted from the actigraphy data as described in the previous

sections. The data were stratified by gender in the training and

testing sets to make sure that gender covariates were appropriately

adjusted.
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We labelled AI and CI individuals in the response variable as

-1 and 1 for the modelling purpose. The labelled datasets were

divided into training and testing datasets using k-fold cross-

validation approach. In this process, the model is trained k times

using (k − 1) folds of data and used the remaining fold as a test set. In

this study, we used k = 5 for this cross-validation. We applied min-

max normalisation on the training dataset and recorded the

minimum and maximum values, which were then used for

normalising the corresponding test dataset. At each iteration,

model hyperparameters were optimised using the auto-

optimisation option provided in Matlab. This option uses training

samples only and finds hyperparameters that minimise five-fold

cross-validation loss. Then the performance on the test dataset was

recorded using the optimised model. To eliminate the effect of

random sampling, the entire process was repeated five times. Finally,

the averaged performance was reported for each machine learning

model. Figure 3 illustrates the five-fold cross-validation process. Four

machine learning models were built based on k-nearest neighbour

(kNN), support vector machine (SVM), Naïve Bayes (NB) and

Random Forest (RF) algorithms. The performance of the models

was evaluated using the testing data. Due to the small amount of

data, not sufficient for deep learning algorithms to performwell, and

the need for explainability of our models, only traditional machine

learning algorithms were selected.

1) k-Nearest Neighbour (kNN) is widely used non-parametric

method for classification and regression analysis (Fix and

Hodges, 1951). Given a labelled data set and a new unlabelled

datum, it assigns a label to the datum in accordance to the

majority label among k nearest neighbouring data points to

the datum. In other words, it assigns new data values based on

how closely they match the values in the training sets. For the

purpose of training the model, a distance metric is calculated

between k nearest neighbors. The data is then classified

according to the nearest neighbour. The trained model can

then be applied to classify new data.

2) Support Vector Machine (SVM) is a popular supervised

machine learning method, used here for classification of AI

and CI. Its aim is to increase separation of different clusters in

the data by projecting it into a higher-dimensional

hyperspace, therefore, simplifying linear classification by

separating hyperplanes (Cortes and Vapnik, 1995).

3) Naïve Bayes (NB) is an efficient classification algorithm for

supervised learning based on the Bayes theorem with the

assumption that the presence of a particular feature in a class

is “naively” completely independent (unrelated) of any other

feature (Nisbet et al., 2009). NB algorithm calculates the

output based on the conditional probabilities of the data.

4) Random Forest (RF) is another prominent machine learning

classification algorithm. This method works on the construction

of large sets of decision trees by using randomly selected features

from the training data sets with bootstrap or bagging aggregation

(Breiman, 2001). RF method generates results by computing the

mean of the outcomes from the decision tree. RFmodel increases

the accuracy of the model by reducing the overfitting of data.

2.6 Performance metrics

After constructing the classification models and calculating

the results, sensitivity, specificity and accuracy are procured as a

standard method (Powers, 2020) to assess the efficiency of

selected classifiers. These standard measures are determined

by comparing the predicted classes with the ground truth and

calculating true positives (TP), true negatives (TN), false

negatives (FN) and false positives (FP),

1) Accuracy � TP+TN
TP+TN+FP+FN × 100, is the percentage of correctly

detected classes;

2) Sensitivity � TP
TP+FN × 100, is the percentage of correctly

predicted positive values;

3) Specificity � TN
TN+FP × 100, is the percentage of correctly

predicted negative values;

4) F-score � 2 Precision × Recall
Precision+Recall × 100. It represents a harmonic

average of the recall (sensitivity) and precision, where the

precision is the ratio of correctly identified classes (including

true and false positives) to all correct classes.

As the first task is to classify acute versus chronic

insomnia, acute insomnia is labelled as “True” and chronic

insomnia is labelled as “False”. Then, Sensitivity extracts the

percentage of correctly detected individuals with AI while

Specificity identified the percentage of correctly detected

individuals with CI. Accuracy provides the percentage of

correct detection of individuals with AI and CI.

