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The mammalian suprachiasmatic nucleus (SCN) comprises about 20,000 interconnected
oscillatory neurons that create and maintain a robust circadian signal which matches to
external light cues. Here, we use an evolutionary game theoretic framework to explore how
evolutionary constraints can influence the synchronization of the system under various
assumptions on the connection topology, contributing to the understanding of the
structure of interneuron connectivity. Our basic model represents the SCN as a
network of agents each with two properties—a phase and a flag that determines if it
communicates with its neighbors or not. Communication comes at a cost to the agent, but
synchronization of phases with its neighbors bears a benefit. Earlier work shows that when
we have “all-to-all” connectivity, where every agent potentially communicates with every
other agent, there is often a simple trade-off that leads to complete communication and
synchronization of the system: the benefit must be greater than twice the cost. This trade-
off for all-to-all connectivity gives us a baseline to compare to when looking at other
topologies. Using simulations, we compare three plausible topologies to the all-to-all case,
finding that convergence to synchronous dynamics occurs in all considered topologies
under similar benefit and cost trade-offs. Consequently, sparser, less biologically costly
topologies are reasonable evolutionary outcomes for organisms that develop a
synchronizable oscillatory network. Our simulations also shed light on constraints
imposed by the time scale on which we observe the SCN to arise in mammals. We
find two conditions that allow for a synchronizable system to arise in relatively few
generations. First, the benefits of connectivity must outweigh the cost of facilitating the
connectivity in the network. Second, the game at the core of the model needs to be more
cooperative than antagonistic games such as the Prisoner’s Dilemma. These results again
imply that evolutionary pressure may have driven the system towards sparser topologies,
as they are less costly to create and maintain. Last, our simulations indicate that models
based on the mutualism game fare the best in uptake of communication and
synchronization compared to more antagonistic games such as the Prisoner’s Dilemma.
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1 INTRODUCTION

The mammalian suprachiasmatic nucleus (SCN) comprises
about 20,000 oscillatory neurons networked through a variety
of communication pathways that forms the master time-keeper
for mammals (Mohawk et al., 2012). The SCN sits above the optic
chiasm, receiving and incorporating optical input relaying the
light/dark patterns of the outside world. These signals entrain the
overall oscillation of the SCN to the external signal (Duffy and
Czeisler, 2009), providing a robust circadian (circa � about, dian
� day) rhythm that sets the timing for a myriad of biological
processes (Ko and Takahashi, 2006).

The SCN has been the subject of intense study for decades
where researchers have uncovered the molecular mechanisms for
oscillation and many of the biological and chemical factors that
influence a neuron’s oscillatory signal by speeding up or slowing
down the rhythm (Ko and Takahashi, 2006). Further, oscillatory
neurons must communicate through a network to facilitate
construction and maintenance of the circadian signal (Welsh
et al., 2010; Mohawk and Takahashi, 2011).

Interrogating the connectivity and communication structure for
large collections of neurons is daunting.While experimentalists are
always improving techniques, current technology comes with
trade-offs that limit the scope of information we can collect.
Consequently, while we know a great deal about the
mechanisms of communication, we do not yet completely know
how all of the communication fits together across the tissue.

Systems of coupled oscillators, such as the neurons in the SCN,
have been modeled in numerous way to help better understand
their function and properties. While many of these models contain
detailed representations of biochemical processes, others are more
abstract in modeling high level features of oscillatory systems
(Asgari-Targhi and Klerman, 2019). Among the latter group of
models, the Kuramoto coupled oscillator models are one of the
most parsimonious and are ubiquitous in theoretical investigations
of the SCN. In Kuramoto systems, as in the SCN (Welsh et al.,
1995), if oscillators are disconnected completely from one another
they revert to oscillating according to their intrinsic frequencies.
But once connected, they can exhibit a wide range of partial or
complete synchronization or none at all (Abrams and Strogatz,
2006; Zhou and Kurths, 2006; Allefeld et al., 2007; Hong and
Strogatz, 2011; Ji et al., 2013; Pecora et al., 2014; Favaretto et al.,
2017) depending on the patterns and strengths of the connections.

We see a basic evolutionary trade-off between the benefits of
synchronization to the organism and the cost of the neural
architecture it requires to facilitate the necessary communication.
Synchronization creates a system-wide circadian rhythm that
improves the survival (and hence reproduction) of the organism.
Signals from the SCN regulate numerous functions across the
organism including sleep schedules, metabolism, immune
responses, activity levels, and hormone excretion (Lowrey and
Takahashi, 2004). At the most basic level, a circadian rhythm
allows the organism to enter energy saving modes at different
times of day. At a more complex level, the timing and
centralized clock that the SCN signal provides allows an
organism the ability to predict the future—to know when it is
safe to find food and avoid predation.

