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We present an exemplary system of three identical oscillators in a ring interacting repulsively to
show up chimera patterns. The dynamics of individual oscillators is governed by the
superconducting Josephson junction. Surprisingly, the repulsive interactions can only
establish a symmetry of complete synchrony in the ring, which is broken with increasing
repulsive interactionswhen the junctions pass through serials of asynchronous states (periodic
and chaotic) but finally emerge into chimera states. The chimera pattern first appears in chaotic
rotational motion of the three junctions when two junctions evolve coherently, while the third
junction is incoherent. For larger repulsive coupling, the junctions evolve into another chimera
pattern in a periodic state when two junctions remain coherent in rotational motion and one
junction transits to incoherent librational motion. This chimera pattern is sensitive to initial
conditions in the sense that the chimera state flips to another pattern when two junctions
switch to coherent librational motion and the third junction remains in rotational motion, but
incoherent. The chimera patterns are detected by using partial and global error functions of the
junctions, while the librational and rotational motions are identified by a libration index. All the
collective states, complete synchrony, desynchronization, and two chimera patterns are
delineated in a parameter plane of the ring of junctions, where the boundaries of complete
synchrony are demarcated by using the master stability function.
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1 INTRODUCTION

Chimera states (Abrams and Strogatz, 2004; Sethia et al., 2008; Laing, 2009; Hagerstrom et al., 2012;
Martens et al., 2013; Omelchenko et al., 2013; Gopal et al., 2014; Schöll, 2016; Hart et al., 2019; Majhi
et al., 2019; Parastesh et al., 2020; Wang and Liu, 2020) became a paradigm of collective phenomena
in dynamical systems that started with the first report by Kuramoto and Battogtokh (2002) of two
coexisting synchronous and asynchronous groups of phase oscillators arranged in a ring and coupled
in a non-local fashion. The main question was how the symmetry in a completely synchronous
ensemble of identical oscillators breaks into two clusters, one synchronous group and another
asynchronous group. How stable is this chimera state? In the beginning, it was apprehended that the
chimera state is a transient behavior; the transient time increases with the size of a network (Wolfrum
and Omel’chenko, 2011; Rosin et al., 2014). Later, it has been established that chimera states are
possible stable states (Pecora et al., 2014; Omel’chenko, 2018; Laing, 2019) in an ensemble of identical
oscillators and with symmetry in the connectivity matrix or the topology of a network. By this time,
this phenomenon has been widely explored in single-layer networks (Abrams and Strogatz, 2004;
Sethia et al., 2008; Laing, 2009; Hagerstrom et al., 2012; Martens et al., 2013; Omelchenko et al., 2013;
Gopal et al., 2014; Hart et al., 2019; Majhi et al., 2019; Parastesh et al., 2020; Wang and Liu, 2020),
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multilayer networks (Ghosh and Jalan, 2016; Maksimenko et al.,
2016; Sawicki et al., 2018; Ruzzene et al., 2020), and 3D networks
(Maistrenko et al., 2015; Kasimatis et al., 2018; Kundu et al., 2019)
with different forms of chimeras such as traveling chimera (Bera
et al., 2016a; Omel’chenko, 2019; Dudkowski et al., 2019; Alvarez-
Socorro et al., 2021) and spiral chimera (Martens et al., 2010; Gu
et al., 2013). Various dynamical models (Hizanidis et al., 2015;
Banerjee et al., 2016; Bera et al., 2016b; Saha et al., 2019) with
different coupling schemes (Meena et al., 2016; Bera et al., 2017)
and global coupling (Sethia and Sen, 2014; Yeldesbay et al., 2014;
Hens et al., 2015a; Mishra et al., 2015) have been used for
observing chimera patterns. The concepts of amplitude
chimera (Hens et al., 2015a; Anna et al., 2016; Banerjee et al.,
2018) and amplitude death chimera (Zakharova et al., 2014;
Banerjee, 2015; Dutta and Banerjee, 2015) have been
introduced. All the examples of chimera states revolve around
the symmetry breaking of a complete coherent state into coherent
and incoherent groups. This perception has been extended
further to the observation of two coexisting subgroups of in-
phase and antiphase oscillators (Maistrenko et al., 2017), which
was also referred to as a chimera state. The necessary requirement
of a large set of oscillators for chimera states to observe has also
been relaxed with a smaller size of the network: Chimera patterns
emerge in a set of four oscillators (Hart et al., 2016; Meena et al.,
2016; Senthilkumar and Chandrasekar, 2019) and even three
oscillators (Wojewoda et al., 2016; Maistrenko et al., 2017). In a
laser system, delay in coupling has been used (Hart et al., 2016)
for the observation of chimera states in four oscillators. A
modified Kuramoto phase oscillators with inertia (Maistrenko
et al., 2017) were used to demonstrate both in-phase and
antiphase chimeras in three oscillators and later confirmed in
experiments with three attractively coupled pendula (Wojewoda
et al., 2016). In almost all the reported studies, attractive coupling
has been used for the observation of chimeras, while a few
examples are found to use a combination of both attractive
and repulsive coupling (Hens et al., 2015a; Mishra et al., 2015)
to originate chimera states in globally coupled oscillators.

