
Criticality in the Healthy Brain
Jifan Shi1,2*, Kenji Kirihara3,4, Mariko Tada3, Mao Fujioka3, Kaori Usui3, Daisuke Koshiyama3,
Tsuyoshi Araki 3, Luonan Chen5,6,7,8, Kiyoto Kasai 1,3* and Kazuyuki Aihara1,2*

1International Research Center for Neurointelligence, The University of Tokyo Institutes for Advanced Study, The University of
Tokyo, Tokyo, Japan, 2Institute of Industrial Science, The University of Tokyo, Tokyo, Japan, 3Department of Neuropsychiatry,
Graduate School of Medicine, The University of Tokyo, Tokyo, Japan, 4Disability Services Office, The University of Tokyo, Tokyo,
Japan, 5Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of
Sciences, Shanghai, China, 6Guangdong Institute of Intelligence Science and Technology, Zhuhai, China, 7School of Life Science
and Technology, ShanghaiTech University, Shanghai, China, 8Key Laboratory of Systems Biology, Hangzhou Institute for
Advanced Study, University of Chinese Academy of Sciences, Chinse Academy of Sciences, Hangzhou, China

The excellence of the brain is its robustness under various types of noise and its flexibility
under various environments. However, how the brain works is still a mystery. The critical
brain hypothesis proposes a possible mechanism and states that criticality plays an
important role in the healthy brain. Herein, using an electroencephalography dataset
obtained from patients with psychotic disorders (PDs), ultra-high risk (UHR) individuals and
healthy controls (HCs), and its dynamical network analysis, we show that the brain of HCs
remains around a critical state, whereas that of patients with PD falls into more stable
states. Meanwhile, the brain of UHR individuals is similar to that of PD in terms of entropy
but is analogous to that of HCs in causality patterns. These results not only provide
evidence for the criticality of the normal brain but also highlight the practicability of using an
analytic biophysical tool to study the dynamical properties of mental diseases.
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INTRODUCTION

Studying the human brain is a large project, which involves investigating its organization, structure,
function, and association with behavior. Detecting the physical mechanisms underlying the working
of the brain is one of the most important topics. On the one hand, the brain should be well-structured
to process information appropriately. On the other hand, it must be flexible enough to adapt to
various environments and emergencies.

The critical brain hypothesis provides an intriguing explanation for the mechanism of the
working of the brain, which assumes that in the normal brain, neural networks work near a critical
state (Beggs, 2015; Massobrio et al., 2015; Beggs and Timme, 2012). Self-organized criticality (Cocchi
et al., 2017; Lee et al., 2019) is one argument of the critical brain hypothesis, which has been
supported by the neuronal avalanche phenomenon experimentally (Beggs and Plenz, 2003;
Petermann et al., 2009): the size of the cortical activities exhibits power laws. Studies have also
found a possibility that this critical mechanism in the brain could ensure maximized capacity and
transmission of information (Haldeman and Beggs, 2005; Shew et al., 2009; Shew et al., 2011).
However, although neuronal avalanches and power laws provide important statistical descriptions of
the critical brain, an intrinsic dynamical interpretation is still missing.

The dynamical network analysis or dynamical network marker (DNM) theory has been studied in
the recent decade; it provides a dynamics-based tool to detect the changes in a complex system under
perturbation, especially near the critical point (Chen et al., 2012; Liu et al., 2012; Kuehn, 2011; Shi
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et al., 2016). The DNM theory generalizes the approach of
detecting early warning signals of critical slowing down
phenomena (Scheffer et al., 2001; Scheffer, 2009; Scheffer
et al., 2009) to complex networks. According to the DNM
theory, a core subnetwork called a dynamical network
(DNMnet) can be found, which is the leading subnetwork of
the system toward criticality. Its components (called the DNM
group) exhibit large deviations in signals and strong correlations
between them around the critical state. DNM groups can not only
act as a marker for the criticality of complex systems but also
provide an approach for predicting disease, economic crashes, etc
(Liu et al., 2014a; Liu et al., 2015; Richard et al., 2016; Lesterhuis
et al., 2017; Li et al., 2013; Liu et al., 2014b; Yang et al., 2018; Liu
et al., 2019; Dakos and Bascompte, 2014).