But what do we expect the communication and connectivity
patterns to look like? To investigate this, we introduce a simple
evolutionary game theoretic model built on a stripped down
version of an oscillatory system. Earlier work by Tripp et al.
(2020) derived analytical results for this model under the
assumption that all oscillators were connected to all other
oscillators. Here, we extend this investigation to test several
different connection topologies. Arranging the oscillators on a
lattice in the plane, we investigate the four and eight nearest
neighbor topologies as well as randomly generated topologies
with a mixture of nearby and long range connections.

Our simulations provide two central results. First, high levels of
communication and connectivity are not necessary for a stable
synchronous system: all of the topologies we tested produce fully
communicative and synchronous systems in cost-benefit regimes
similar to the all-to-all case. Second, the main difference between
the topologies is the rate at which the systems converge to either
full communication or non-communication. This has implications
about the time scale of the potential evolution of synchronous
systems—to arise in relatively few generations, the parameters in
our model need to lie within a region where the underlying game in
our evolutionary dynamics is mutualism. This type of game, also
called harmony game (Hauert, 2001), is less antagonistic than other
common model games such as the Prisoner’s Dilemma, as it has
multiple positive outcomes. This is another useful feature as these
outcomes correspond to phases of the oscillation, allowing our
systems to synchronize to different phases.

2 BACKGROUND AND RELATED
LITERATURE

The SCN serves as the master circadian oscillator in mammals.
Receiving input about external light cues from the optic nerve, the
oscillatory neurons in the SCN synchronize to match the
environment. This signal is disseminated throughout the body to
other oscillatory centers, serving as a master time-keeper that allows
the organism’s precise control over a wide variety of biochemical
processes (Dibner et al., 2010).While oscillatory neurons in the SCN
oscillate individually, interconnection and communication between
them facilitates the synchronization that creates the master signal.
Complex interactions along multiple channels of communication,
including neurotransmitters and electrical firing, facilitate and
regulate synchronization (Aton and Herzog, 2005).

The idea of using dynamic models to study properties of the
SCN is not new. Researchers typically construct multicellular
interaction models by first choosing a model of intra-cellular
oscillation and then coupling these models together (see Asgari-
Targhi and Klerman (2019) for a review). These models of cellular
dynamics vary from relatively simple idealized models to much
more complex models that reflect more of the biological detail.
One of the most simple but effective models is the two-oscillator
Kuramoto model (Acebrón et al., 2005), comprised of a pair of
coupled ordinary differential equations which can be solved
analytically. On the other end are frameworks such as that of
Forger and Peskin (2003) (and its numerous adaptations and
extensions), a system of 75 ordinary differential equations that
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model in detail many of the known processes involved in
circadian oscillation within cells.

Many of the results from these types of models help us
understand the role of different mechanisms in the SCN. For
example, models that incorporate the neuropeptide vasoactive
intestinal polypeptide (VIP) and/or the neurotransmitter
c-aminobutyric acid (GABA) demonstrate the impact of these
signaling mechanisms on the circadian rhythms (To et al., 2007;
Vasalou et al., 2009; DeWoskin et al., 2015; Myung et al., 2015).
Similarly, other authors investigate the role of electrical signaling
in the circadian system (Antle et al., 2003; Antle et al., 2007; Belle
et al., 2009; Diekman and Forger, 2009; Noguchi et al., 2017).

Other investigations focus on the impact of connection patterns
on the dynamics of the SCN, as we do in this paper but using other
methodologies. Vasalou et al. (2009) use small-world connectivity
(Watts and Strogatz, 1998) with a previous coupled differential
equation dynamical model (To et al., 2007) modeling the effect of
VIP on oscillations.With just 10% of the total possible connections,
the small-world topologies produce phase synchronization across
the model SCN. Bodenstein et al. (2012), inspired by
experimentally observed seasonal differences in the dynamics of
the SCN, use a local mean field coupling paired with random long
range connections (similar to Vasalou et al. (2009)). They find that
denser long-range connections lead to narrower phase
distributions while sparse ones broaden the phase distribution,
consistent with observed data in winter and spring respectively.
Hafner et al. (2012) investigate the impact of random, local, and
scale-free (Barabási and Bonabeau, 2003) topologies on SCN
dynamics. Modeling the core and shell regions of the SCN, they
find that scale-free connections in the core and local connections in
the shell match experimental evidence most closely with the least
number of connections. Gu et al. (2019) also consider connectivity
between the core and shell, finding that the ratio of incoming and
outgoing connections between the two impact the synchronization
of the SCN during reentrainment. Šimonka et al. (2015) study the
impact of stochasticity on oscillatory dynamics, finding that
synchronization in models with small-world topologies is robust
to even large stochastic perturbations.