We focus here on the role of repulsive interactions in the origin
of chimera patterns in a small ensemble of three identical
dynamical units. As reported earlier (Mishra et al., 2017; Ray
et al., 2020), chimera states may emerge in a large ensemble of
globally coupled Josephson junctions under repulsive
interactions. Indeed, the repulsive coupling can induce
chimera states in a smallest set of three Josephson junctions
arranged in a ring. Interestingly, a single Josephson junction
shows typical neuron-like spiking and bursting behaviors (Hens
et al., 2015b; Hongray et al., 2015; Dana et al., 2006; Mishra et al.,
2021), which is one of the reasons that encourage us to investigate
the role of repulsive interactions (inhibitory in the sense of
neuronal interaction) in a ring of three junctions. A single
Josephson junction is represented by a resistance–capacitance
shunted junction (RCSJ) circuit (Dana et al., 2001; Dana et al.,
2006; Mishra et al., 2021), which remains in an excitable state
until an external bias current is applied across the junction. The
junction shows spiking limit cycle oscillation for bias current
above a critical value. The dynamics of the junction also depends
upon a damping-like parameter that is related to the shunted

resistance and capacitance of the junction. It shows a bistable
region, in the parameter space, where the limit cycle coexists with
a steady state for a range of low damping. The RCSJ model can be
represented by a second-order phase dynamics of the junction that
governs the voltage drop across it. The RCSJ model also represents
the dynamics of the simple pendulum model and discrete sine-
Gordon equation. The dynamics of the junction is rotational when
the trajectory of the junction makes a complete rotation around a
cylindrical surface like an inverted pendulum, thereby originating a
large-amplitude spiking oscillation. On the other hand, the junction
may show, for an appropriate choice of parameters, librational
motion when the trajectory of the junction dynamics is restricted
to a small region of the cylindrical phase space. This appears like the
small-amplitude oscillation of a pendulum.

Three Josephson junctions with identical parameters and by
our choice of parameters are kept in rotational motion in an
uncoupled state but kept away from the bistable region to avoid
further complexity. The ring of three identical oscillators
represents an all-to-all (or globally) coupled network and
hence perfect symmetry. The junctions in the ring show 2π/3
out-of-phase motion in a cyclic order in time but emerge into a
state of complete synchrony (CS) for repulsive interactions above
a critical value. When the repulsive interactions in the ring are
increased further, the symmetry is broken with the emergence of
a sequence of desynchronous states, followed by chimera
patterns: 1) two junctions are in complete synchrony (CS) in a
state of rotational motion and one junction in incoherent
rotational motion when they are all in a chaotic state, 2) two
junctions in CS in rotational motion and one junction in
incoherent libration when the dynamics of the junctions is
periodic; this chimera pattern flips to two coherent junctions
in libration and one in incoherent rotation for a change in initial
conditions. We numerically delineate the different collective
states in a two-parameter plane of the junctions using
coherence measures and a libration index and use the master
stability function (MSF) to demarcate the stable region of CS in
the parameter plane.