AUC (area under the curve) is another important measure to

evaluate the performance of machine learning model. The value

of AUC represents how well a model is capable of categorising

between the classes (Huang and Ling, 2005).

Mann-Whitney U test is a non-parametric test to analyse the

mean of given variable and check whether the distribution of given

data is different or similar (Ruxton, 2006). The Mann-Whitney U

test is performed by ranking the data for each condition and then

comparing how different the two ranks are. Consequently, when the

two conditions are different, then most high-ranking data will

belong to one of the conditions and most low-ranking to the

other. Thus, the ranks will differ considerably. However, if both

conditions are similar, the low and high ranks will be allocated fairly

equally between the two conditions, which will result in a similar

rank totals.

3 Results

In this paper we have used seven nights of nocturnal actigraphy

data to extract the features using the methods described in Section 2.
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The data were log-transformed to take into account that the data

collections for the two sleep studies, acute and healthy individuals,

and chronic insomnia individuals and their partners, were done with

two different devices. The average values of the seven nights are used

for training and testing the machine learning model.

We have also transformed the values of all features using the

min-max transformation to (0,1) range in order to construct

machine learning models for automated detection and

differentiation of adults with AI from adults with CI.

The arithmetic means ± standard deviations of all calculated

features for 7 nights of actigraphy of AI, CI, and HC subjects of

age ≤ 60 years are given in Table 3.

3.1 Feature values

3.1.1 Statistical features
The mean values of the amplitude of physical activity for

AI subjects is higher compared to the means of CI and HC +

BP. This indicates that individuals with AI have higher

physical activity than those with CI, which supports our

Hypothesis H2. Furthermore, the mean of the healthy

sleepers, while smaller than the mean of AI cohort, is

similar to the mean of the CI cohort, which supports partly

our Hypothesis H1. The standard deviations (sd) for all three

groups are very similar.

The intradaily variability, IV, of the AI population is larger

compared to the CI and HC + BP group. High value of IV

stipulates more waking up, and more physical activities, during

nighttime (Witting et al., 1990).

The intradaily stability, IS, is very similar for the CI and HC +

BP groups and smaller than the AI group. The results for the

complementary cumulative distribution function, CCDF,

indicate slightly larger values for the AI group compared to

the other two groups, for which the values are similar. This partly

supports our Hypothesis H2.

3.1.2 Dynamical features
The parameter β, computed from the power spectrum, is

0.68 for AI and 0.66 for CI, showing that these two

populations have similar complexity patterns with slightly

higher complexity for the AI group. The values of β for all

three populations are in the range of the 1/f noise and indicate

the presence of long-range correlations in the time series.

The average value of the complexity parameter α shows

that the physical activities for the AI group are more complex

and thus must be also more nocturnal activities, compared to

the CI group. This supports our Hypothesis H2. Figure 4

illustrates the results gained from DFA for one night of

actigraphy from one individual per group of a similar age.

The Higuchi fractal dimension, HFD, shows an average value

for the AI subjects of 1.88 compared to 1.85 for the CI subjects. It

indicates 1/f behaviour (Table 2) and, as expected, is in

agreement with the results obtained from PSA and DFA for

β and α respectively. The higher value of HFD for AI is

possibly due to more nocturnal awakenings of this group

TABLE 3 Mean ± sd of (unscaled) features for individuals of age between 18 and 60 years old with AI, CI, and HC + BP. The statistical and dynamical
features are calculated using log transformed signal data. The actigraphy-derived sleep parameters TST and WASO are given in minutes, while
SWR is dimensionless. Four AUC values are given—AUC1 (AI vs. CI), AUC2 (AI vs. HC + BP), AUC3 (CI vs. HC + BP) and AUC4 (Insomnia vs. HC + BP). The *
indicates that a negation is used for the AUC value <0.5. p-value (AI vs. CI) is calculated using Mann-Whitney U test.