Herein, we used electroencephalography (EEG) (Cooper
et al., 2014) data recorded from healthy control subjects
(HCs), ultra-high risk (UHR) individuals, and patients with
psychotic disorder (PD) to explore states of the brain using the
DNM theory. By analyzing the dynamical properties of the
DNM group of the neural network in the brain, we found that
brains of HCs were at a critical state, whereas those of patients
with PD were stuck in more stable less-critical states. Brains of
UHR individuals fell in a medial state with similar low entropy
as those of patients with PD, but a weak causality pattern was
observed between electrodes similar to HC. These results based
on DNM modeling not only provide an evidence of the critical
brain hypothesis but also show a biophysical framework to study
the brain and mental diseases.

RESULTS

Construction of the DNMnet
The 64-channel EEG data were recorded from subjects with the
two-tone auditory oddball paradigm (see Methods).
Mathematically, we suppose that the dynamics of brain signals
under the standard stimulus evolves as follows:

x(t + 1) � f (x(t), λ), (1)

where x � (x1, x2, . . . , xn)T ∈ Rn is a vector containing signals
from all n electrodes, f is assumed to satisfy the existence and
uniqueness condition, and λ is a bifurcation parameter. Because
we assume the invariance of the brain dynamics, the signals y for
the deviant stimulus (the deviant tone in two-tone auditory
oddball paradigm, see Methods), which is a small perturbation
from x, follow the same equation y(t + 1) � f (y(t), λ). Thus, the
evolution of the difference process z(t) � y(t) − x(t) can be
approximated as follows:

z(t + 1) ≜ y(t + 1) − x(t + 1)
≈ A(λ)(y(t) − x(t)) + ξ(t)
� A(λ)z(t) + ξ(t), (2)

where the matrix A(λ) ∈ Rn×n is the Jacobian matrix of f (·, λ),
and ξ(·) is inevitable noise in the brain and assumed as a small
additive noise term which is independent of A(λ). When the
parameter λ → λ0, where λ0 is a codimension-one catastrophic

bifurcation point of the system (Kéfi et al., 2013), the largest-
modulus eigenvalue of A(λ) will influence system stability.
According to the DNM theory (Liu et al., 2012), the network
between nodes can be partitioned into a DNM group and a non-
DNM group. The DNM group leads the criticality of the system,
and deviations of signals and correlations between any nodes in
the DNM group will increase sharply around a critical point.
Utilizing these characteristics, we constructed the DNMnet and
compared the dynamical differences between brains of HCs and
those of patients with PD. The DNMnets under duration deviant
(dD) experiments and frequency deviant (fD) experiments are
shown in Figures 1A–D. Details can be found in the Methods.

Criticality of the Brain: MMN Pattern and
DNMIndex
Mismatch negativity (MMN) (Erickson et al., 2016) is one of the
most well-known patterns in PD, whose amplitude of neural
activities is reduced compared to the healthy brain. MMN is
associated with cognitive impairments (Chung et al., 2017) and
can serve as a biomarker for early interventions (Bodatsch et al.,
2015) and development of novel treatments (Perez et al., 2017;
Kantrowitz et al., 2018). However, mechanisms underlying
altered connectivity remain unknown in the clinical field.
Using the DNM theory, we found that the MMN amplitude is
explained by the difference process z(t) of the brain signal.
Furthermore, the nodes in the DNMnet with a large deviation
in the signal are all located in the fronto-central area, which
corresponds to the region with significant MMN patterns
(Figures 1A–D). The DNM theory can provide a dynamical
explanation of the MMN pattern, and in return, the MMN
pattern provides an evidence for the criticality of the normal
brain under the DNM framework.