2 THREE JOSEPHSON JUNCTIONS IN A
RING

A schematic diagram of the ring of three junctions is shown in
Figure 1A. The RCSJ circuit is shown at right that represents the
dynamics of each node. The dynamics of the ring of junctions is
represented by the phase dynamics θi and voltage vi (i � 1, 2, 3)
across the ith junction given as follows (Josephson, 1962; Mishra
et al., 2017):

_θi � vi, (1)

_vi � I − sin θi − αvi + ε(vi−1 − 2vi + vi+1),
where vi+1 � v1, if (i + 1) > n and vi−1 � v3, if (i − 1) < 1. The initial
conditions are randomly chosen from the range θi(0) ∈ [ − π, π]
and vi(0) ∈ [0.1, 1]. The damping parameter α � [h/2πeI2RC]1/2,
where h is Planck’s constant and e is the electronic charge, and R
and C are the resistance and capacitance of a junction,
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respectively. I is the external bias current normalized by the
critical current Ic � 1.0 at each junction. The interaction between
the nodes is established through junction voltages with a coupling
strength ε, which is considered repulsive (negative) to observe our
targeted chimera patterns. Figure 1B shows a phase diagram in
an α − I plane for a single junction. The single junction remains
excitable (FP) for bias current I < Ic and transits to limit cycle
oscillation via saddle-node-invariant circle (SNIC) bifurcation for
I > Ic and α > 1.19. In a lower range of α < 1.19 and I < Ic, the
junction shows bistability (BS) when the limit cycle coexists with
a steady state. The bistable state transits to limit cycle oscillation
via fold bifurcation when I > 1.0. The bistable region is bounded
by fold bifurcation (dashed horizontal line) and homoclinic (HC)
bifurcation (blue curve) in the α − I parameter plane. For our
observation of chimeras, we make a choice of parameters I > Ic
and α > 1.19 so as to obtain limit cycle oscillation (rotational
motion) in all three junctions in uncoupled state and keep them
away from the bistable region to avoid further complexity in
dynamics.

3 COHERENCE AND LIBRATION INDEX

To check the CS state, we first calculate the error functions
between all the pairs of nodes, separately, as follows:

e12 �
����������
〈(v1 − v2)2〉

√
; e13 �

����������
〈(v1 − v3)3〉

√
; e23 �

����������
〈(v2 − v3)2〉

√
,

(2)

where 〈.〉 indicates time average. We check all the three error
functions simultaneously and detect a chimera state when two of
the partial error functions are zero (say, e12 � 0 and e13 � 0).

The global error variable is then calculated as follows:

err � (e12 + e13 + e23)/3. (3)

For CS in the network, err � 0 and err ≠ 0 indicate partial
synchrony or incoherence. We use a libration index (Mishra et al.,
2017) to distinguish librational and rotational motion of the
junctions in different collective states:

LI � 1
3
∑3
j�1

Θj, (4)

whereΘj �Θ(δ −mj).Θ(.) is the Heaviside step function, where δ
is an arbitrarily chosen small threshold and
mj � 1 − 0.5*(max(cos[θj(t)]) −min(cos[θj(t)])). The
libration index becomes LI � 0 for oscillators in libration and
LI � 1 when they are in rotational motion. A value of 0 < LI < 1
indicates the coexistence of librational and rotational motions in
the ring of junctions.