Feature CI AI HC + BP p AUC1 AUC2 AUC3 AUC4

Statistical features

Mean 1.90 ± 0.42 2.14 ± 1.00 1.87 ± 0.51 0.66 0.53 0.55 0.54 0.54*

Sd 3.04 ± 0.31 2.89 ± 0.42 2.90 ± 0.29 0.23 0.59* 0.50 0.63 0.57*

IV 0.74 ± 0.18 0.80 ± 0.21 0.79 ± 0.15 0.37 0.57 0.51 0.57* 0.53

IS 0.14 ± 0.05 0.16 ± 0.05 0.14 ± 0.04 0.04 0.66 0.61 0.58* 0.51*

CCDF 0.56 ± 0.02 0.57 ± 0.03 0.56 ± 0.02 0.24 0.59 0.56 0.56* 0.51

Dynamical features

β 0.66 ± 0.12 0.68 ± 0.12 0.63 ± 0.11 0.56 0.55* 0.64* 0.59 0.61

α 0.86 ± 0.11 1.01 ± 0.09 0.90 ± 0.13 1.8E-06 0.86 0.76 0.60* 0.57*

HFD 1.85 ± 0.03 1.88 ± 0.04 1.87 ± 0.03 3.4E-04 0.77 0.61 0.68* 0.55

ShE 2.34 ± 0.38 2.44 ± 0.78 2.35 ± 0.43 0.80 0.52* 0.51* 0.52* 0.51

Sleep parameters

TST 381 ± 42 367 ± 92 388 ± 53 0.65 0.54 0.52* 0.56* 0.54

WASO 82 ± 20 87 ± 86 75 ± 27 0.03 0.67* 0.58* 0.64 0.54*

SWR 5.7 ± 2.8 9.0 ± 4.8 6.7 ± 3.1 6.7E-04 0.76 0.67 0.65* 0.50
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compared to CI and HC + BP. This partly supports the

Hypothesis H2.

The Shannon entropy, ShE, shows a slightly higher average

value in AI cohort in comparison to CI and HC + BP groups

which may indicate more night time disturbance.

Figure 5 shows the box plots of the statistical, dynamical and

sleep features of the studied signals. It illustrates that the night

time signal for the AI cohort has more variation, as demonstrated

by the statistical features, suggesting more night time physical

activity in AI subjects in comparison to those suffering from CI

and further supports our Hypothesis H2.

3.1.3 Sleep parameters (features)
Three sleep parameters were calculated for all three

groups (AI, CI, and HC + BP). The results in Table 3 show

that the average TST in minutes for the AI cohort is less than

that for the CI cohort, which in turn is less than the one for

HC + BP.

FIGURE 4
Detrended fluctuation analysis (DFA) for one night of the actigraphy showing the log-log plots of F(n) against the box size n for three individuals
with AI (red), CI (purple) and HC (blue). The slope of each line determines the values of α for each individual. The range for n is from 5 to 600 with box
selection of 50 in each plot.

FIGURE 5
Box plots of the calculated statistical, dynamical and sleep features. Each feature was rescaled to the range of (0,1) based on the minimum and
maximum over the combined AI, CI and HC + BP cohorts. In each box plot, the diamond shape indicates themean and the horizontal line depicts the
median of the rescaled feature.
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The average wake after sleep onset, WASO, is highest for the

AI group, followed by the WASO for CI and HC + BP, with a

consistent pattern of larger WASO for the insomnia sufferers

compared to healthy sleepers.

The sleep wake ratio, SWR, was calculated for all

individuals for 7 nights of actigraphy and the average

results are given in Table 3. While the SWR for the AI

group is almost twice as large compared to the one for the

CI group, this may be due to the requirement for staying in

bed, while they are not actually sleeping, imposed in one of the

studies. We note the relatively larger standard deviation for

the AI group for all three sleep parameters, which may be a

result of the same protocol requirement.