A DNMIndex was designed to measure the criticality based on
the characteristics extracted from the DNMnet as follows:

DNMIndex � Π(σ(x)) · Π(∣∣∣∣ρ∣∣∣∣), (3)

where “Π (·)” stands for the geometric mean of a vector, “σ(·)” is
the component-wise standard deviation, “x” denotes the brain
signals after preprocessing (corrected epochs) of nodes in the
DNMnet, “| · |” is the component-wise absolute value function,
and “ρ” denotes the correlations between nodes with edges in the
DNMnet. The DNMIndex will be higher at the critical state than
at non-critical states. Using the DNMIndex, we found the brain of
HC is in a significantly more critical state than those of patients
with PD and UHR individuals in both dD and fD cases
(Figures 1E–F).

Criticality of the Brain: Entropy
Mutual information between each pairs of nodes over time and its
entropy are important metrics for isotropy and the criticality of a
network. Based on the nodes in the DNMnet, we define the
mutual information over time from node x to node y as follows:

Ix→y � ∫∫p(xt, yt+Δt)log p(xt, yt+Δt)
p(xt)p(yt+Δt) dxdy (4)
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where {xt|t � 1, 2, . . .} and {yt|t � 1, 2, . . .} are the observed
time series from node x and y; Δt is a time interval; p(xt, yt+Δt) is
the joint probability density function; p(xt) and p(yt+Δt) are the
respective marginal density functions; and the integral is over the
entire (xt, yt+Δt) space. According to the DNM theory, if x and y
belong to the DNM group, their correlation will become strong
near the critical point; thus, Ix→y grows rapidly. However, if
either x or y belongs to the non-DNM group, mutual information
will remain stable and bounded. Thus, near the critical point,
some rapidly growing mutual information will change their
distribution over the entire DNMnet. We will use two indices
to detect the anisotropy of mutual information in the
network—the distribution entropy (DE) and network entropy
(NE)—whose definitions are shown in the Methods. With the
time interval Δt � 20 ms, we calculated the DE and NE of the HC,
UHR, and PD groups (Figures 2A–B for the dD case, and
Supplementary Figures S7A–B for the fD case). The HC
group always exhibited significantly higher DE and NE than
the PD andUHR groups, while the difference between the PD and
UHR groups was not significant. These results support the critical
brain hypothesis that the HC group should be at a critical state,
whose entropy is high possibly to ensure adaptivity. In addition,
correlations between positive symptoms (clinical score) of PD
and DE/NE were calculated (Supplementary Figure S11), which

also implied that the worse the positive symptoms are, the more
low-entropy and stable the brain is. In Supplementary Figure
S12, we also showed that the orders of DE/NE for three groups
were not sensitively influenced by the parameter Δt.

In the biological sense, the high entropy at the critical state
reflects a possibility that the brain can send information to
different brain regions in time to deal with various stimuli.

Criticality of the Brain: Causality Pattern
The causality pattern is another evidence for criticality, which can
be detected by the conditional transfer entropy (CTE) between
different nodes, which is given as

CTEx→y � CMI(xt, yt+Δt|�xt)
� ∫∫∫p(xt, yt+Δt, �xt)log p(xt, yt+Δt

∣∣∣∣�xt)
p(xt|�xt)p(yt+Δt

∣∣∣∣�xt) dxdyd�xt,

(5)

where CMI denotes the condition mutual information, x and y
are two variables to detect causality, �x includes all other variables
except x, and Δt is the time interval. CTE is different frommutual
information because it excludes indirect influences and is usually
used to detect the direct causality. If the brain is at a stable state,