Our work differs from those discussed above in that we
incorporate aspects of evolutionary game theory in our model
dynamics. In the most closely related work to ours, Antonioni
and Cardillo (2017) integrate evolutionary game theory into the
Kuramoto oscillator framework using a version of the Prisoner’s
Dilemma to form the Evolutionary Kuramoto Dilemma (EKD).
The primary features of the Kuramoto oscillator are its phase,
denoted by θi, its intrinsic frequency, ωi, and a global coupling
strength, λ. The existence of coupling between the oscillators is
encoded in an adjacency matrix, H � (hij), where hij denotes the
strength of the coupling from oscillator j to oscillator i. The
simplest Kuramoto oscillator model (Kuramoto, 1975) is a system
of coupled differential equations, one for each oscillator:

θi̇ � ωi + λ∑n
j�1

hij sin(θj − θi), (1)

Antonioni and Cardillo overlay a strategy attribute onto
each oscillator with two possibilities: cooperation, where

neurons influence each other to move towards
synchronization, and defection, where they don’t. This
introduces additional parameters si ∈ {0, 1}, one for each
oscillator, to the model

θi̇ � ωi + siλ∑n
j�1

hij sin(θj − θi), (2)

where si � 1 signals cooperation and si � 0 yields defection.
In the EGT framework, agents change their strategies by
assessing a payoff function which, in the EKD model, is
calculated by estimating solutions of the Kuramoto
system (Eq. 1) and looking at oscillators’ level of
synchronicity with their neighbors weighed against the cost
of moving towards their neighbors average phase. The higher
the net payoff, the more likely an agent will move to that
strategy. This model allows the authors to investigate the co-
evolution of synchronization and cooperative behavior.
Among other findings they find a trade-off between the
coupling strength and the cost in three types of connection
topologies: Erdős-Rényi random networks (Erdős and Rényi,
1959), Barabási-Albert scale free networks (Barabási and
Bonabeau, 2003), and random geometric graphs (Dall and
Christensen, 2002). They find that cooperation and
synchronization cannot occur at all unless the coupling
strength rises above a threshold and that even for these
higher coupling strengths, if the cost is too large
synchronization and cooperation cannot persist.

As our work in this paper focuses on the impact of topology on
synchronization and communicability, we review the work of
several other authors who have extended the investigation of the
Antonioni-Cardillo model by looking at the impact of other
topologies on the dynamic processes. Yang et al. (2018) find
that the synchronization level is highest when the underlying
connection topology (given by the adjacency matrixH in Eq. 2) is
of moderate average degree when using networks generated by
the Erdős-Rényi random graph model (Erdős and Rényi, 1959).
Liu et al. (2018) find that when the relative cost for cooperation is
low, random topologies lead to synchronization and cooperation
but as the cost rises, synchronization can only be achieved with
the less random and more localized Watts-Strogatz small-world
topologies (Watts and Strogatz, 1998). Zhou et al. (2019) find
that, in some contrast to Yang et al. (2018), synchronization arises
in data-derived networks with higher average degree and that
strong synchronization is sufficient, but not necessary, for
cooperation to arise. Further, looking at Erdős-Rényi and
Barabási-Albert (Barabási and Bonabeau, 2003) networks they
confirm that as average degree rises, synchronization becomes
stronger.

3 MODEL SPECIFICATION

We follow the method in Tripp et al. (2020) that introduced a
different approach to studying synchronizable systems through
an evolutionary game theoretic framework. Every evolutionary
game theoretic model has several components: a collection of
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agents, strategies for each agent, a function which yields the
payoffs that agents accrue when playing the game with one
another, and a rule guiding the evolution of the strategies
over time.

We define our agents as n oscillators with identical periods and
assign them a pair of attributes, (s, ϕi), that together give the agents’
strategies. The first attribute, s, is a flag that indicates whether an
oscillator communicates with its neighbor, s � C, or is non-
communicative, s � N. The second is the phase of the oscillator in
its oscillation selected from {ϕ1, . . ., ϕd}, where the d phases are
distributed evenly around the circle,ϕj � j 2πd for j� 1, 2, . . ., d. As these
provide a complete description of the oscillator, we denote oscillator i
by the pair (C, ϕi) if it is communicative and by (N, ϕi) if it is not.

Our payoff functions depend on the flags and the distance
between the phases on the circle. We have three basic
assumptions that define our payoff:

1) An oscillator derives more benefit from the interaction the
closer its phase is to its neighbors.