The p-values, computed with Mann-Whitney U test, are

given in Table 3. p < 0.05 indicates that the feature is

statistically significant to classify the difference between

individuals with acute and chronic insomnia. Thus, α,

HFD, IS, WASO and SWR are highly statistically

significant to differentiate between the two groups.

The calculated AUC values of the features are given in the

last columns of Table 3: AUC1 is for AI vs. CI, AUC2 for AI vs.

HC + BP, AUC3 for CI vs. HC + BP and AUC4 for Insomnia

(AI and CI) vs. HC + BP. Negation is applied to the features

with AUC values < 0.5 (to report the discriminative power of

the feature in the 0.5-1 range) and the corresponding values

are indicated with * in the Table.

Regarding AI and CI groups, only two features, α and

HFD, have relatively high values of AUC1 of 0.86 and

0.77 respectively, to be used as single markers capable to

differentiate between the AI and CI groups. However, as

the AUC1 values of α and HFD are not sufficiently high we

included the other features with AUC1 > 0.5 in building the

model.

For the AI and HC + BP groups, the α has the highest

AUC2 value of 0.76, while the AUC2 values of the other

features fall between 0.5 and 0.6, thus unable to

discriminate the AI and HC + BP cohort effectively. For

the cases of CI and HC + BP, all features have their AUC3

values in the range of 0.5–0.6, which are too low for a single

feature detection of the two groups. This can be also observed

in the AUC4 values. We included all features in building the

models.

3.2 Classification with machine learning
algorithms

First, we consider the models that differentiate AI from CI.

As shown on the flow chart of the model in Figure 3, we

trained and tested four machine learning algorithms, namely,

k-nearest neighbours (kNN), support vector machine (SVM),

Naïve Bayes (NB) and random forests (RF), to determine the

best model to classify AI and CI.

The main motivation of using machine learning is to prove

our Hypothesis H1, namely that our automatic model can

differentiate between AI and CI groups.

Two different sets of features were used to develop the

models. The first feature set includes all the features, as shown

in Table 3, 5 statistical, 4 dynamical and the actigraphy-derived

sleep parameters TST,WASO and SWR. The latter were included

to investigate their effect on the accuracy of the classification. The

second set of features included 9 features, 5 statistical and

4 dynamical. The sleep parameters were excluded in order to

reduce the effect that different methods of computation of these

parameters from different devices can have on the classification.

A significant benefit of this approach is that these characteristics

are independent of the type of instrument that measures the

signals and possible differences in sleep protocols. Five-fold

cross-validation was used for validating each model. In

addition, we executed the machine learning models five times

TABLE 4 Machine learning models using all features and 9 features
(excluding sleeping parameters) to differentiate between AI v/s CI,
AI v/s HC + BP, CI v/s HC + BP and Insomnia (AI + CI) v/s Healthy
(HC + BP).

12 features 9 features

AI v/s CI

Performance kNN SVM NB RF kNN SVM NB RF

Accuracy 0.79 0.81 0.78 0.78 0.79 0.81 0.79 0.78

Sensitivity 0.72 0.73 0.64 0.75 0.75 0.77 0.69 0.77

Specificity 0.85 0.89 0.91 0.80 0.83 0.86 0.88 0.78

Fscore 0.74 0.77 0.70 0.75 0.76 0.78 0.75 0.75

AUC 0.83 0.88 0.89 0.88 0.85 0.89 0.85 0.86

AI v/s HC + BP

Accuracy 0.69 0.67 0.72 0.69 0.69 0.72 0.74 0.70

Sensitivity 0.45 0.31 0.37 0.44 0.46 0.51 0.42 0.47

Specificity 0.81 0.84 0.89 0.81 0.80 0.82 0.90 0.81

Fscore 0.46 0.34 0.45 0.48 0.46 0.51 0.50 0.48

AUC 0.66 0.70 0.77 0.72 0.67 0.80 0.79 0.74

CI v/s HC + BP

Accuracy 0.63 0.64 0.62 0.58 0.59 0.60 0.63 0.56

Sensitivity 0.38 0.21 0.01 0.42 0.30 0.15 0.06 0.37

Specificity 0.77 0.88 0.98 0.68 0.76 0.87 0.96 0.67

Fscore 0.37 0.24 0.01 0.41 0.30 0.15 0.07 0.41

AUC 0.66 0.65 0.53 0.62 0.59 0.63 0.52 0.59

Insomnia (AI + CI) v/s Healthy (HC + BP)