FIGURE 1 | Auditory mismatch negativity (MMN) patterns, dynamical networks (DNMnet), and DNM indices of the three groups (HC, UHR, and PD). (A) is the
duration MMN (dMMN) pattern and (C) is the frequency MMN (fMMN) pattern for the electrode FCz (channel number 4). (B) and (D) are DNMnets constructed in the
duration deviation (dD) case and the frequency deviation (fD) case, respectively. (B) has 20 nodes and 12 edges which exhibited significant differences (the one-sided
Wilcoxon rank-sum test, p<10−3 for nodes and p< 0.005 for edges after FDR correction) between the HC and PD groups, and (D) has 17 nodes and 37 edges. For
dD in (E) and fD in (F), DNM indices were computed, compared, and plotted using violin plots. The p-values were calculated by the one-sidedWilcoxon rank-sum test for
“HC > UHR” and “HC > PD”, whereas for “UHR ≈ PD”, the two-sided Wilcoxon rank-sum test was used.
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causalities between different electrodes should be apparently
present, while for critical states, random-like activities decrease
the possibility of the appearance of regular causality patterns.
With the time interval Δt � 20 ms, we can obtain heatmaps of the
mean CTE between every pair of 64 electrodes for the PD, UHR,
and HC groups (Figures 2C–E for the dD case, and
Supplementary Figures S7C–E for the fD case). The larger
the value of CTE is, the stronger is the direct causality
between variables. We found that the PD had a stronger
causality network compared with the UHR/HC, which implies
that psychosis makes the brain fall into a more stable state. In
contrast, it is difficult for the normal brain to form general
causality patterns at a critical state, as shown by the heatmap
of the HC group. The probability density functions of CTE for
each group are plotted in Figure 2F for a better intuition. In
Supplementary Figure S12, we also showed that the orders of
CTE for three groups were not sensitively influenced by the
parameter Δt.

ANCOVA for DNMIndex, DE, and NE
For EEG data, we performed analysis of covariance (ANCOVA)
with age, premorbid IQ, and antipsychotic dose as covariates
because these variables were significantly different among groups
(Supplementary Table S1). For the duration deviant experiments,
all these covariates showed no significant effects (F1,91 < 2.58, p >

0.11). Therefore, these factors did not affect our findings in the
duration deviant experiments. For the frequency deviant
experiments, premorbid IQ showed significant effects, whereas
age and antipsychotic dose showed no significant effects (F1,91 <
0.75, p > 0.39). Therefore, we performed ANCOVAwith premorbid
IQ as a covariate in the frequency deviant experiments.

ANCOVA of the DNMIndex in the frequency deviant
condition revealed significant effects of groups (F2,95 � 6.61,
p � 0.01) and premorbid IQ (F1,95 � 11.08, p < 0.001). Post-
hoc analyses revealed that the HC group had a significantly higher
mean value than the PD (p < 0.001) and the UHR (p � 0.004)
groups, while the difference between the PD andUHR groups was
not significant (p � 1.00).

ANCOVA of DE in the frequency deviant condition revealed
significant effects of groups (F2,95 � 5.72, p � 0.005) and
premorbid IQ (F1,95 � 6.80, p � 0.01). Post-hoc analyses
revealed that the HC group had a significantly higher mean
value than the PD group (p � 0.003), while the difference
between the HC and UHR groups (p � 0.33) and the
difference between the UHR and PD groups (p � 0.48) were
not significant. ANCOVA of NE in the frequency deviant
condition revealed significant effects of groups (F2,95 � 5.44,
p � 0.006) and premorbid IQ (F1,95 � 8.43, p � 0.005). Post-hoc
analyses revealed that the HC group had a significantly higher
mean value than the PD group (p � 0.004), while the difference

FIGURE 2 | Entropy and causality difference between the HC, UHR, and PD groups in the duration deviant (dD) case. (A) Violin plot for the distribution entropy of
mutual information between each pair of nodes. (B) Network entropy. For “HC > UHR” and “HC > PD”, p-values were calculated by the one-sided Wilcoxon rank-sum
test, while for “UHR ≈ PD”, the two-sided Wilcoxon rank-sum test was used. The HC group exhibited significantly higher entropy than the PD and UHR groups. The PD
and UHR groups did not significant differences. (C–E) Heatmaps of the direct causality between 64 electrodes measured by the conditional transfer entropy (CTE).
(F) shows probability density functions of the CTE. On average the PD has much stronger direct causalities between electrodes than the HC/UHR.
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between the HC and UHR groups (p � 0.58) and the difference
between the UHR and PD groups (p � 0.31) were not significant.