For demarcation of the stable CS state in the parameter plane
of the junctions in Figure 2, we numerically estimate the MSF
(Pecora and Carroll, 1998) of identical junctions by using the

FIGURE 1 | (A) Ring of three Josephson junctions (JJ). A schematic diagram of one RCSJ circuit shown at the right that represents the dynamics of each node in
black circle. (B) Phase diagram of one RCSJ dynamics in an α − I parameter plane. Normalized critical current Ic � 1.0. The junction shows limit cycle (LC) oscillation for I >
Ic � 1.0. The junction has a bistable (BS) region bounded by a fold bifurcation line (horizontal dashed line) and a homoclinic (HC) bifurcation curve (blue line). A stable fixed
point (FP) coexists with a saddle for I < 1.0 in a region between the HC (blue line) and the saddle-node-invariant circle (SNIC) line. The junction transits to an LC state
via SNIC bifurcation for I > 1.0.

FIGURE 2 | Phase diagram in an α − ε plane of a ring of three identical
Josephson junctions. A large region of CS (region A, yellow) is demarcated
within the boundaries of blue dashed lines, where λmax is negative as
estimated by using the MSF (8) for a range of repulsive coupling and α

values. For larger repulsive coupling (beyond the blue dashed curve), CS
becomes unstable, and there first emerges a state of asynchronous limit cycle
dynamics (B, red), then asynchronous chaos (C, orange), followed by a
reasonable range of rotational chimera (D, purple) in a chaotic state, and finally,
a chimera state of mixed rotational and libration (E, cyan) in periodic motion for
larger repulsive coupling and a broad range of α > 1.2. Stability of CS is also
lost for attractive coupling (ε > 0, red region) as marked by a vertical dashed
blue line. There are regions of mixed states F (black) and G (green) of
coexisting chimera and desynchronization. Parameter I � 1.5.
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variational equation of the ring of junctions. The dynamics of the
ith node is _xi � F(xi) + ε∑jGijH(xj). Now, let x � (x1, x2, . . ., xn),
F(X) � [F(x1), F(x2), . . ., F(xn)],H(X) � [H(x1),H(x2), . . .,H(xn)]
is the coupling matrix and G be the adjacency matrix {Gij}, then

_x � F(x) + εG ⊗ H(x), (5)

where ⊗ denotes the direct product. The variational equation of
Eq. 5 by assuming ξi as a small perturbation in the ith node when
ξ � (ξ1, ξ2, . . ., ξn), (i � 1, 2, ..n) is given as follows:

_ξ � [1n ⊗ DF + εG ⊗ DH]ξ, (6)

whenH is the coupling matrix E � (0 0; 1 0), implying coupling in
second variable and DH � E. By a block diagonalization of the
variational equation, each block will be of the form as follows:

_ξk � [DF + εckDH]ξk, (7)

where ck is the eigenvalue ofG, k � 0, 1, 2, . . ., n − 1. For k � 0, we
have the variational equation for the synchronization manifold c0
� 0. The Jacobian matrices DF and DH are the same for each
block, since they are evaluated on the synchronized state. Thus,
for each k, the form of each block [Eq. 7] is same with only the
scalar multiplier εck differing. This leads us to the following
formulation of the master stability equation and the associated
MSF: We calculate the maximum Lyapunov exponents λmax for
the generic variational equation as follows:

_ζ � [DF + (α + iβ)DH]ζ , (8)

as a function of α and β. This yields the λmax as a point on the real
axis since we check the real part of the exponent, and G has only
the real eigenvalues in our case. The sign of λmax will reveal the
stability of the eigenmodes, and hence, we have the MSF, which is
used for delineating the boundary (blue dashed lines) of the CS
region (A, yellow) as shown in Figure 2, where λmax becomes
negative.

4 PHASE DIAGRAM: RING OF JOSEPHSON
JUNCTIONS

We draw a phase diagram to delineate the regions of a variety of
collective states including the chimera patterns for the three
junctions in the ring in an α − ε parameter plane in Figure 2.