Accuracy 0.53 0.62 0.54 0.52 0.51 0.57 0.51 0.52

Sensitivity 0.43 0.62 0.51 0.52 0.44 0.62 0.48 0.51

Specificity 0.63 0.61 0.57 0.52 0.59 0.52 0.55 0.54

Fscore 0.54 0.60 0.48 0.51 0.53 0.51 0.50 0.51

AUC 0.55 0.65 0.53 0.54 0.53 0.60 0.52 0.56
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and the average accuracy over 5 iterations was calculated for the

two sets of features. The results are given in Table 4, left four

columns for 12 features, right four columns for 9 features.

The results with 9 features (Table 4, right part) show that the

SVM model achieved the highest overall accuracy of 81%, with

very well-balanced sensitivity of 77% and specificity of 86%. This

was closely followed by the kNN, NB and RF. RF yielded 78%

accuracy with balanced sensitivity and specificity. However NB

and kNN obtained similar accuracy 79% in differentiating AI and

CI groups, but kNN has a better-balanced sensitivity and

specificity. The performance of the algorithms, which used all

12 features, is given in Table 4, left part. The SVMmodel remains

the best-performing model. It accomplished 81% accuracy, well-

balanced sensitivity of 73% and specificity of 89%. This was

followed by kNN, RF and NB with the accuracy of 79%, 78% and

78%, respectively. NB performed worst with accuracy of 78%,

sensitivity of 64%, and specificity of 91%. We conclude that the

small reduction in performance and balance between accuracy,

sensitivity and specificity is due to adding the sleep parameters as

additional three features (accurately calculated for the CI group

but approximated for the AI group).

We used the SVMmodel to calculate accuracy, specificity and

sensitivity for all possible combinations of the given number of

nights out of the seven nights of data. Figure 6 demonstrates that

the performance of SVM model improves with increasing the

number of nights included in the nocturnal actigraphy. Less than

four nights of actigraphy leads to reduced performance. A

minimum of 4 or 5 nights of actigraphy is required to achieve

the median accuracy, sensitivity and specificity of at least 75%,

with a minimum of 5 nights providing a more balanced

performance. This further supports the results shown in our

previous paper (Kusmakar et al., 2021).

The performance of the machine learning algorithms showed

that the best performing model, SVM, can distinguish the AI

group from the CI group, with a very high accuracy of 81% from

averaging 7 nights of actigraphy. This model can classify the two

groups with a relatively small number of parameters (9) extracted

from the signal. This confirms our Hypothesis H1. Furthermore,

we recommend SVM with 9 features for routine testing, as the

statistical and dynamical features are objective measurements,

extracted from the signal directly, and do not depend on sleep

protocols. In order to investigate fully our Hypothesis H2, we

have examined several designs of the model for classifications of

other combinations of cohorts, namely AI v/s HC + BP, CI v/s

HC + BP and insomnia (combined AI and CI) v/s HC + BP. We

have performed the classifications with 9 and 12 features

following similar cross-validation as in the previous case.

Table 4 illustrates the results.

In the case of AI and healthy cohorts (HC + BP), the results

show that the best-performing model, NB with 9 features, can

differentiate AI from the healthy group with an accuracy 74%,

closely matched by NB with 12 features, accuracy 72%, sensitivity

37% and specificity 89%.

Considering CI and the healthy cohorts, the best performing

model, SVM with 12 features, has low accuracy 64% and

unbalanced sensitivity and specificity, from averaging of seven

nights of actigraphy. This shows that the CI group is less different

from HC + BP compared to AI, which supports Hypothesis H2.