These findings revealed the lower DNMIndex, lower
distribution entropy, and lower network entropy of the
frequency deviant experiments in the PD group even after
controlling premorbid IQ. In UHR, the DNMIndex was lower,
whereas DE and NE showed insignificant difference for the
frequency deviant experiments after controlling premorbid IQ.

Application of Criticality: Risk of Mental
Disease
The level of the criticality of the brain contained in the DNMnet
can provide a quantitative measure to weigh the risk of mental
disease. From the EEG samples, we applied an ensemble classifier
based on the DNMnet (seeMethods). AUCs and cross validations
were used to test the training accuracy and to ensure the reliability
of the classifier (Supplementary Figure S8). With the final risk
output, we found that the PD group exhibited the highest risk,
and the HC group showed the lowest risk, whereas the UHR
group evinced a medial risk (Figure 3A for the dD case and
Figure 3B for the fD case). This risk analysis indicates that DNM
results could help distinguish between the three groups and has a
potential to guide prepsychotic diagnosis.

DISCUSSION

In this study, we built a dynamical network model to explore the
criticality of the brain. It not only provides a dynamics-based
explanation of the traditional MMN patterns, but also uses
features of the model (the DNMIndex, the entropy, and the
causality pattern) to support the fact that the healthy brain is
around the critical state. A risk index for PDs also indicates the
practicality of the DNMnet, which can highlight the criticality of
the neuronal network.

Criticality is an important concept for the activity of the brain.
Around the critical state, the healthy brain can adapt to new

situations and deal with various stimuli in a timely manner.
However, if the DNMnet in the brain falls into a more stable state,
as in the PD group, the stability may lead to cognitive inflexibility
and functional impairments (Serrano-Guerrero et al., 2020).
Previous studies reported altered connectivity underlying
MMN in psychotic disorders (Dima et al., 2012; Ranlund
et al., 2016; Braeutigam et al., 2018). However, MMN does not
highlight the dynamical mechanism to clarify its reduction in
psychotic disorders. Therefore, the DNMnet used in the current
study reveals that MMN is only an external presentation of the
changes in the criticality.

The UHR group in this study showed lower DNMIndex, DE,
and NE compared to the HC group. These findings suggest that
the DNMnet of the UHR has already fallen into the stable states
before onset of psychosis. However, in the direct causality
network constructed by the CTE, we found that the direct
causality between electrodes for the UHR group was as weak
as the HC. As the CTE detects the direct influence from electrode
to electrode, while the DE and NE consider the long-range global
communication, we speculate a possibility that the UHR group
has healthy local functions similar to the HC group, but impaired
global functions similar to the PD group. The lack of variation
may eventually pull the UHR into a more stable state, similar to
the PD group. It could be one way to explain why the brain of
UHR individuals works normally as HC compared to those of
PD, but eventually the slowing down variation makes it fall into
the stable PD state.

In the application of risk analyses, we only used the
information from the DNMnet, which is a subnetwork of the
entire 64 channels, to estimate the risk of psychosis for each
sample. We also compared it with the result of the risk estimated
by the MMN amplitude (Supplementary Table S4;
Supplementary Figures S9, S10). The DNMnet exhibited the
same efficiency as the MMN risk which uses features from all
channels. These findings indicate that the much simpler DNMnet
can serve as not only a mechanistic biomarker (Pine and
Leibenluft, 2015) but also as a pragmatic biomarker (Paulus,
2015) for diagnosing mental diseases.

FIGURE 3 | Risk analysis of the HC, UHR, and PD groups for the duration deviant experiment (dD) dataset and the frequency deviant experiment (fD) dataset with
DNM features. (A) and (B) Violin plots of risks for three groups in the dD and fD cases, respectively. The HC always has the lowest and the PD has the highest risk,
whereas the UHR exhibits a medial risk. The one-sided Wilcoxon rank-sum test was used to determine the significance of difference between groups.
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There are several limitations in this study. First, potential
medication effects may have influenced the findings because
participants in UHR or PD took medication. Whether
medication biases dynamic network markers needs to be
clarified with medication-naïve participants in the future
study. Second, this work is designed as a cross-sectional study.
Therefore, we could not identify when the brain falls into stable
states. Future longitudinal studies will clarify the trajectory of
dynamic states in psychotic disorders.