2) A communicative oscillator derives equal or more benefit than
a non-communicative one as communication promotes
synchronization which is beneficial to the organism.

3) Communication is Costly.

To codify this, we specify a cost associated to communication,
c, and two benefit functions, B for oscillators that communicate
and β for those that do not. The common domain of the

benefit functions is the set {1, 2, . . . ,⌊d
2⌋}, which represent

the multiple of 2π
d given by the cyclic distance between two

phases. To isolate this multiple, we first define the cyclic
distance between phases:

Δϕqr �
|ϕq − ϕr| if |ϕq − ϕr|≤ π
2π − |ϕq − ϕr| if |ϕq − ϕr|> π .{

To define the benefit function B, we isolate themultiple of 2πd by
letting

k �
|q − r| if |q − r|≤⌊d

2
⌋

d − |q − r| if |q − r|>⌊d
2
⌋

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
and defining B(k) to be B(Δϕqr). The function β is defined
analogously. To encode the first assumption above, we require
both B and β to be non-increasing functions and to encode the
second, we require that B(k) ≥ β(k) for all k.

We construct the payoff matrix A as a 2d × 2d matrix where
both the rows and columns are indexed by the strategy list,
S � {(C, ϕ1), . . . , (C, ϕd), (N , ϕ1), . . . , (N , ϕd)}. Our convention
is that Aij gives the payoff to oscillator i when oscillators i and j
interact. Taking advantage of these definitions and the symmetries
of the phase differences, we have the payoff matrix given as

This matrix has four d × d blocks that guide what happens
in four broad cases determined by the communication flag.
The upper left-hand block gives payoffs for communicator-
communicator interactions—the communicator pays a
cost (c) but reaps a benefit B(·) depending on the similarity
of the phases of the players. The upper right hand block
gives payoffs for a communicator interacting with a non-
communicator—they still pay the cost of communication but
derive a potentially smaller benefit, β(·). The lower left hand
block gives payoffs in the “free-rider” case, when a non-
communicator interacts with a communicator. The payoff
here is derived only from the function β as the non-
communicator pays no communication cost. The last
block, on the lower right, is the payoff for interaction
between non-communicators. It is identically zero as the
non-communicators neither gain nor lose anything due to
the interaction. Within these blocks, the differences in the
entries accounts for the differences between the phase
portion of the strategies of the interacting oscillators. To use
the matrix in calculating payoffs for oscillator i, playing strategy
S(i), against oscillator j, playing strategy S(j), we define
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P(S(i), S(j)) to be the entry of the matrix with row corresponding
to S(i) and column to S(j).

While the body of work related to the Antonioni and Cardillo’s
EKD model described above considered the Kuramoto
framework as a motivation, ours stems from studying
oscillatory systems in the mammalian SCN. These biological
systems are often modeled by coupled Kuramoto oscillators,
but also provide descriptive features and constraints derived
from biological experimentation. When oscillatory data is
collected from SCN samples by recording movies of PER
expression, the samples are first prepared by slicing them into
relatively thin slabs. For this reason, we assume that the oscillators
in our models are arranged on a plane. Second, studies of neural
connectivity show that, typically, neurons most intensely
communicate with other nearby neurons but also
communicate with neurons further away, albeit more weakly
(see the excellent review Bassett and Bullmore (2017)).
Consequently, we focus on topologies with different mixtures
of local and long-range connectivity within this broad
description. Here, we recognize a limitation of our approach
in that our framework does not allow for varying the intensity of
the interaction.

The prior studies on the properties of the EKD model, while
enlightening, invariably assume the Prisoner’s Dilemma type
interactions among oscillators, specifically in the form of a
donation game. Our setup is more flexible as many more
classical games can arise in addition to the Prisoner’s
Dilemma depending on the choices of B(0), β(0) and c, as
shown in Figure 1.

4 METHODS

Our goal is to use the evolutionary game theoretic model we
introduced above to better understand under what conditions
communication among the oscillators can arise. Our basic setup
is to create a collection of oscillators with the same phase that do
not communicate with one another. Then, we introduce a single
oscillator that does communicate and has a phase that is
maximally different from the phases of the other oscillators.
Introducing a single new element mimics a mutation enabling
communication between oscillators arising in the system. The
choice of initial phases is set to make the adoption of the
communicative strategies as difficult as possible.

With these initial constructions, we then apply a death-birth
process (Ohtsuki et al., 2006), a common update process used in
evolutionary game theory to mimic evolution within the system,
to see the impact of the invasion of the communicative strategy. If
we were to run this process infinitely many times, it will reach an
equilibrium of either all communicative oscillators or all non-
communicative ones. In this work, we use a fixed finite number of
iterations. At the end of the simulations, we examine the
proportion of communicative oscillators across different
parameters in the model to quantify the success of the invasion.