Furthermore, when combining AI and CI in one insomnia group

and comparing it to HC + BP, the SVM model can distinguish

insomnia from the healthy group with a low accuracy of 62%.

This confirms our previous results that the classification of

insomnia from healthy sleep cannot be accurately done using

averaging of actigraphic data over multiple nights as each night of

FIGURE 6
Dependence of the performance of the SVMmodel on the number of nights of actigraphy used in the model. Horizontal lines indicate median
values for the performance metrics. All possible combinations of the given number of nights in the week of data were used to obtain the statistics.
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sleep has to be classified separately. We have developed accurate

models for such classification of insomnia and healthy sleep in

our previous works (Angelova et al., 2020a; Kusmakar et al.,

2021).

4 Discussion

Wrist-worn actigraphy devices allow for the non-

obtrusive collection of activity data in a real-time

environment. This paper presented data analysis and

classification of multi-night physical activity data collected

with two different actigraphy devices in two studies: acute

insomnia study and healthy controls, and chronic insomnia

study and healthy bed partners. We only included data from

individuals from age 18 years–60 years in order to avoid the

effect of ageing on sleep quality.

Data were cleaned and pre-processed and missing data were

imputed. Healthy controls and bed partners were combined in

one healthy cohort. After the cleaning and data transformations,

we derived three groups of features from the actiwatch signal:

statistical features, dynamical features and actigraphy-derived

sleep parameters. The values of the features extracted from the

signal, showed that the AI group has more physical activities

possibly due to the stronger physical activity during the night

compared to the CI group. This supports Hypothesis H1.

Furthermore, the average values of the features shown in

Table 3 indicate that the nocturnal physical activities of CI,

while less than those of AI, are more similar to those of HC + BP.

This may be due to adaptation to disturbed sleep for CI

individuals. This supports Hypothesis H2.

The p-values and AUC values (AUC1) of the extracted

features showed that for the AI and CI groups, except for two

features, namely the complexity parameter α and Higuchi

fractal dimension HFD, no other single feature is capable to

differentiate between the AI and CI groups. However, their

AUCs were not sufficiently high to make them reliable single

markers for a diagnostic tool. For differentiating between AI

and HC + BP group, AUC2 shows decreased importance of α

and HFD. There are no significant prominent features for CI

v/s HC + BP and insomnia v/s HC + BP groups as shown by

AUC3 and AUC4 respectively (Table 3).

This required to develop machine learning algorithms in

which two sets of features were submitted: the first set

comprising 9 objective features, 5 statistical and

4 dynamical features, extracted directly from the signal,

and the second set contained 12 features, where three sleep

parameters, extracted from the signal, were added to the

9 statistical and dynamical features.

Four machine learning algorithms were deployed to

incorporate two sets of features and classify the AI and CI

groups. The algorithms selected were kNN, NB, RF and SVM.

The ground truth for AI and CI groups, used in these

machine learning models, was based on the clinical

assessment of AI and CI individuals. The machine

learning models were capable to effectively differentiate

between acute and chronic insomnia.

The best-performing algorithm was SVMwith an accuracy

of 81% with 9 features (Table 4). SVM also demonstrated a

very good balance of accuracy with sensitivity and specificity,

and proved our Hypothesis H1, namely that we can

distinguish acute insomnia from the chronic insomnia

group using physical activity data only.

The performance of the best model SVM, as well as of all

remaining models, was slightly reduced when the second set of

features was used for the algorithms, in which three sleep

parameters, TST, WASO and SWR, were added to the

9 features of the first set. This may be due to the accuracy

of calculating the sleep parameters from the different

recording devices.

We also noted that the differences in the sleep parameters

for the AI study, compared with the corresponding

parameters in the CI study (Table 3) may be due to the

different protocols for staying in bed used in the two

studies. The use of an older actiwatch (pre-2014), without

the ability to detect lights out, also affected the accuracy of

deriving the sleep parameters from the signal for the AI and

HC + BP groups.