In conclusion, we found that the criticality is a key feature of
the healthy brain. Based on the DNM theory, the brain of HC was
close to the critical states, whereas those of UHR individuals or
patients with PD fell into more stable states. Our analysis not only
offers a new viewpoint toward understanding the dynamic brain
but also provides a possibility of a biophysical approach for
researching other mental disorders.

METHODS

Subjects
A total of 49 HC subjects, 24 UHR individuals, and 29 patients
with PD participated in this study, which contained participants
of the Integrative Neuroimaging Studies for Schizophrenia
Targeting Early Intervention and Prevention (IN-STEP)
(Koike et al., 2013). Detailed participant information is
provided in the Supplementary Notes and Supplementary
Table S1. The Research Ethics Committee of the Faculty of
Medicine, The University of Tokyo, approved this study
(approval No. 629, 2226). We conducted this study in
accordance with the Declaration of Helsinki. Written informed
consent was obtained from all the participants.

Electroencephalography Data
A 64-channel Geodesic EEG System (Electrical Geodesics Inc,
Eugene, OR) was used to acquire EEG data. Electrodes were
referenced to the vertex, and impedances were kept below 50 kΩ.
The sampling rate was 500 Hz, and the analog filter bandpass was
set at 0.1–100 Hz. The locations of the EEG electrodes are shown
in Supplementary Figure S1A.

Stimuli and Procedure
The two-tone auditory oddball paradigm with 2000 stimuli was
performed for each subject when obtaining EEG data. For the
duration deviant (dD) experiments, 90% stimuli were standard
tones (1,000 Hz, 50 ms) and 10% were deviant tones (1,000 Hz,
100 ms). For the frequency deviant (fD) experiments, 90% stimuli
were standard tones (1,000 Hz, 50 ms) and 10% were deviant
tones (1,200 Hz, 50 ms). All stimuli were 80 dB SPL with a 1 ms
rise/fall time. The stimulus onset asynchrony was 500 ms. The
oddball paradigms were counter-balanced, and tones were
presented binaurally through earphones while participants
watched a silent cartoon.

EEG Data Preprocessing
Original 64-channel signal files (Supplementary Figure S1B)
were input into MATLAB (9.3.0) and were further

preprocessed using the EEGLAB (v14_1_1b) package
(Delorme and Makeig, 2004) (Supplementary Figures
S1C–E). Detailed preprocessing procedures are provided in
the Supplementary Material. Finally, corrected epochs
(deviant epochs with the mean signal of standard epochs
being subtracted for each sample) were utilized for further
analyses (Supplementary Figure S1F).

Auditory Mismatch Negativity
Corrected epochs were obtained by subtracting the event-
related potential (ERP) waveforms in response to the
standard stimuli from those in response to the deviant
stimuli. We defined the peak latency as the most negative
peak between 100 and 250 ms relative to the onset, and the
MMN amplitude was calculated as the mean signal around
the peak latency (we used the window of 135–205 ms for the
duration MMN and the window of 100–200 ms for the
frequency MMN) (Nagai et al., 2013). The MMN patterns
for the 64 electrodes in the three groups (PD, UHR, and HC)
under dD and fD are shown in Supplementary Figures S3
and S4, respectively. Using the MMN amplitude for each
channel as the feature, we can compute p-values of the group
difference under the Wilcoxon rank-sum test. After FDR
correction, we identified 12 electrodes (Nos. 3, 4, 5, 9, 17,
18, 22, 30, 43, 54, 55, and 58) in the dD and 12 electrodes
(Nos. 3, 4, 5, 8, 9, 17, 18, 30, 43, 54, 55, and 58) in the fD that
exhibited significant difference (adjusted p < 0.05) between
the HC and UHR/PD groups, albeit insignificant difference
(adjusted p > 0.05) between the UHR and the PD groups. It
should be noticed that all electrodes with significant MMN
difference were located in the fronto-central area.