To formalize this, we need to describe several details of the
model: the payoff functions, B and β; the cost, c; the death-birth
process; and the connectivity pattern of the oscillators.

4.1 Payoff Functions
The model introduced in Tripp et al. (2020) has two baseline
assumptions about B and β: both are monotonic non-increasing
functions, and B(k) ≥ β(k). For this work, we choose both to be
linear functions:

B(Δϕ) � B(0) 1 − Δϕ
d

( ), β(Δϕ) � β(0) 1 − Δϕ
d

( ),
where d is the number of possible phases for the oscillators and
B(0) ≥ β(0). As in Tripp et al. (2020), we will examine a range of
values for B(0) and β(0) to see when communication is favored.We
define the cost of communication, c, in one of two ways, depending
on the connection topology of the oscillators. For cases when every
oscillator has the same number of connections as every other
oscillator, we fix a global cost of c � 10. For cases where oscillators
have different numbers of connections, the cost to oscillator i is
c(i) � 10 N(i)

μ where N(i) is the number of other oscillators that i is
connected to and μ � 1

n∑n
j�1N(j), the mean number of connections

per oscillator. This definition of c(i) ensures that the mean cost,
c ̄ � 1

n∑n
j�1c(j), is equal to 10, ensuring that simulations with this

cost structure are comparable to those with the global fixed cost of
10 (Masuda, 2007).

Our choice of this cost structure stems from practical
computational considerations. In exploring the parameter
space, we focus on understanding the impact of B(0) and β(0)
values that are both above and below different multiples of the
cost. Setting the cost (or the expected cost) at 10 allows us to
complete simulations for B(0) and β(0) up to values of 40 in a
reasonable amount of time, and with sufficient resolution
between multiples of c to draw conclusions about how
simulations behave in these scenarios.

4.2 The Death-Birth Process
Strategies in our network of oscillators change according to a
death-birth process. The outline is simple: for each iteration, we
pick an oscillator uniformly at random to remove from the
system and replace it with a new oscillator whose strategy is
determined by the potential payoff of different strategies for that
node. To make this precise, we need to quantify the payoffs for
given strategies, which requires a few definitions. If (i, S(i))
denotes an oscillator i with strategy S(i), we first define the
expected payoff, denoted by π(i,S(i)), as the average payoff
received if i plays its strategy with its neighbors according to
the payoff matrix (Eq. 3):

π(i,S(i)) � ∑n
j�1

MijP((i, S(i)), (j, S(j))) (4)

here, Mij indicates the connectivity between oscillators i and j:

Mij � 0 if oscillators i and j are not connected,
1 if oscillators i and j are connected.

{ (5)

Finally, we can define the fitness of an oscillator i with strategy

S(i) as f(i,S(i)) � e
δπ(i,S(i)) , where the parameter δ is the strength of

selection (following the framework in Traulsen et al. (2008)). In
this work, we always take δ � 1.
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With these preliminary definitions in place, we can describe
the selection of a strategy in the birth stage of the death-birth
process. If the random draw selects node i, we compute the fitness
profile for node i, the vector of fitnesses for node i adopting one of
its neighbors’, say j’s, strategy, normalized to be a probability
distribution:

F j � f(j,S(j))∑kf(k,S(k))
( )

k∈N i

,

with N i � {k|Mik � 1, k � 1, . . . , n} to denote the set of nodes of
i’s direct neighbors. We then select a strategy for the new
oscillator randomly according to this probability distribution.

Given the complexity of these definitions, we want to
emphasize several properties. First, this construction ensures
that it is more likely for the new node to have a high fitness
strategy, but the randomness allows for sub-optimal strategy
assignments. Second, the fitness profile for different oscillators
may be very different from one another if the two oscillators are
connected to different collections of other oscillators. Third, in
contrast to the last point, if two oscillators are connected to the
same set of other oscillators, their fitness profiles will be the same.

4.3 Connection Topologies
In calculating the payoffs that guide the death-birth process, we
need to specify which other oscillators a specific oscillator has the
possibility of interacting with. We do this by defining a
connection topology encoded in an n × n matrix M given as
in (Eq. 5).

Tripp et al. (2020) focused on the all-to-all topology, where
every oscillator is connected to every other oscillator. We can
represent this by a matrixMwhereMij � 1 for all distinct pairs of i
and j. Using the all-to-all topology as a point of comparison, we
will examine three additional biologically plausible topologies, all
of which are variants of nearest-neighbor topologies. To describe
these, we begin by arranging the oscillators on a 2-dimensional
integer grid labeled using a coordinate pair (x, y). Figure 2 shows
the arrangement and labeling with 100 oscillators.