We investigated the classification of AI and the healthy

group. The best-performing model was able to differentiate

AI from healthy sleep with an accuracy of 74%. The

classification of CI and HC + BP showed a subtle

difference between CI and healthy sleep based on

averaging over 7-night of the actigraphic data. This

further supports Hypothesis H2, as CI individuals may

have become more adjusted to sleeplessness compared to

those with AI for which the changes resultant from the acute

insomnia are still too raw and the organism and the

respective homeostatic regulation have not adapted to

these changes yet.

Furthermore, these results indicate that averaging over

actigraphic data collected for 7 nights is not a suitable

approach to differentiate insomnia from a healthy sleep, as

individuals with insomnia may have good as well as bad nights

of sleep and each night has to be classified separately. This was

confirmed by considering all insomnia (AI + CI) v/s HC + BP

groups, where the model achieved only 62% of accuracy

(Table 4).

The purpose of this study was to distinguish AI from CI

individuals based on the objective measurements from the

physical movements, which was achieved with excellent

accuracy. In addition, the machine learning models

developed for other combinations of cohorts showed that

the AI group has more prominent differences than the CI

group when both were compared with the same HC + BP

cohort.
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5 Conclusion

Sleep normally is regulated, which means that the longer one

stays awake, the longer and deeper one’s sleep will be. Health

ailments, age, social and environmental factors affect the

regularity, duration and quality of sleep. Sleep parameters such as

total sleep time (TST), wake after sleep onset (WASO) and sleep-

wake ratio (SWR) are explicitly different in healthy individuals and

adults with insomnia. Adults with acute insomnia have less sleep time

in comparison to adults with chronic insomnia (see Table 3).

Frequent and long waking periods during the night can be

observed in the night time actigraphy signals of AI and CI.

Not many studies have explored the area of homeostatic dis-

regulation in regard to acute and chronic insomnia (Pigeon and

Perlis, 2006). We analysed statistical and dynamical features and

actigraphy-derived sleep parameters of 7 nights of actigraphy

signals from two studies: acute insomnia individuals and healthy

controls, and chronic insomnia individuals and their bed

partners.

The extracted features showed that there are patterns of

differences in the physical activities of the AI and CI group which

supports our Hypothesis H2, namely that the observed changes

in patterns for the CI and AI individuals may appear because the

homeostasis drive has adjusted to sleeplessness in the individuals

with CI, while for the individuals with AI, the changes are still

too raw.

Our best-performing machine learning model, the SVM

model, differentiated acute from chronic insomnia with an

excellent accuracy of 81%, and balanced sensitivity and

specificity. This proves our Hypothesis H1. Furthermore, the

models also indicated that changes observed in acute insomnia

were more prominent than those in chronic insomnia, when both

were compared with the same healthy cohort. This further

supports Hypothesis H2.

One limitation of this work is in the data collection, where

two different protocols and different devices were used to

measure physical movements. Another limitation is due to

some imbalance in the age of the participants, where most of

the HC + BP individuals are between the ages of 20 and

40, with other groups ranging up to 60. The reason is that

the primary purposes of data collection in the AI and the CI

studies were not for differentiation of AI from CI, and these

data were re-used for the current work as secondary data.

At the same time, a clear advantage shown in this work

is that with careful data pre-processing and feature

extraction, it is possible to develop a machine-learning

model capable to differentiate acute from chronic insomnia

with high accuracy, sensitivity and specificity, based on

data, collected with different wrist-worn actigraphy devices.

This model represents a significant addition to our

comprehensive suite of insomnia pre-screening and

classification models, together with our previously

developed models detecting insomnia from normal sleep

(Angelova et al., 2020a; Kusmakar et al., 2021). The high

degree of accuracy of the model makes it suitable for

further development of a pre-screening tool for insomnia in

a home setting.
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