Dynamical Network (DNMnet)
The neuronal signal under standard stimuli is supposed to
obey the dynamics in Eq. 1, whereas the corrected epochs
after preprocessing follow Eq. 2. Criticality is defined as when
the dynamics is around a codimension-1 local bifurcation
(Chen et al., 2012). The network of electrodes can be
partitioned into a DNM group and a non-DNM group
(Chen et al., 2012) by measuring the fluctuations of signals
and their correlations between electrodes for each sample.
The DNMnet is the leading network for complex systems that
drives the system toward or away from critical states. Two
conditions for constructing the DNMnet were used in this
study:

1. Any member of the nodes in DNMnet is highly fluctuating
around a critical point.

2. Any edge in the DNMnet becomes very strong around the
critical state.

The one-sided paired-sample t-test and the one-sided
Wilcoxon rank-sum test were used for selected nodes and
edges, respectively. We selected nodes and edges with
significant statistical difference between HC and PD groups.
Significance was set at p< 10−3 for nodes and p< 0.005 for
edges after FDR correction. Supplementary Tables S2, S3 and
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Supplementary Figures S5, S6 show the statistical properties
of the nodes and edges in DNMnets. Specifically, 20 nodes (the
one-sided paired-sample t-test with p< 10−3 after FDR
correction) were extracted from the dD experiment dataset
(Supplementary Figure S5). 12 edges with significantly
increasing correlations (the one-sided Wilcoxon rank-sum
test with p< 0.005 after FDR correction) were also detected
(Supplementary Figure S6). No edge with significantly
decreasing correlation (the one-sided Wilcoxon rank-sum
test with significance level α � 0.05) in HC was found. We
denoted the 20 nodes and 12 edges as the DNMnet for the dD
case (Figure 1B). The same analysis was also applied to the fD
experiment dataset, from which 17 nodes (the one-sided
paired-sample t-test with p< 10−3 after FDR correction,
Supplementary Table S2) and 37 edges (the one-sided
Wilcoxon rank-sum test with p< 0.005 after FDR
correction, Supplementary Table S3) were selected to form
the DNMnet for the fD case (Figure 1D). No significant
decreasing correlation (the one-sided Wilcoxon rank-sum
test with significance level α � 0.05) in HC was found in the
fD experiment dataset, either.

We remark that the Lyapunov Exponent is also a possible
measure for detecting criticality. We note that the dynamical
network we used here refers to the leading subnetwork (Chen
et al., 2012). In the celebrated paper on synchronization (Arenas
et al., 2008), the dynamical network is considered as the whole
system of the interacting dynamical units. In this manuscript,
most of the time we use the notation the DNMnet to avoid the
confusion.

Measures for the Criticality
When calculating the DNMIndex using Eq. 3, the corrected
epochs were used as the signal. Nodes and edges in the
DNMnet were considered.

We denote a network as G � {V, E}, where V �
{x1, x2, . . . , xn} are n nodes and E �
{ei,j|i, j ∈ {1, 2, . . . , n} and i ≠ j} are Ne � n(n − 1) different
directed edges. Using the mutual information in Eq. 4, the
distribution entropy (DE) is defined as the normalized entropy
of all mutual information on edges, as follows:

Entd � − 1
logNe

∑n

i�1∑
n

j�1
j ≠ i

pij logpij, (6)

where

pij � Ixi→xj

∑n
i�1∑n

j�1, j ≠ iIxi→xj

(7)

is the normalized mutual information over the entire network.
Mutual information Ixi→xj is calculated under Gaussian
approximation as Ix→y � −1/2 · log(1 − ρ2xtyt+Δt ) , where ρxy is
the Pearson correlation coefficient between x and y. In
contrast, the network entropy (NE) is defined as follows