The 4 nearest neighbor topology connects an oscillator at
location (x, y) with the others at locations (x + 1, y), (x − 1, y), (x,
y + 1), and (x, y − 1) if those locations are defined; if an oscillator
is located on the edge of the grid, it omits whichever connections
cannot be formed. The 8 nearest neighbor topology expands on
the connections in the 4 nearest neighbor case by adding
connections to oscillators at (x + 1, y + 1), (x + 1, y − 1), (x −
1, y + 1), and (x − 1, y − 1), if oscillators exist at those locations.
The probabilistic spatial topology introduces randomness into
the definition of connections, creating the possibility that
different oscillators will have different numbers of
connections. In this case, we place an edge between distinct
oscillators labeled (x1, y1) and (x2, y2) with probability

p � 1������������������
(x2 − x1)2 + (y2 − y1)2

√
+ c

,

where c is a constant parameter with which we can manipulate
the density of the connections: smaller values of c create denser

FIGURE 1 | Beyond the Prisoner’s Dilemma. For different values of B(0) and β(0), our evolutionary game theoretical model encompasses four regimes of classical
games: Prisoner’s Dilemma (blue), Snowdrift (green), Coordination (red), andmutualism (yellow). The regions are marked if we expect a communicative invasion of a non-
communicative population to take over (C) or fail (N) with all-to-all connectivity. Results from Tripp et al. (2020).
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patterns while larger ones create sparser ones. Given a fixed c, this
construction makes connections between nearby oscillators more

likely than ones that are far away as
������������������
(x2 − x1)

2 + (y2 − y1)
2

√
gives

the Euclidean distance between the grid points where the
oscillators are placed.

The probabilistic spatial topology has commonalities with the
Watts-Strogatz small-world topology. While both have a mixture
of nearby and long-range connections, the generative
mechanisms are different. Typically, small-world networks
start with a fixed nearest-neighbor topology (like one of the
ones above) and add a certain proportion of long-range
connections at random. In the probabilistic spatial topology
model all connections arise with probability dictated by the
distance between the two oscillators on the plane.
Consequently, there are fewer connections that are very long
and more when distances are small. This leads to cases where we

would not classify networks with the probabilistic spatial
topology as small world. For example, with c � 10 the average
clustering coefficient over 100 instances is approximately 0.0365
while the average path length is 2.08.

4.4 Simulations
For our simulations, we fix the various parameters as shown in
Table 1 and execute the death-birth process for 50,000 iterations.
To construct our topologies, we arrange the 1,600 oscillators in a
40 × 40 integer grid and use the processes described above. For
the 4 and 8 nearest neighbor topologies, as well as the all-to-all
topology, we use a fixed uniform cost c � 10. For the probabilistic
spatial topology, we use the normalization to enforce an average
cost of 10.

To measure the evolution of the strategies of the oscillators, for
each iteration we record the percentage of oscillators with a
communicative strategy, p. Consequently, the vector of these
probabilities, p

⃗
, shows not only if the system converges to an all

communicative or all non-communicative state, detected by a 1
or 0 in the last entry of p

⃗
, but also how long and what path the

system took to get there. While some evolutionary game theoretic
frameworks introduce a component of random mutation, we do
not and consequently, once p reaches 0 or 1, the probabilities
cannot change again no matter how many additional iterations
we perform. For simulations where p does not settle on either 0 or
1, we end the simulation after 50,000 iterations of the death-birth
process, and calculate the average percentage of the
communicative strategy in a mixed state, with some

TABLE 1 | Parameters that we use in simulations of our evolutionary game
theoretic model.

Description Parameter Value(s)

Payoff benefit (communicators) B(0) {1, . . ., 40}
Payoff benefit (non-communicators) β(0) {1, . . ., B(0)}
Payoff cost c 10, or degree adjusted
Number of oscillators n 1,600
Number of phases d 10
Selection strength δ 1
Number of iterations 50,000

FIGURE 2 | Spatial topologies of oscillator interactions. A schematic of the arrangement of 100 oscillators along an integer grid in the two-dimensional plane. Three
nodes highlighted with a colored outline in blue (also labeled (2,2)), purple ((9,9)), and red ((3,6)) give examples of 4 nearest neighbor (von Neumann neighborhood), 8
nearest neighbor (Moore neighborhood), and probabilistic spatial topologies respectively.
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communicative and some non-communicative oscillators. This
simulation procedure is in line with prior common practice for
games on graphs (Santos and Pacheco, 2005).