All the junctions are in out-of-phase for attractive coupling (ε > 0)
when the junction voltages evolve in 2π/3 cyclic motion however
become completely synchronized (CS) in the periodic state for a
range of repulsive coupling (ε < 0). The boundaries of ε for CS are
demarcated at two ends (by two blue dashed lines), which are
indicated by a transition of λmax to a negative value as estimated
by using the MSF and perfectly matching with the numerically
simulated boundaries of CS (region A, yellow) in the phase
diagram. CS breaks down for attractive coupling at one end
(red region) and larger repulsive coupling as well at the other end
(regions B and G). CS transits to asynchronous periodic motion
(B, red) of the junctions and a mixed state (G, green) for larger
repulsive coupling. The chimera pattern (partial synchrony)
coexists with complete asynchronous oscillation in region G
(chaotic or higher periodic rotational motion). The ring of
junctions becomes chaotic in region C (orange) and remains
completely asynchronous. They form a chaotic chimera pattern
with two coherent and one incoherent junctions in region Dwhen
all the junctions maintain rotational motion. Finally, a periodic
state re-emerges in region E (cyan) with a chimera pattern. Two
junctions become coherent in rotational periodic motion that
coexists with a single junction in incoherent periodic libration.
These chimera patterns flip with a new pattern when two
junctions become coherent in libration and one in incoherent
rotation; this flipping occurs due to sensitivity in initial
conditions. Region F represents mixed states of coexisting
chimera patterns and asynchronous states.

5 SMALLEST CHIMERAS IN THREE
JUNCTIONS

Three identical junctions in the ring evolve out of phase in time in
a cyclic order of 2π/3 phase lag for attractive coupling (ϵ > 0), and
they evolve into a state of complete identical phase and amplitude
for a repulsive coupling (ϵ < 0) above a threshold as decided by
the MSF. The time evolution of the three junctions is plotted in
Figures 3A,B when the junctions emerge in an out-of-phase state
and CS state, for ε � 0.02 and ε � − 0.01, respectively. Both the
out-of-phase and CS states are true forN > 3 number of junctions
in the ring (results not shown here but checked for N � 4, 7, 8).
For further illustration, the dynamics of three junction voltages v
are demonstrated in Figure 4. We have already recognized two

FIGURE 3 | Time evolution of voltage in three junctions. Voltages vi (i � 1, 2, 3) in three junctions evolve in (A) out-of-phase 2π/3 motion in a cyclic order in time (red,
black, and blue lines) for ε � 0.02, (B) converge into complete synchrony of amplitude and phase (black lines) for ε � − 0.01. Parameters α � 1.45 and i � 1.5.
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FIGURE 4 | Smallest chimeras in a ring of three Josephson junctions (A,C,E,G,I). Trajectory of junctions (panels in left column) in a θ-v cylindrical plane and
(B,D,F,H,J) spatiotemporal evolution (panels in right column) of junction voltage v in three junctions. Region (A): (A)One coherent periodic trajectory (red) is seen with (B)
coherent evolution of all three junctions in time for α � 1.45, ε � − 0.02. Region (B): Three distinctly separate periodic rotational trajectories (C) are seen in incoherent
motion in time (D) for α � 1.45, ε � − 0.23. Region (C): Three junctions are in chaotic rotational motion (E)with incoherent spatial evolution in time (F) for α � 1.45, ε �
− 0.24. Region (D): Chimera pattern in chaotic motion (G) when two junctions are evolving in coherent motion in time (H) and one is incoherent for α � 1.45, ε � − 0.25.
Region (E): Chimera pattern in dual motion. One coherent pair of junctions in rotational motion (I) and one junction in incoherent librational motion for α � 1.45, ε � −