Entn � − 1
n
∑n

i�1∑
n

j�1
j ≠ i

qij log qij, (8)

where

qij � Ixi→xj

∑n
j�1, j ≠ iIxi→xj

(9)

is the normalized mutual information exiting each node. We use
the full network between nodes in DNMnet to calculate the DE
and NE. If the brain works around a critical state, some increasing
mutual information will expand their distribution density on the
network. Thus, DE and NE are larger at a critical state than at
non-critical states. High entropy also reflects a possibility that the
brain can send information to different brain regions in time to
deal with various stimuli.

For the CTE defined in Eq. 5, every pair between 64 electrodes
is considered to construct the causality patterns in (Figures
2C–E). CTE is also calculated under Gaussian approximation
as CTEx→y � −1/2 · log(1 − ρ2xtyt+Δt|�xt

), where ρxy|z is the partial
correlation between x and y conditional on z.

Estimation of Psychotic Risk
Using the knowledge of the DNMnet after dynamical network
analysis, we applied an ensemble classification on the EEG data to
estimate the risk index for psychosis. A flowchart of the risk
estimation is shown in Supplementary Figure S2.

We assume that there are nk corrected deviant epochs after
preprocessing for sample k, which may belong to one of the PD,
HC, or UHR groups. PD and HC epochs are used as the training
set. Features for training comprise the elements in the
covariance matrix for each sample. We assigned each epoch a
label: 1 for PD and 0 for HC. Ensemble classification was then
applied, and cross validation was performed. Using the
classification tree, we can test all PD, HC, and UHR epochs.
Finally, the risk for person k is defined as the mean output (the
label value) of the epochs belonging to this sample, and this is
defined as

Rk � 1
nk

∑nk

i�1 Oi, (10)

where Rk is the risk for sample k, nk is the number of corrected
epochs in sample k, and Oi is the classification output of the ith
epoch. Rk is always between 0 and 1. To verify the accuracy and
compare different classifiers, we used a risk accuracy index. If
there are nHC samples in HC, nUHR samples in UHR, and nPD
samples in PD, we sort the risks for all samples in an ascending
order from smallest to largest. The risk accuracy for the HC group
is set as the percent of HC samples in the first nHC smallest Rk s.
The risk accuracy for the UHR group is set as the percent of UHR
samples in the medial nUHR medium Rk s. The risk accuracy for
the PD group is set as the percent of PD samples in the last nPD
largest Rk s. Furthermore, the risk accuracy for the disease group
is set as the percent of UHR and PD samples in the last nUHR +
nPD as the largest Rk. The training accuracy of the classifier is
defined as 1 − loss. Thus, the DNM classifier has more than 80%
training accuracy (Supplementary Table S4). The risk accuracy
indices for the test set were also calculated and are listed in
Supplementary Table S4.
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Statistical Analyses
We used SPSS (IBMCorp., NewYork, United States) andMATLAB
9.3.0 (MathWorks Inc.) for statistical analyses. For demographic and
clinical data, we performed a chi-squared test, independent t-tests,
and analysis of variance (ANOVA) for comparison among groups.
Bonferroni correction was performed in post-hoc analyses of
ANOVA. For EEG data, we performed paired-sample t-tests and
Wilcoxon rank-sum tests to compare difference in the MMN, DNM
measures, and risks between different groups. When we quantified
an alternative hypothesis of a one-side inequality, such as some index
with HC > PD, we used the one-side Wilcoxon rank-sum tests.
While we quantified an alternative hypothesis of a two-side
inequality, such as some index with UHR≠PD (i.e., UHR < PD
orUHR > PD), we used the two-sideWilcoxon rank-sum tests. False
discovery rate (FDR) was also controlled for multiple comparisons
(Benjamini and Hochberg, 1995). Analysis of covariance
(ANCOVA) with age, premorbid IQ, and antipsychotic dose as
covariates were also conducted, which showed that they did not
affect the difference of measures for criticality between groups.
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