5 RESULTS

To contextualize the simulation results for the different
topologies, we recall some of the theoretical results in Tripp
et al. (2020). Tripp et al. which show that different choices of B(0)
and β(0) can produce one of four different games—the Prisoner’s
Dilemma, the snowdrift game, the coordination game, and
mutualism, which are shown as the blue, green, red, and
yellow regions in Figure 1 respectively. When considering the
all-to-all topology, the authors find conditions for the success of a
strategy invading a population with strategies of the other
communicative type. For the set-up described in the previous
section, where a single communicative oscillator invades a pool of
non-communicative ones, those results translate to the labeling of
the regions in Figure 1. In short, so long as B(0) ≥ β(0) > c, we
expect the invasion to be successful.

Generally, our simulation results are consistent with Tripp
et al.’s analytic results. Discrepancies are likely due to the changes
in topology, the finite number of iterations of the process, or both.
Figure 3 shows the results of the simulations described in the
previous section for four topologies—the 4 and 8 nearest
neighbor topologies, the probabilistic spatial topology with
average degree 10, and the all-to-all topology. In the top row,
the color of the pixel corresponding to a (B(0), β(0)) pair shows
the percent of communicative oscillators after 50,000 iterations,
averaged over twenty trials. In the bottom row, a similar pixel

shows the average over the trials of the number of iterations it
takes the system to converge to either all communication or all
non-communication. A value of 50,000 indicates that none of the
twenty trials converged to a uniform strategy by the end of the
experiments. Each of the panels on the top row are broadly
similar, having the same three features: a triangular region where
the systems converge to full communication, a parallelogram
above the first region where the systems reach 25–80%
communication by the end of the iterations, and another
(rough) parallelogram at the bottom of the images where the
systems converge to full non-communication. Comparing to
Figure 1, we see the first region corresponds to the mutualism
game, the second to the snowdrift region, and the third to the
union of the coordination and Prisoner’s Dilemma region.
Beyond these similarities, we see the trend that higher degree
corresponds to better delineation of these regions.

The results shown in the bottom row further reveal that higher
degree corresponds to faster convergence and that introducing
some long range connections in the probabilistic spatial topology
speeds convergence up even more. This is particularly evident in
the triangular region associated with the mutualism game. In the
four nearest neighbor topology, many of the (B(0), β(0)) pairs do
not reach a uniform strategy by the end of 50,000 iterations. But
as we move through topologies with higher degrees, convergence
times drop quickly. The change from the eight nearest neighbor
topology to the probabilistic spatial topology is most stark.
Moving from a uniform degree of eight to an average degree
of ten cut the convergence time roughly in half, reinforcing the
impact of the randomization and longer range connections
introduced by the probabilistic framework. The snowdrift
region is very slow to converge across all choices of topology,

FIGURE 3 | Impact of different topologies. For each of the four topologies—four, eight, and probabilistic spatial topology, and all-to-all—we show the results of the
introduction of a single communicative oscillator after 50,000 iterations of the death-birth process (top row) and the convergence time (bottom row). On each of the
panels, the dark line is placed at the cost (or average cost in the probabilistic spatial topology case) indicating the theoretical boundary shown in Figure 1 for the all-to-all
topology for comparison. Broadly, we see that as connectivity becomes more dense, convergence times drop and more communicative invasions are successful.
But, particularly in the mutualism game region, all topologies result in cases of full communication and hence synchronization.
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which is consistent with theoretical results showing convergence
in snowdrift games can be exponential in time (Antal and
Scheuring, 2006). The regions corresponding to Prisoner’s
Dilemma and coordination games show very fast convergence
to a uniform population of non-communicators—the invasion by
the communicative strategy fails.

6 DISCUSSION

Our first observation drawn from the results shown in Figure 1 is
that high levels of communication and connectivity are not
necessary to achieve a stable synchronous system. While the
sparser topologies converge more slowly than denser ones, the
results are qualitatively the same—the regions where
communicative strategies or non-communicative strategies
become dominant are similar across the topologies we
explored. The differences are indicative of the differences in
convergence times. For example, in the all-to-all topology, the
region in the lower right hand corner of Figure 3A has a sharp
delineation between the region where the system is fully
communicative (yellow) or fully non-communicative (blue).
The same region in the nearest-neighbor topologies is less well
separated, with a transitional region between the yellow and blue
regions where there are mixtures of communicative and non-
communicative oscillators. As the death-birth process that we
defined at the foundation of the model is a Markov chain with
absorbing states that are either fully communicative or fully non-
communicative, these systems would eventually have the same
sharp division if we completed (many) more iterations. This is
consistent with the observed connectivity in neural systems,
which are densely connected locally but much more sparsely
connected at long ranges, and our model provides a potential
explanation for this configuration. Among the many processes
and constraints that impact the evolution of a species, two
important factors stand out when considering a circadian
time-keeper—the benefit of minimizing the biological cost of
the system and the benefit the system confers on the organism in
terms of its survival. In our exploration, these are in tension—the
benefit of synchronization drives the system to enable more
communication, but this comes at a cost in the biological
construction and maintenance of the system. Our results
support the hypothesis that the relatively sparse topology in
the SCN that can still achieve synchronization is a
consequence of optimizing these forces.