0.265. Regions (A–E) are identified here as depicted in Figure 2. Color bars depict the amplitude limit of junction voltages.
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reasonably broad parameter regions of chimera patterns in the
parameter planes (D and E). Now, we demonstrate their
exemplary dynamics using the trajectories of the three
junctions in a θ − v cylindrical plane and their corresponding
spatiotemporal dynamics and how they evolve against varying
repulsive coupling ε at a fixed α � 1.45. Figures 4A,B represent
the CS state for repulsive interactions as confirmed by a plot of the
trajectories (red) of three junctions in a θ − v cylindrical plane
(left panel) and its corresponding spatiotemporal plot at the right
panel. For stronger repulsive interaction, Figures 4C,D show that
CS breaks down, although the junctions maintain rotational
periodic motion; however, their trajectories are distinctly
different (blue, red, and green) which is confirmed by their
incoherent motion in the spatiotemporal plot (right panel).
The junctions become chaotic for larger repulsive current yet
continue with rotational incoherent motion as depicted by their
trajectories and spatiotemporal evolution in Figures 4E,F. The
first sign of the chimera pattern appears for further increase in
repulsive coupling when all the junctions are in chaotic rotational
motion, as shown in Figure 4G. However, two of the junctions
(indices 1 and 2) are evolving in the coherence of amplitude and
phase, while the third junction (index 3) is incoherent in
rotational motion as depicted in the spatiotemporal plot in
Figure 4H. The collective dynamics of three junctions then
switches to periodic motion for a further increase in repulsive
coupling. Interestingly, the junctions split into two groups when a
pair of junctions remains in coherent rotation (blue), as shown in
Figure 4I, and one junction 3) switches to librational motion
(red) and incoherent to the other two junctions (1 and 2). This
state of coexisting coherence and incoherence in two groups as
typically defined as a chimera pattern is confirmed by their
spatiotemporal evolution in Figure 4J.

6 CONCLUSION

The role of repulsive interactions in the origin of chimera patterns
in a small set of three dynamical units in a ring has been explored
here. A ring of three nodes with all-to-all coupling is quite often
considered as a network motif (Milo et al., 2002). We used the
exemplary model of the superconducting Josephson junction as
dynamical units that basically represent a second-order phase
dynamics under damping and external bias. Noteworthy that this
model also represents the dynamics of a simple pendulum and the
discrete sine-Gordon equation. For attractive coupling, three
junctions maintain an out-of-phase in 2π/3 alternate rotational

motion in a cyclic order, which is counterintuitive to the common
notion of synchrony under attractive coupling. Interestingly,
three junctions emerge into CS for repulsive coupling only.
We are still working on this strange collective behavior but yet
to find a complete explanation, although we make some inroads
into why and when such a behavior may emerge that is to be
reported in the future. However, we have checked this new
paradigm of CS using the MSF that establishes its stability in a
range of repulsive coupling independent of the number of
junctions in the ring. Chimera patterns emerge in three
junctions beyond the CS state when it breaks down for larger
repulsive coupling. We define chimera states here as two coherent
junctions and one junction incoherent to the other two that
follow the standard definition of chimera states in the literature.
We identified two different patterns of chimera states for
repulsive interactions. Three junctions may remain in chaotic
rotational motion, yet two of them evolve in coherence, while the
third junction also evolves in rotational motion but incoherent to
the other two junctions. In another kind of chimera pattern, for
larger repulsive coupling, two junctions may evolve in coherent
rotational motion, while the third junction switches to small-
amplitude librational motion and becomes incoherent to the
other two junctions. This chimera pattern is sensitive to initial
conditions when the chimera pattern may flip to coherent
oscillators in coherence, while the third is in incoherent
rotational motion. We cannot designate the chimera patterns
as strong chimera (Zhang and Motter, 2021). However, some
recent reports consider this latter chimera pattern as a solitary
state (Jaros et al., 2018; Semenova et al., 2018; Rybalova et al.,
2021) since a single oscillator behaves differently, in the
dynamical sense, from the other two coherent oscillators.
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