Second, we observe that on evolutionary times scales, in most
cases we should expect a mixture of communicative and non-
communicative oscillators. Our simulations ran for the
equivalent of 50,000 generations—a very long time period for
most mammals. Our simulation results show that for many
combinations of B and β, our models do not converge to
complete communication or complete non-communication
within this time frame. Consequently, in organisms that
developed an SCN-type circadian clock within a relatively
recent evolutionary time scale, we should expect to see a
combination of communicative and non-communicative
oscillators. But, this interpretation is confounded by some, not

completely known, features of the evolutionary landscape.
Circadian clocks are almost ubiquitous across all organisms,
although the mechanisms differ. On one hand, this suggests
that either clocks emerged very early and continued to be
refined through evolution and speciation. On the other,
external selection pressure for some sort of time keeper may
create the conditions for convergent evolution of similar clock
mechanisms in different species, arising more recently and
independently. As we do not have complete knowledge of the
progression, this interpretation of our results is tempered.

With this caveat in mind, the results of the simulations lead us
to a conjecture about the factors that constrain the development
of a system such as the SCN. Considering the desirable and
observed properties of synchronous systems leads us to identify
several key components. First, the evolutionary framework
should lead to a communicative, hence synchronous, system
given the ubiquity of biological mechanisms like the SCN
across species. Second, the convergence to a uniform
communicative system should be reasonably fast to be
plausible on an evolutionary time scale. Third, once a system
reaches a fully communicative state, it should be stable and
resistant to perturbations that disrupt communication. Fourth,
the system should be flexible in that it can converge to any phase
within the collection of phases. And last, the connectivity of the
system should be as sparse as possible while achieving the other
components to minimize biological cost. Of our four regions, only
mutualism demonstrates all of these properties. Pairs in that
region converge to full communication, unlike those within the
coordination game and the Prisoner’s Dilemma regions. Unlike
the snowdrift region, convergence is fast with low average degree
when using the probabilistic spatial topology. Like the
coordination game but unlike snowdrift and the Prisoner’s
Dilemma, mutualism is agnostic to the question of the phase
to which it converges. Hence, the resulting systems retain the
ability to change phases. Last, as the cost is smaller than either
B(0) or β(0) in the mutualism region, once the systems have
reached convergence, they are difficult to move.

Taken together, these results both complement and extend
the work on Antonioni and Cardillo’s Evolutionary
Kuramoto Dilemma model (Antonioni and Cardillo, 2017).
While the frameworks are different from one another, some
of the results point in the same direction—the systems
converge when the topologies have reasonably moderate
degrees and topologies akin to Watts-Strogatz small-world
models facilitate better convergence properties. Our results
refine these further, delineating cases where topologies can be
very sparse and yet still enable reasonably fast convergence to
communication and synchronization. Moreover, our
identification of the mutualism game as the most plausible
model within our framework stands in contrast to the use of
the Prisoner’s Dilemma as a model for pairwise interactions
in the earlier work (Antonioni and Cardillo, 2017; Liu et al.,
2018; Yang et al., 2018; Zhou et al., 2019), as well as models
where oscillators change their connectivity to maximize their
influence within the system (Brede et al., 2018). While
interactions in these other models produce an antagonistic
environment where the collective’s best action is at odds with
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an individual’s rational action, mutualism is more
harmonious, as players of the game are motivated to pick
one of the multiple strategies that is best for the whole
(Hauert, 2001). This is reflective of the differing goals of
the models. The other models cited are designed to explore
the rise of synchronization in coupled oscillator systems in
the face of adverse conditions imposed by costly connectivity.
Our current model has similarities, but more importantly, it
takes into account all possible types of pairwise game
theoretic interactions that can arise in neuronal
populations, including but not limited to the Prisoner’s
Dilemma games. In sum, the present work is further
motivated by the development of synchronous oscillatory
systems in organisms from the perspective of evolutionary
dynamics that are driven by the exquisite tradeoff of benefit
and cost of communication. The ubiquity of these systems
implies that the evolutionary benefits substantially outweigh
the costs, making a more relaxed model such as mutualism
reasonable.
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